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Abstract Scratch assays are used to study how a population of cells re—
colonises a vacant region on a two—dimensional substrate after a cell mono-
layer is scratched. These experiments are used in many applications includ-
ing drug design for the treatment of cancer and chronic wounds. To provide
insights into the mechanisms that drive scratch assays, solutions of contin-
uum reaction—diffusion models have been calibrated to data from scratch as-
says. These models typically include a logistic source term to model carrying
capacity-limited proliferation, however the choice of using a logistic source
term is often made without examining whether it is valid. Here we study the
proliferation of PC-3 prostate cancer cells in a scratch assay, and we focus
on the proliferation of these cells far away from the scratch. All experimental
results for the scratch assay are compared with equivalent results from a pro-
liferation assay where the cell monolayer is not scratched. Visual inspection
of the evolution of the cell density as a function of time reveals a series of
sigmoid curves that could be naively calibrated to the solution of the logistic

growth model. However, careful analysis of the per capita growth rate as a
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function of density reveals several key differences between the proliferation of
cells in scratch and proliferation assays. The per capita growth rate in the
proliferation assay decreases, approximately linearly, with density in the pro-
liferation assay suggesting that the logistic growth model is valid for the entire
duration of the proliferation assay. However, the per capita growth rate in the
scratch assay increases with density when the density is sufficiently small in
the scratch assay, suggesting that the logistic growth model does not apply.
Instead, guided by data, we find that there are two phases of proliferation in a
scratch assay. At short time we have a disturbance phase where proliferation is
not logistic, and this is followed by a growth phase where proliferation appears
to be logistic. Accounting for the differences in the growth and disturbance
phase, we obtain biologically realistic estimates of the proliferation rate and
carrying capacity density. In contrast, simply calibrating the solution of the
logistic growth equation to all data from the scratch assays, we obtain an ex-
cellent match between the data and the model, but the parameter estimates
vary wildly and are not biologically realistic. Overall our study shows that
simply calibrating the solution of a continuum model to a scratch assay might
produce misleading parameter estimates, and this issue can be resolved by
making a distinction between the disturbance and growth phases. Repeating
our procedure for other scratch assays will provide insight into the roles of
the disturbance and growth phases for different cell lines and scratch assays

performed on different substrates.

Keywords Logistic growth; Scratch assay; Cancer; Wound healing; Reaction-

diffusion equation
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1 Introduction

Understanding population dynamics is a fundamental question that has wide
relevance to many biological and ecological processes. For example, the rate of
spatial spreading of invasive species through different ecosystems is driven, in
part, by the population dynamics and rates of growth of the invasive species
(Lewis and Kareiva, 1993; Murray, 2002; Waters et al. 2015). Population dy-
namics and population growth are also central to understanding the spread of
infectious diseases. For example, the spread of Wolbachia into wild mosquito
populations is thought to reduce a wide range of diseases, and the spatial
spreading of the mosquito population is partly driven by the population dy-
namics of the mosquito population (Chan and Kim, 2013). Similar ideas also
apply to the spreading of tumour cells and the progression of cancer, which
is related to the rates of proliferation of invasive cancer cells (Alarcon et al.
2003; Mallet and de Pillis 2006; Ribba et al. 2006). Therefore, improving our
understanding of population dynamics by calibrating mathematical models to

experimental observations of population dynamics is of great interest.

In vitro scratch assays are routinely used to study the ability of cell popula-
tions to re—colonise an initially—vacant region (Liang et al., 2007; Tremel et al.,
2009; Kramer et al., 2013; Treloar and Simpson, 2013). This re—colonisation
occurs as a result of the combination of cell migration and cell proliferation,
and gives rise to moving fronts of cells that re—colonises the vacant region.
Scratch assays provide insights into both cancer spreading and tissue repair
processes (Maini et al., 2004a; Maini et al., 2004b; Kramer et al., 2013). In gen-
eral, performing a scratch assay involves three steps: (i) growing a monolayer
of cells on a two-dimensional substrate; (ii) creating a vacant region in the
monolayer by scratching it with a sharp—tipped instrument; and, (iii) imaging

the re—colonisation of the scratched region (Liang et al., 2007; Kramer et al.,
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2013). Another type of in vitro assay, called a proliferation assay, is performed
using the exact same procedure as a scratch assay, except that the monolayer
of cells is not scratched (Jones et al., 2001; Tremel et al., 2009; Simpson et al.,
2013). Cell proliferation assays allow experimentalists to measure the increase

in cell numbers over time due to proliferation (Tremel et al., 2009).

