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Abstract

Scratch assays are used to study how a population of cells re–colonises a vacant region 1

on a two–dimensional substrate after a cell monolayer is scratched. These experiments 2

are used in many applications including drug design for the treatment of cancer and 3

chronic wounds. To provide insights into the mechanisms that drive scratch assays, 4

the solution of continuum reaction–diffusion models have been calibrated to data from 5

scratch assays. These models typically include a logistic source term to model carrying 6

capacity-limited proliferation, however the choice of using a logistic source term is 7

often made without examining whether it is valid. Here we study the proliferation of 8

PC-3 prostate cancer cells in a scratch assay, and we focus on the proliferation of these 9

cells far away from the scratch. All experimental results for the scratch assay are 10

compared with equivalent results from a proliferation assay where the cell monolayer is 11

not scratched. Visual inspection of the evolution of the cell density as a function of 12
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time reveals a series of sigmoid curves that could be naively calibrated to the solution 13

of the logistic growth model. However, careful analysis of the per capita growth rate 14

as a function of density reveals several key differences between the proliferation of cells 15

in scratch and proliferation assays. The per capita growth rate in the proliferation 16

assay decreases, approximately linearly, with density in the proliferation assay 17

suggesting that the logistic growth model is valid for the entire duration of the 18

proliferation assay. However, the per capita growth rate in the scratch assay increases 19

with density when the density is sufficiently small in the scratch assay, suggesting that 20

the logistic growth model does not apply. Instead, guided by data, we find that there 21

are two phases of proliferation in a scratch assay. At short time we have a disturbance 22

phase where proliferation is not logistic, and this is followed by a growth phase where 23

proliferation appears to be logistic. Accounting for the differences in the growth and 24

disturbance phase, we obtain biologically realistic estimates of the proliferation rate 25

and carrying capacity density. In contrast, simply calibrating the solution of the 26

logistic growth equation to all data from the scratch assays, we obtain an excellent 27

match between the data and the model, but the parameter estimates vary wildly and 28

are not biologically realistic. Overall our study shows that simply calibrating the 29

solution of a continuum model to a scratch assay might produce misleading parameter 30

estimates, and this issue can be resolved by making a distinction between the 31

disturbance and growth phases. Repeating our procedure for other scratch assays will 32

provide insight into the roles of the disturbance and growth phases for different cell 33

lines and scratch assays performed on different substrates. 34
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Introduction 35

In vitro scratch assays are routinely used to study the ability of cell populations to 36

re–colonise an initially–vacant region [1–4]. This re–colonisation occurs as a result of 37

the combination of cell migration and cell proliferation, and gives rise to moving fronts 38

of cells that re–colonises the vacant region. Scratch assays provide insights into both 39

cancer spreading and tissue repair processes [3, 5, 6]. In general, performing a scratch 40

assay involves three steps: (i) growing a monolayer of cells on a two–dimensional 41

substrate; (ii) creating a vacant region in the monolayer by scratching it with a 42

sharp–tipped instrument; and, (iii) imaging the re–colonisation of the scratched 43

region [1, 3]. Another type of in vitro assay, called a proliferation assay, is performed 44

using the exact same procedure as a scratch assay, except that the monolayer of cells 45

is not scratched [2,7,8]. Cell proliferation assays allow experimentalists to measure the 46

increase in cell numbers over time due to proliferation [2]. 47

In the applied mathematics literature, scratch assays have been modelled using 48

continuum reaction–diffusion equations [5, 6, 9–16]. In these models, cell migration is 49

represented by a diffusion term, and carrying–capacity limited proliferation is 50

represented by a logistic source term. For proliferation assays in which the cell 51

population is uniformly distributed and no scratch is made, the continuum 52

reaction–diffusion equation simplifies to the logistic growth equation [8,10,16], given by 53

dC(t)

dt
= λC(t)

(
1− C(t)

K

)
, (1)

where C(t) is the density of cells, t is time, λ > 0 is the proliferation rate, and K > 0 54

is the carrying capacity density. 55

It is interesting to note that a logistic growth term is often used when modelling 56

scratch assays or proliferation assays [2, 5, 6, 10–12,15,16], yet the suitability of this 57

choice is rarely, if ever, tested using experimental data. In fact, several studies argue 58

that the logistic growth equation does not always match experimental data [15,17–19]. 59

For example, Laird [17] examines in vivo tumour growth data and shows that the 60

Gompertz growth law matches the data better than the standard logistic model. 61

Similarly, West and coworkers investigate the growth patterns of a wide range of 62
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animal models [19]. By comparing experimental data with model predictions, they 63

find that the growth is best described by a more general model. In addition, the 64

results from our previous study, focusing on scratch assays, suggest that when 65

calibrating solutions of a logistic–type reaction–diffusion equation to experimental 66

data with varying initial cell density, there appears to be no unique value of λ for 67

which the logistic growth equation matches the entire data set for all initial cell 68

densities [15]. One way of interpreting this result is that the cells in the scratch assay 69

do not proliferate logistically. 70

In the present work, we use a combined experimental and mathematical approach 71

to investigate whether the proliferation of cells in a scratch assay can be modelled with 72

the classical logistic equation. Our approach involves performing a series of 73

proliferation assays to act as a control so that we can examine whether the process of 74

scratching the monolayer affects the way that cells proliferate. While many 75

experimental studies implicitly assume that scratching the monolayer does not affect 76

cell proliferation, others suggest the process of scratching can trigger certain signalling 77

pathways that may have some effects on the way that cells proliferate [20,21]. To 78

investigate these questions, we perform a suite of scratch assays and proliferation 79

assays using the IncuCyte ZOOMTM system [16]. For both types of assays, we use the 80

PC–3 prostate cancer cell line [22], and we consider varying the initial seeding 81

condition so that we can examine the influence of varying the initial cell density. 82

To quantitatively test the suitability of the logistic growth model, we extract cell 83

density information from the experimental images and then estimate the per capita 84

growth rates from the data for both the scratch assays and the proliferation assays. 85

Our results show that the evolution in cell density in the proliferation assays appears 86

to be logistic for the entire duration of the experiment. In contrast, the variation in 87

cell density in the scratch assays is very different. We observe two phases in the 88

scratch assays: (i) a disturbance phase at early time, in which the proliferation of cells 89

is not logistic; and, (ii) a classic logistic growth phase for the remainder of the 90

experiment. The differences how cells proliferate in the scratch assay and the 91

proliferation assay is surprising because we are making observations well away from 92

the location of the scratch. This finding that we have two phases of proliferation in 93

scratch assays is significant because many mathematical studies implicitly assume that 94
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cells in scratch assays proliferate logistically for the entire duration of the 95

experiment [2, 5, 6, 10–12,15,16]. However, our finding is that cells located far away 96

from the scratch proliferate very differently to cells in the proliferation assay. 97

This paper is organised in the following way. First, we describe the experimental 98

methods, including how we process the experimental images to obtain cell density 99

information. We then outline the logistic growth model and the least–squares method 100

for calibrating the model to our data. By presenting information about the evolution 101

of the cell density and the per capita growth rate, we identify two phases of 102

proliferation in the scratch assays. These phases are identified by focusing on regions 103

of the scratch assay that are located well behind the location of the scratch. After 104

calibrating the solution of the logistic model to the cell density information, our 105

results suggest that the logistic equation is relevant for the proliferation assays but 106

only for the later phase in the scratch assays. We conclude this study by discussing 107

some of the limitations, and we outline some extensions for future work. 108

Methods 109

Experimental methods 110

We perform scratch assays and proliferation assays using the IncuCyte ZOOMTM live 111

cell imaging system (Essen BioScience, MI USA). All experiments are performed using 112

the PC–3 prostate cancer cell line [22]. These cells, originally purchased from 113

American Type Culture Collection (Manassas, VA, USA), are a gift from Lisa Chopin 114

(April, 2016). The cell line is used according to the National Health and Medical 115

Research Council (NHMRC) National statement on ethical conduct in human research 116

with ethics approval for Queensland University of Technology Human Research Ethics 117

Committee (QUT HREC 59644, Chopin). Cells are propagated in RPMI 1640 medium 118

(Life Technologies, Australia) with 10% foetal calf serum (Sigma–Aldrich, Australia), 119

100U/mL penicillin, and 100µg/mL streptomycin (Life Technologies), in plastic tissue 120

culture flasks (Corning Life Sciences, Asia Pacific). Cells are cultured in 5% CO2 and 121

95% air in a Panasonic incubator (VWR International) at 37oC. Cells are regularly 122

screened for Mycoplasma (Nested PCR using primers from Sigma–Aldrich). 123

Cell counting is performed using a Neubauer–improved haemocytometer 124
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(ProSciTech, Australia). Cells, grown to approximately 80% confluence, are removed 125

from the flask using TrypLETM (Life Technologies) in phosphate buffered saline (pH 126

7.4) and resuspended in culture medium ensuring that they are thoroughly mixed. 127

After resuspension, an aliquot of 10µL is quickly removed before the cells start to 128

settle. A 1:1 mixture of cell suspension and 0.4% trypan blue solution (Sigma–Aldrich; 129

a blue stain that is only absorbed by dead cells) is prepared and 10µL of the solution 130

is loaded onto the counting chamber of a clean Neubauer–improved haemocytometer. 131