In the applied mathematics literature, scratch assays have been modelled
using continuum reaction—diffusion equations (Sheardown and Cheng, 1996;
Maini et al., 2004a; Maini et al., 2004b; Savla et al., 2004; Cai et al., 2007;
Sengers et al., 2007; Shakeel et al., 2013; Simpson et al., 2007; Johnston et
al., 2015; Jin et al., 2016). In these models, cell migration is represented by
a diffusion term, and carrying—capacity limited proliferation is represented by
a logistic source term. For proliferation assays in which the cell population is
uniformly distributed and no scratch is made, the continuum reaction—diffusion
equation simplifies to the logistic growth equation (Cai et al., 2007; Johnston
et al., 2015; Simpson et al., 2013), given by

dc(t) C(t)
o =M <1 - K) , (1)

where C(t) is the density of cells, ¢ is time, A > 0 is the proliferation rate, and

K > 0 is the carrying capacity density.

It is interesting to note that a logistic growth term is often used when mod-
elling scratch assays or proliferation assays (Maini et al., 2004a; Maini et al.,
2004b; Savla et al., 2004; Cai et al., 2007; Sengers et al., 2007; Tremel et al.,
2009; Johnston et al., 2015; Jin et al., 2016), yet the suitability of this choice
is rarely, if ever, tested using experimental data. In fact, several studies argue
that the logistic growth equation does not always match experimental data
(Laird, 1964; Zwietering et al., 1990; West et al., 2001; Jin et al., 2016). For

example, Laird (Laird, 1964) examines in vivo tumour growth data and shows
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that the Gompertz growth law matches the data better than the standard lo-
gistic model. Similarly, West and coworkers investigate the growth patterns of
a wide range of animal models (West et al., 2001). By comparing experimental
data with model predictions, they find that the growth is best described by a
more general model. In addition, the results from our previous study, focusing
on scratch assays, suggest that when calibrating solutions of a logistic—type
reaction—diffusion equation to experimental data with varying initial cell den-
sity, there appears to be no unique value of A for which the logistic growth
equation matches the entire data set for all initial cell densities (Jin et al.,
2016). One way of interpreting this result is that the cells in the scratch assay
do not proliferate logistically.

In the present work, we use a combined experimental and mathematical ap-
proach to investigate whether the proliferation of cells in a scratch assay can be
modelled with the classical logistic equation. Our approach involves perform-
ing a series of proliferation assays to act as a control so that we can examine
whether the process of scratching the monolayer affects the way that cells pro-
liferate. While many experimental studies implicitly assume that scratching
the monolayer does not affect cell proliferation, others suggest the process of
scratching can trigger certain signalling pathways that may have some effects
on the way that cells proliferate (Nikoli¢ et al., 2006; Nishio et al., 2005). To
investigate these questions, we perform a suite of scratch assays and prolifera-
tion assays using the IncuCyte ZOOM™ system (Johnston et al., 2015). For
both types of assays, we use the PC-3 prostate cancer cell line (Kaighn et al.,
1979), and we consider varying the initial seeding condition so that we can
examine the influence of varying the initial cell density.

To quantitatively test the suitability of the logistic growth model, we ex-
tract cell density information from the experimental images and then estimate

the per capita growth rates from the data for both the scratch assays and
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the proliferation assays. Our results show that the evolution in cell density in
the proliferation assays appears to be logistic for the entire duration of the
experiment. In contrast, the variation in cell density in the scratch assays is
very different. We observe two phases in the scratch assays: (i) a disturbance
phase at early time, in which the proliferation of cells is not logistic; and, (ii)
a classic logistic growth phase for the remainder of the experiment. The dif-
ferences how cells proliferate in the scratch assay and the proliferation assay
is surprising because we are making observations well away from the location
of the scratch. This finding that we have two phases of proliferation in scratch
assays is significant because many mathematical studies implicitly assume that
cells in scratch assays proliferate logistically for the entire duration of the ex-
periment (Maini et al., 2004a; Maini et al., 2004b; Savla et al., 2004; Cai et
al., 2007; Sengers et al., 2007; Tremel et al., 2009; Johnston et al., 2015; Jin et
al., 2016). However, our finding is that cells located far away from the scratch

proliferate very differently to cells in the proliferation assay.

This paper is organised in the following way. First, we describe the experi-
mental methods, including how we process the experimental images to obtain
cell density information. We then outline the logistic growth model and the
least—squares method for calibrating the model to our data. By presenting in-
formation about the evolution of the cell density and the per capita growth
rate, we identify two phases of proliferation in the scratch assays. These phases
are identified by focusing on regions of the scratch assay that are located well
behind the location of the scratch. After calibrating the solution of the logistic
model to the cell density information, our results suggest that the logistic equa-
tion is relevant for the proliferation assays but only for the later phase in the
scratch assays. We conclude this study by discussing some of the limitations,

and we outline some extensions for future work.
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2 Methods