The counting chamber of a haemocytometer is delineated by grid lines that identify 132

four chamber areas to be used in cell counting. The volume of the chamber area is 133

1×104mL. Using a microscope, each chamber area is viewed, and the live cells that are 134

not coloured in blue are counted. The cell density is calculated by taking the average 135

of the four readings and multiplying it by 104 and the dilution factor, to obtain the 136

approximate number of cells per mL of the cell suspension [23]. 137

For the proliferation assays, the cell count is determined and the cells are seeded at 138

various densities in 96–well ImageLock plates (Essen Bioscience). Cells are distributed 139

in the wells of the tissue culture plate as uniformly as possible. We report results for 140

initial seeding densities of approximately 12,000, 16,000 and 20,000 cells per well. 141

After seeding, cells are grown overnight to allow for attachment and some subsequent 142

growth. The plate is placed into the IncuCyte ZOOMTM apparatus, and images are 143

recorded every two hours for a total duration of 48 hours. An example of a set of 144

experimental images from a proliferation assay is shown in Fig 1A–C. For each initial 145

seeding condition we perform 16 identically prepared experimental replicates (n = 16). 146

For the scratch assays, the cell count is determined and the cells are seeded at 147

various densities in 96–well ImageLock plates (Essen Bioscience). Cells are distributed 148

in the wells of the tissue culture plate as uniformly as possible. We report results for 149

initial seeding densities of approximately 12,000, 16,000 and 20,000 cells per well. 150

After seeding, cells are grown overnight to allow for attachment and some subsequent 151

growth. We use a WoundMakerTM (Essen BioScience) to create uniform scratches in 152

each well of a 96–well ImageLock plate. To ensure that all cells are removed from the 153

scratched region, a modification is made to the manufacturer’s protocol, where the 154

scratching motion is repeated 20 times over a short duration before lifting the 155

WoundMakerTM. After creating the scratch, the medium is aspirated and the wells are 156

PLOS 6/31

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 26, 2016. ; https://doi.org/10.1101/077388doi: bioRxiv preprint 

https://doi.org/10.1101/077388


washed twice with fresh medium to remove any cells from the scratched area. 157

Following the washes, 100µL fresh medium is added to each well and the plate is 158

placed into the IncuCyte ZOOMTM apparatus. Images of the collective cell spreading 159

are recorded every two hours for a total duration of 48 hours. An example of a set of 160

experimental images taken from a scratch assay is shown in Fig 1D–F. For each initial 161

seeding condition we perform 16 identically prepared experiments in different wells of 162

the tissue culture plate (n = 16). Throughout this work we will refer to these 163

identically prepared experiments in different wells as different replicates. 164

Experimental image processing 165

To obtain cell density information from the experimental images, we count the number 166

of cells in two identically sized subregions that are well behind the location of the 167

scratch, as shown in Fig 1G. The positions of the two subregions are located about 168

400µm behind the scratch, and each subregion has dimensions 1430µm×200µm. 169

Throughout this work, we refer to the subregion to the left of the image as subregion 170

1, and the subregion to the right of the image as subregion 2. Because the subregions 171

are located well away from the scratched region, we are able to invoke a simplifying 172

assumption that the dynamic changes in cell density in these subregions is due to cell 173

proliferation alone (Supplementary Material) [16]. We do not use data that are 174

directly adjacent to the left or right sides of the images since this corresponds to the 175

boundary of the field of view. Cells in each subregion are counted in Photoshop using 176

the ‘Count Tool’ [24]. After counting the number of cells in each subregion, we divide 177

the total number of cells by the total area to give an estimate of the cell density. We 178

repeat this process for each replicate and calculate the sample mean of the cell density 179

at two–hour intervals during the first 18 hours of the experiment where the most rapid 180

temporal changes take place. Then, during the last 30 hours of the experiment, we 181

count cells at six–hour intervals. 182

One of the assumptions we make when analysing data from the scratch assay is 183

that the two subregions are sufficiently far away from the edges of the scratch so that 184

there are no spatial variations in cell density at these locations for the entire duration 185

of the experiment. This assumption allows us to attribute any changes in cell density 186

in the subregions to be a result of cell proliferation [16]. Quantitative evidence to 187
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support this assumption is provided in the Supplementary Material. 188

Mathematical methods 189

The logistic growth equation, given by Eq (1), has an exact solution 190

C(t) =
KC(0)

(K − C(0)) e−λt + C(0)
, (2)

which is a sigmoid curve that monotonically increases from the initial density C(0) to 191