2.1 Experimental Methods

We perform scratch assays and proliferation assays using the IncuCyte ZOOM™
live cell imaging system (Essen BioScience, MI USA). All experiments are per-
formed using the PC-3 prostate cancer cell line (Kaighn et al., 1979). These
cells, originally purchased from American Type Culture Collection (Manas-
sas, VA, USA), are a gift from Lisa Chopin (April, 2016). The cell line is used
according to the National Health and Medical Research Council (NHMRC)
National statement on ethical conduct in human research with ethics approval
for Queensland University of Technology Human Research Ethics Committee
(QUT HREC 59644, Chopin). Cells are propagated in RPMI 1640 medium
(Life Technologies, Australia) with 10% foetal calf serum (Sigma—Aldrich, Aus-
tralia), 100U/mL penicillin, and 100ug/mL streptomycin (Life Technologies),
in plastic tissue culture flasks (Corning Life Sciences, Asia Pacific). Cells are
cultured in 5% COy and 95% air in a Panasonic incubator (VWR Interna-
tional) at 37°C. Cells are regularly screened for Mycoplasma (Nested PCR

using primers from Sigma—Aldrich).

Cell counting is performed using a Neubauer—improved haemocytometer
(ProSciTech, Australia). Cells, grown to approximately 80% confluence, are
removed from the flask using TrypLE™ (Life Technologies) in phosphate
buffered saline (pH 7.4) and resuspended in culture medium ensuring that
they are thoroughly mixed. After resuspension, an aliquot of 10uL is quickly
removed before the cells start to settle. A 1:1 mixture of cell suspension and
0.4% trypan blue solution (Sigma—Aldrich; a blue stain that is only absorbed
by dead cells) is prepared and 10uL of the solution is loaded onto the count-

ing chamber of a clean Neubauer-improved haemocytometer. The counting
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chamber of a haemocytometer is delineated by grid lines that identify four
chamber areas to be used in cell counting. The volume of the chamber area
is 1x10*mL. Using a microscope, each chamber area is viewed, and the live
cells that are not coloured in blue are counted. The cell density is calculated
by taking the average of the four readings and multiplying it by 10* and the
dilution factor, to obtain the approximate number of cells per mL of the cell
suspension (Louis and Siegel, 2011).

For the proliferation assays, the cell count is determined and the cells are
seeded at various densities in 96—well ITmageLock plates (Essen Bioscience).
Cells are distributed in the wells of the tissue culture plate as uniformly as
possible. We report results for initial seeding densities of approximately 12,000,
16,000 and 20,000 cells per well. After seeding, cells are grown overnight to
allow for attachment and some subsequent growth. The plate is placed into the
IncuCyte ZOOM™ apparatus, and images are recorded every two hours for
a total duration of 48 hours. An example of a set of experimental images from
a proliferation assay is shown in Fig 1A—C. For each initial seeding condition

we perform 16 identically prepared experimental replicates (n = 16).
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For the scratch assays, the cell count is determined and the cells are seeded
at various densities in 96—well ImageLock plates (Essen Bioscience). Cells are
distributed in the wells of the tissue culture plate as uniformly as possible.
We report results for initial seeding densities of approximately 12,000, 16,000
and 20,000 cells per well. After seeding, cells are grown overnight to allow for
attachment and some subsequent growth. We use a WoundMaker™ (Essen
BioScience) to create uniform scratches in each well of a 96-well ImageLock
plate. To ensure that all cells are removed from the scratched region, a modi-
fication is made to the manufacturer’s protocol, where the scratching motion
is repeated 20 times over a short duration before lifting the WoundMaker™.
After creating the scratch, the medium is aspirated and the wells are washed
twice with fresh medium to remove any cells from the scratched area. Following
the washes, 100uL fresh medium is added to each well and the plate is placed
into the IncuCyte ZOOM™ apparatus. Images of the collective cell spreading
are recorded every two hours for a total duration of 48 hours. An example
of a set of experimental images taken from a scratch assay is shown in Fig
1D-F. For each initial seeding condition we perform 16 identically prepared
experiments in different wells of the tissue culture plate (n = 16). Throughout
this work we will refer to these identically prepared experiments in different

wells as different replicates.

2.2 Experimental Image Processing

To obtain cell density information from the experimental images, we count
the number of cells in two identically sized subregions that are well behind
the location of the scratch, as shown in Fig 1G. The positions of the two sub-
regions are located about 400um behind the scratch, and each subregion has

dimensions 1430pmx200pum. Throughout this work, we refer to the subregion
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to the left of the image as subregion 1, and the subregion to the right of the
image as subregion 2. Because the subregions are located well away from the
scratched region, we are able to invoke a simplifying assumption that the dy-
namic changes in cell density in these subregions is due to cell proliferation
alone (Supplementary Material) (Johnston et al., 2015). We do not use data
that are directly adjacent to the left or right sides of the images since this
corresponds to the boundary of the field of view. Cells in each subregion are
counted in Photoshop using the ‘Count Tool’ (Adobe Systems Incorporated,
2016). After counting the number of cells in each subregion, we divide the
total number of cells by the total area to give an estimate of the cell density.
We repeat this process for each replicate and calculate the sample mean of the
cell density at two—hour intervals during the first 18 hours of the experiment
where the most rapid temporal changes take place. Then, during the last 30

hours of the experiment, we count cells at six—hour intervals.

One of the assumptions we make when analysing data from the scratch
assay is that the two subregions are sufficiently far away from the edges of
the scratch so that there are no spatial variations in cell density at these
locations for the entire duration of the experiment. This assumption allows
us to attribute any changes in cell density in the subregions to be a result of
cell proliferation (Johnston et al., 2015). Quantitative evidence to support this

assumption is provided in the Supplementary Material.

2.3 Mathematical Methods

The logistic growth equation, given by Eq (1), has an exact solution

KC(0)
(K—C(0))e M+ C(0)’ (2)

o(t) =
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which is a sigmoid curve that monotonically increases from the initial density
C(0) to K as t — oo. An important feature of the logistic growth model
that we will make use of in this study is that the per capita growth rate,
(1/C)(dC/dt) = A(1 — C/K), decreases linearly with C.

We estimate the two parameters in the logistic growth model, A and K, by
minimising a least—squares measure of the discrepancy between the solution
of the logistic growth equation and the average cell density information in our
subregions that are located far away from the scratched region. The least—

squares error is given by

I
Z Cmodel Cdata( )]2’ (3)
i=1

where ¢ is an index that indicates the number of time points used from the
experimental data sets and [ is the total number of time points used in the cal-
ibration procedure. We calibrate the solution of the logistic growth equation to
the average cell density information using the MATLAB function 1sqcurvefit
(MathWorks, 2016) that is based on the Levenberg-Marquardt algorithm. In
each case, we always check that our least—squares estimates of A\ and K, which
we denote as A and K, are independent of the initial estimate that is required

for the iterative algorithm to converge.

3 Results and Discussion
3.1 Quantitative assessment of experiments
3.1.1 Initial cell density

Many previous studies that calibrate solutions of mathematical models to ex-
perimental data from proliferation or scratch assays make use of just one initial

density of cells (Cai et al., 2007; Tremel et al., 2009; Maini et al., 2004a; Maini
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et al., 2004b). To provide a more thorough investigation of the suitability of
various mathematical models, we calibrate mathematical models to a suite of
experimental data where the initial density of cells is intentionally varied (Jin
et al., 2016). To achieve this, our experimental procedure involves placing a
different number of cells into each well of the tissue culture plate. We describe
this as varying the initial seeding condition. In this work we consider three dif-
ferent initial seeding conditions that correspond to placing either: (i) 12,000;
(i) 16,000; or, (iii) 20,000 cells per well. For brevity, we refer to these three

conditions as initial seeding conditions 1, 2 and 3, respectively.

After a particular number of cells are placed into the tissue culture plate,
the cells are incubated overnight to allow them to attach to the plate and begin
to proliferate. The experiments are then performed on the following day. Since
the cell density changes overnight, we will refer to the initial density of cells at
the beginning of the experiment on the following day, as the initial cell density.
Intuitively, we expect that the initial cell density in proliferation assays will
be greater than the cell density associated with the initial seeding condition,

because the cells have had a period of time to attach and begin to proliferate.

Before we examine the temporal evolution of cell density in our experi-
ments, we first examine the variability in the initial cell densities amongst our
various experimental replicates. This is essential, since the process of placing
either 12,000, 16,000 or 20,000 cells in each well of the tissue culture place is,
at best, an approximation. To quantify the variability in the initial cell den-
sity, we count the number of cells in the two subregions, as shown in Fig 1G,
and convert these counts into an estimate of the initial cell density, C(0). We
repeat this procedure for both the proliferation and scratch assays, giving a
total of 96 individual estimates of the initial cell density. These 96 estimates

of the initial cell density are reported in Fig 2, revealing three features:
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1. In general, those experiments initiated with a higher number of cells per
well lead to a higher initial cell density after the overnight attachment and
proliferation has taken place;

2. Within each initial seeding condition, the variability in initial cell density
for the proliferation assays is very similar to the variability in initial cell
density for the scratch assays; and,

3. There is a large variation in the initial cell density within each initial

seeding condition.

Of these three features, the variation in the initial cell density within each
initial seeding condition is very important. For example, the highest recorded
initial cell density for initial seeding condition 1 (12,000 cells per well) is greater
than the smallest recorded initial cell density for initial seeding condition 3
(20,000 cells per well). This means that we ought to take great care when
selecting particular experimental replicates from the 96 data sets in Fig 2,
otherwise our results could be misleading when we try to examine how the

results depend on the initial cell density.
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We select three replicates from each initial seeding condition for both the
proliferation and scratch assays so that the initial cell density for the initial
seeding condition 3 is greater than the initial cell density for the initial seeding
condition 2, which is greater than the initial cell density for the initial seeding
condition 1. Furthermore, we select three replicates for both the proliferation
and scratch assays from each initial seeding condition. These choices are made
so that the initial cell density for each type of assay is approximately the same
within each seeding condition. To satisfy these constraints we choose three
replicates from each set of 16 experimental replicates. The selected replicates

are indicated in Fig 2.

3.1.2 Cell density information

Using the previously identified three experimental replicates for each type of
assay and each initial seeding condition (Fig 2), we plot the evolution of the
cell density as a function of time for each experimental replicate, as shown in
Fig 3. We also superimpose, in Fig 3, the evolution of the average cell density
for each type of assay and each initial seeding condition. We see that the
differences in initial density between the proliferation assay and the scratch
assay are minimal. The most obvious trend in the data is that the cell density
in both the proliferation assay and the scratch assay increases dramatically

with time, regardless of the initial condition.
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We note that it could be possible to calibrate the solution of Eq (1) to any
of the density curves in Fig 3, and this approach has been widely used (Cai
et al., 2007; Tremel et al., 2009; Simpson et al., 2013; Treloar and Simpson,
2013). However, there is no guarantee that simply fitting the solution of the
logistic equation to this kind of data means that the logistic model describes
the underlying mechanism (Simpson et al., 2014). To provide further insight
into whether the logistic model applies to these data, we re-interpret the data

in terms of the per capita growth rate.

3.2 Per capita growth rate

To estimate the per capita growth rate, (1/C)(dC/dt), we use the cell density
data in Fig 3 to estimate dC/dt using a finite difference approximation. Our
estimate of dC/dt at the first and last time points is obtained using a forward
and backward difference approximation, respectively, while our estimates at
all other time points are obtained using an appropriate central difference ap-
proximation (Chapra and Canale, 2010). With these estimates, we plot the per
capita growth rate as a function of the density in Fig 4. Results are shown for

both proliferation and scratch assays, for the three initial densities considered.
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To interpret our results, it is instructive to recall that the data in Fig 3 show
that the cell density, in each type of experiment for all three initial densities of
cells, increases with time. Therefore, when we interpret each plot showing the
per capita growth rate as a function of density in Fig 4, it is useful to recall
how the data in these plots vary with time during the experiment. Data for
smaller values of C' in each subfigure in Fig 4 correspond to the early part of
the experiment, and hence small ¢. In contrast, data for larger values of C in
each subfigure in Fig 4 correspond to the latter part of the experiment, and
hence larger t.

If the logistic growth model is valid, then we expect that the per capita
growth rate will be a linearly decreasing function of the density. In contrast,
other kinds of carrying-capacity limited growth models, such as the Gompertz
law, imply a non-linear relationship (Laird, 1964). Visual inspection the per

capita growth rate data in Fig 4 reveals several trends:

1. The relationship between the per capita growth rate and the density in
the proliferation assay is very different to the relationship between the per
capita growth rate and the density in the scratch assay;

2. The relationship between the per capita growth rate for each prolifera-
tion assay, at each initial seeding condition, appears to be reasonably well
approximated by a linearly decreasing function of density; and,

3. The relationship between the per capita growth rate for each scratch as-
say is more complicated, with the per capita growth rate increasing with
density when the density is small, and then decreasing with density when

the density is sufficiently large.

These observations suggest that the proliferation of cells in the scratch assay
is very different to the proliferation of cells in a proliferation assay. Because

we are examining the proliferation of cells that are located well away from the
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scratch, this result implies that the process of scratching the monolayer can
induce non-local effects.

The fact that we observe two very different trends in the per capita growth
rate data for the scratch assay motivates us to conjecture that the proliferation
of cells in the scratch assay, far away from the location of the scratch, takes
place in two phases. The first phase, which occurs at small cell densities and
at early time, involves the per capita growth rate increasing with density. This
trend is the opposite of what we expect if the logistic growth model is valid
and not what we observe in the proliferation assay. The second phase, which
occurs at larger cell densities and at later time, involves the per capita growth
rate decreasing with the density. These two phases occur consistently across
all three initial seeding conditions (Fig 4B, D and F). A schematic illustration
of the differences observed between the per capita growth rate in the scratch
assay and the proliferation assay is given in Fig 5. In this schematic, we refer
to the first phase in the scratch assay as the disturbance phase, and the second
phase in the scratch assay as the growth phase. The per capita growth data in
the proliferation assay appear to be similar to the growth phase of the scratch

assay for the entire duration of the experiment.
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In the schematic in Fig 5, we suggest that the relationship between the
per capita growth rate and the density during the growth phase is a linearly
decreasing function, which is consistent with the logistic model. To quantita-
tively examine whether this assumption is valid for our dataset we now fit a
series of straight lines to our averaged per capita growth rate data during the
growth phase to see how well the data match a linearly decreasing relationship
between (1/C)(dC/dt) and C.

Results in Fig 6A, C and E show the averaged per capita growth rate as
a function of density for the proliferation assays together with the linear re-
lation of best fit obtained using lsqcurvefit (MathWorks, 2016). A visual
comparison of the match between the linear regression and the data suggests
that the putative linear relationship is reasonable. In contrast, it is clear that
the per capita growth data in Fig 6B, D and F for the scratch assays does
not follow a linearly decreasing straight line for the entire duration of the ex-
periment. However, it seems reasonable to investigate whether the data in the
second phase are logistic. To examine this question we need to quantitatively
separate the first and second phases. To do this we separate the data in Fig
6B, D and F into two groups, the disturbance phase for the period of time
up to 18 hours, and the growth phase from 18 hours onwards. To examine
whether the data in the growth phase are logistic we determine the best fit
linear relationship using lsqcurvefit (MathWorks, 2016) for the data in the
growth phase. This best fit straight line is superimposed on the averaged data
for ¢t > 18 hours in Fig 6B, D and F. Again, a visual comparison of the match
between the linear regression and the data in the growth phase suggests that

the putative linear relationship is reasonable.
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In summary, we have used the per capita growth rate information in Fig
4 to make a distinction between the disturbance phase and the growth phase
in the scratch assay. These differences are highlighted in the schematic in Fig
5. Furthermore, guided by the observed relationship between the per capita
growth rate and the density in the proliferation assay we assume that the
logistic growth model applies and fit a straight line to the per capita growth
rate data and find that the match between the data and the straight line
appears to be reasonable. Similarly, we assume that the logistic growth model
applies to the growth phase in the scratch assay, for ¢ > 18 hours. Fitting a
straight line to the per capita growth data suggests that the logistic growth
model is reasonable in the growth phase for the scratch assay. Now that we
have used the per capita growth rate data to identify the disturbance and
growth phases in the scratch assay, as well as providing evidence that cells
proliferate logistically in the growth phase, we re—examine the cell density

profiles with a view to estimating A and K.

3.3 The logistic growth model

To calibrate the logistic growth model to our data from the proliferation assay,
we match the solution of Eq (1) to the averaged data in Fig 3A, C and E over
the entire duration of the experiment, 0 < ¢ < 48 hours. To calibrate the
logistic growth model to our data from the scratch assay, accounting for the
differences in the disturbance and growth phases, we match the solution of
Eq (1) to the averaged data in Fig 3B, D and F during the growth phase
only, 18 < t < 48 hours. This provides us with six estimates of A and K. To
demonstrate the quality of the match between the experimental data and the
calibrated logistic model, we superimpose the experimental data and Eq (2)

with A = X and K = K, for each initial seeding condition and for both assays
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in Fig 7. These results show that the quality of match between the solution
of the calibrated model and the experimental data is excellent. Our estimates
of A and K are summarised in Tables 1 and 2 for the proliferation assay and
the scratch assay, respectively. In summary, our estimates of A\ vary within
the range A = 0.050 — 0.067 h™!, and our estimates of K vary within the
range K = 1.6 — 2.5 x 1073 cells/um?. Strictly speaking, since A and K are
supposed to be constants in Eq (1), the fact that we see only a relatively small
variation in our estimates of these parameters is encouraging. In particular,
we also report, in Tables 1 and 2, the sample standard deviation showing the
variability of our estimates. Overall, we find that the coefficient of variation is
approximately 10%, which is relatively small when dealing with this kind of
biological data (Vo et al., 2015).
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Table 1. Estimates of A and K for the proliferation assay using data from

0 <t < 48 hours. All parameter estimates are given to two significant figures.
Results are reported as the sample mean and the uncertainty is quantified in
terms of the sample standard deviation.

Initial seeding condition A (/h) K (cells/um?)
1 0.052 £ 0.004 | 2.0 x 1073 £ 8 x 1073
2 0.059 £ 0.006 | 1.8 x 1073 £ 6 x 107
3 0.067 4 0.009 | 1.6 x 1073 + 2 x 10~°
Average 0.059 £ 0.008 | 1.8 x 1073 £ 2 x 1074

Table 2. Estimates of A and K for the scratch assay using data from
18 <t < 48 hours. All parameter estimates are given to two significant
figures. Results are reported as the sample mean and the uncertainty is
quantified in terms of the sample standard deviation.

Initial seeding condition A (/h) K (cells/um?)
1 0.051 £ 0.009 | 2.1 x 1073 £ 2 x 1073
2 0.059 £ 0.02 | 24 x 1072 £1 x 1073
3 0.050 4 0.008 | 2.5 x 1073 + 2 x 10~*
Average 0.053 £ 0.005 | 2.3 x 1073 £ 2 x 1074

We now explore how our estimates of A and K are sensitive to whether
or not we account for the differences in the disturbance and growth phases
in the scratch assay. We repeat the same calibration process as described for
the results in Fig 7, except now we take the standard, naive approach and
calibrate the solution of Eq (1) to the averaged data in Fig 3B, D and F over
the entire duration of the scratch assay, 0 < ¢ < 48 hours. This procedure
provides us with three additional estimates of A and K for the scratch assay,
as summarised in Table 3. To demonstrate the quality of the match between
the experimental data and the calibrated logistic model, we superimpose the

experimental data and Eq (2) with A = X\ and K = K, for each initial seeding
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condition and for both assays in Fig 8. These results show that the quality
of the match between the solution of the calibrated logistic growth equation
and the experimental data is also excellent. Indeed, when we visually compare
the quality of the match between the experimental data in Fig 7 and Fig 8,
and the corresponding calibrated solution of the logistic equation, there does
not appear to be any significant difference at all. However, when we examine
the estimates of K and A in Table 3, the importance of properly accounting
for the disturbance phase in the scratch assay becomes strikingly obvious. For
example, taking this latter approach, our estimates of the carrying capacity
vary within the range K = 1.6 x 1073 — 2.8 x 107 cells/um?, and our estimates
of the proliferation rate vary within the range A = 0.019 — 0.067 h—!. We find
that the results of the Levenberg—Marquardt algorithm are robust, returning
the same least—squares estimates for any positive initial estimate of K and A

in the iterative algorithm (MathWorks, 2016).
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Table 3. Estimates of A and K for the scratch assay using data from

0 <t < 48 hours. All parameter estimates are given to two significant figures.
Results are reported as the sample mean and the uncertainty is quantified in
terms of the sample standard deviation.

Initial seeding condition A (/h) K (cells/um?)
1 0.028 £ 0.001 | 2.8 x 107 £1 x 107
2 0.029 £ 0.005 | 8.7 x 1073 £ 3 x 10°
3 0.019 £ 0.0002 | 1.6 x 107 £ 6 x 106
Average 0.025 + 0.006 | 1.5 x 107 + 1 x 107

Comparing the ranges of estimates for A and K in Tables 2 and 3 shows
that the model calibration procedure is extremely sensitive. For example, our
range of estimates of K when we account for the disturbance phase is smaller
than a factor of two amongst the six estimates. In contrast, when we neglect
the disturbance phase, our estimates of K vary across more than ten orders
of magnitude amongst the six estimates. Similarly, our range of estimates of A
when we account for the disturbance phase is smaller than a factor of 1.5 among
the six estimates. Again, in contrast, when we take a standard approach and
neglect the disturbance phase our estimates of A\ vary by more than a factor

of three amongst the six estimates.

4 Conclusion

In this work we investigate the suitability of the logistic growth model to de-
scribe the proliferation of cells in scratch assays. Scratch assays are routinely
used to study the ability of a population of cells to re—colonise an initially
vacant region on a two—dimensional substrate (Liang et al., 2007; Tremel et
al., 2009; Kramer et al., 2013; Treloar and Simpson, 2013). Most experimen-
tal interpretations of scratch assays are made using relatively straightforward

measurements (Liang et al., 2007). However, to provide additional insights
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into the mechanisms involved in the re—colonisation process, some previous
studies have calibrated the solution of a reaction—diffusion equation to data
from a scratch assay (Sheardown and Cheng, 1996; Maini et al., 2004a; Maini
et al., 2004b; Savla et al., 2004; Cai et al., 2007; Sengers et al., 2007; Sha-
keel et al., 2013; Simpson et al., 2007; Johnston et al., 2015; Jin et al., 2016).
In these reaction—diffusion equations, it is commonly assumed that carrying
capacity-limited proliferation of cells can be described by a logistic growth
model. However, the suitability of this assumption is rarely examined beyond
the process of simply calibrating the solution of the relevant model to match
the experimental data.

To examine the suitability of the logistic growth model, we perform a
series of scratch assays and proliferation assays for three different initial cell
densities. Cell proliferation assays are prepared in exactly the same way as a
scratch assay, except that the monolayer of cells is not scratched. This allows
us to treat the cell proliferation assays as a control experiment so that we
can examine whether the process of artificially scratching the monolayer of
cells affects the way that cells proliferate, even when those cells are located far
away from the scratch. Instead of examining the dynamics of the cell density
near the scratched region where there will be a net flux of cells into the vacant
region (Jin et al., 2016), we quantify the cell density in two subregions that
are located far behind the location of the scratch, where the cell density is
approximately spatially uniform (Supplementary Material). This means that
the temporal dynamics of the cell density in these subregions is due to cell
proliferation only (Johnston et al., 2015).

We plot the time evolution of cell density, far away from the initially
scratched region, in both the scratch and proliferation assays. To examine
whether our results are sensitive to the initial density of cells, we repeat each

experiment using three different initial cell densities. Plots of the evolution of
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the cell density are given over a total duration of 48 hours, and these plots
appear to correspond to a series of sigmoid curves. At this point it would
be possible to simply calibrate the solution of the logistic growth model to
these data to provide an estimate of the proliferation rate, A, and the carrying
capacity density, K. This is a standard approach that has been used by us
(Johnston et al., 2015) and many others (Cai et al., 2007; Sengers et al., 2007;
Tremel et al., 2009). However, while this standard calibration procedure can
be used to provide estimates of the parameters, this model calibration proce-
dure does not provide any validation that logistic growth is relevant (Simpson
et al., 2014).

Rather than calibrating the logistic growth model to our experimental data,
we attempt to assess the suitability of the logistic growth model by converting
the cell density evolution profiles into plots of the per capita growth rate as a
function of density. We find that the plots of the per capita growth rate as a
function of density reveal several key differences between the scratch and pro-
liferation assays. If the logistic growth model is valid, then we expect to see a
decreasing linear relationship between the per capita growth rate and the cell
density for the entire duration of the experiment. While the plots of the per
capita growth rate as a function of density for the proliferation assays appear
to be consistent with the logistic model, the per capita growth rate data for
the scratch assays are very different. For the scratch assay data, the per capita
growth rate increases with cell density at low density during the early part of
the experiment. This behaviour, which is observed for all three initial densities
of cells in the scratch assays, is the opposite of what we would expect if the
logistic growth model were valid. However, at higher cell densities during the
latter part of the experiment, we observe that the per capita growth rate in
the scratch assays appears to decrease, approximately linearly, with the cell

density. This motivates us to propose that cell proliferation in a scratch assay
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involves two phases: (i) a disturbance phase in which proliferation does not fol-
low the logistic growth model during the early part of the experiment; and, (ii)
a growth phase where proliferation is approximately logistic during the latter
part of the experiment. Guided by our per capita growth rate data, it appears
that the disturbance phase in the scratch assays lasts for approximately 18
hours before the growth phase commences.

To estimate the parameters in the logistic growth model, we calibrate the
solution of the model to our cell proliferation data for the entire duration of
the experiment. This calibration procedure gives estimates of A and K that are
approximately consistent across the three initial conditions. We then calibrate
the solution of the logistic growth model to the data from the growth phase
in the scratch assay. This procedure also gives estimates of A and K that are
consistent across the three initial conditions, as well as being consistent with
the estimates obtained from the cell proliferation assays. In contrast, if we take
a naive approach and simply calibrate the solution of the logistic growth equa-
tion to the scratch assay data for the entire duration of the experiment, our
estimates of A and K vary wildly, despite the fact that the match between the
experimental data and the calibrated solution of the logistic growth equation
looks very good.

The results of our study strongly suggest that care ought to be taken
when applying a logistic growth model, or a reaction-diffusion equation with
a logistic source term, to describe scratch assays. Simply calibrating a math-
ematical model to experimental data might appear to produce an excellent
match between the solution of the model and the experimental data, but this
commonly-used procedure does not guarantee that the model is at all relevant
(Simpson et al., 2014). Our results suggest that cell proliferation is impacted
by the scratching procedure in a scratch assay, and that we require some time

to pass before the disturbance phase ends. This is important because previous


https://doi.org/10.1101/077388

bioRxiv preprint doi: https://doi.org/10.1101/077388; this version posted February 5, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Logistic proliferation of cells in scratch assays is delayed 35

applications of logistic growth models and reaction-diffusion equations with
logistic source terms have been calibrated to data from scratch assays without
any regard for the disturbance phase (Cai et al., 2007; Tremel et al., 2009; Jin

et al., 2016; Johnston et al., 2015).

It is also relevant to note that for the particular cell line we use, the distur-
bance phase that we identify lasts for approximately 18 hours. This is impor-
tant because many scratch assays are performed for relatively short periods of
time (Liang et al., 2007) and it is possible that standard experimental proto-
cols do not allow for a sufficient amount of time to pass for the disturbance
phase to end. Therefore, we suggest that scratch assays should be maintained
for as long as possible so that sufficient time is allowed for the disturbance

phase to pass.

One of the limitations of our study is that we have not identified the precise
mechanism that causes the disturbance phase; however it seems clear that the
process of scratching a monolayer of cells has some impact on the proliferative
behaviour of the cells away from the scratch, suggesting that either chemical
or mechanical disturbance is transported throughout the experimental well as
consequence of the scratching action. Regardless of the mechanism at play, our
procedure of converting the cell density profiles into plots of the per capita
growth rate allows us to identify the result of this disturbance. Another lim-
itation of our work is that we deal only with one particular cell line, and it
is not obvious how our estimate of the duration of the disturbance phase will
translate to other cell lines. Regardless of these limitations, we suggest that
our experimental procedure and data analysis can be repeated for scratch as-
says using different cell lines so that other researchers can explore how these

issues apply in each case.
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