K as t→∞. An important feature of the logistic growth model that we will make use 192

of in this study is that the per capita growth rate, (1/C)(dC/dt) = λ(1− C/K), 193

decreases linearly with C. 194

We estimate the two parameters in the logistic growth model, λ and K, by 195

minimising a least–squares measure of the discrepancy between the solution of the 196

logistic growth equation and the average cell density information in our subregions 197

that are located far away from the scratched region. The least–squares error is given by 198

E(λ,K) =

I∑
i=1

[
Cmodel(ti)− Cdata(ti)

]2
, (3)

where i is an index that indicates the number of time points used from the 199

experimental data sets and I is the total number of time points used in the calibration 200

procedure. We calibrate the solution of the logistic growth equation to the average cell 201

density information using the MATLAB function lsqcurvefit [25] that is based on 202

the Levenberg–Marquardt algorithm. In each case, we always check that our 203

least–squares estimates of λ and K, which we denote as λ̄ and K̄, are independent of 204

the initial estimate that is required for the iterative algorithm to converge. 205

Results and discussion 206

Quantitative assessment of experiments 207

Initial cell density 208

Many previous studies that calibrate solutions of mathematical models to experimental 209

data from proliferation or scratch assays make use of just one initial density of 210
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cells [2, 5, 6, 10]. To provide a more thorough investigation of the suitability of various 211

mathematical models, we calibrate mathematical models to a suite of experimental 212

data where the initial density of cells is intentionally varied [15]. To achieve this, our 213

experimental procedure involves placing a different number of cells into each well of 214

the tissue culture plate. We describe this as varying the initial seeding condition. In 215

this work we consider three different initial seeding conditions that correspond to 216

placing either: (i) 12,000; (ii) 16,000; or, (iii) 20,000 cells per well. For brevity, we 217

refer to these three conditions as initial seeding conditions 1, 2 and 3, respectively. 218

After a particular number of cells are placed into the tissue culture plate, the cells 219

are incubated overnight to allow them to attach to the plate and begin to proliferate. 220

The experiments are then performed on the following day. Since the cell density 221

changes overnight, we will refer to the initial density of cells at the beginning of the 222

experiment on the following day, as the initial cell density. Intuitively, we expect that 223

the initial cell density in proliferation assays will be greater than the cell density 224

associated with the initial seeding condition, because the cells have had a period of 225

time to attach and begin to proliferate. 226

Before we examine the temporal evolution of cell density in our experiments, we 227

first examine the variability in the initial cell densities amongst our various 228

experimental replicates. This is essential, since the process of placing either 12,000, 229

16,000 or 20,000 cells in each well of the tissue culture place is, at best, an 230

approximation. To quantify the variability in the initial cell density, we count the 231

number of cells in the two subregions, as shown in Fig 1G, and convert these counts 232

into an estimate of the initial cell density, C(0). We repeat this procedure for both the 233

proliferation and scratch assays, giving a total of 96 individual estimates of the initial 234

cell density. These 96 estimates of the initial cell density are reported in Fig 2, 235

revealing three features: 236

1. In general, those experiments initiated with a higher number of cells per well 237

lead to a higher initial cell density after the overnight attachment and 238

proliferation has taken place; 239

2. Within each initial seeding condition, the variability in initial cell density for the 240

proliferation assays is very similar to the variability in initial cell density for the 241
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scratch assays; and, 242

3. There is a large variation in the initial cell density within each initial seeding 243

condition. 244

Of these three features, the variation in the initial cell density within each initial 245

seeding condition is very important. For example, the highest recorded initial cell 246

density for initial seeding condition 1 (12,000 cells per well) is greater than the 247

smallest recorded initial cell density for initial seeding condition 3 (20,000 cells per 248

well). This means that we ought to take great care when selecting particular 249

experimental replicates from the 96 data sets in Fig 2, otherwise our results could be 250

misleading when we try to examine how the results depend on the initial cell density. 251

We select three replicates from each initial seeding condition for both the 252

proliferation and scratch assays so that the initial cell density for the initial seeding 253

condition 3 is greater than the initial cell density for the initial seeding condition 2, 254

which is greater than the initial cell density for the initial seeding condition 1. 255

Furthermore, we select three replicates for both the proliferation and scratch assays 256

from each initial seeding condition. These choices are made so that the initial cell 257

density for each type of assay is approximately the same within each seeding 258

condition. To satisfy these constraints we choose three replicates from each set of 16 259

experimental replicates. The selected replicates are indicated in Fig 2. 260

Cell density information 261

Using the previously identified three experimental replicates for each type of assay and 262

each initial seeding condition (Fig 2), we plot the evolution of the cell density as a 263

function of time for each experimental replicate, as shown in Fig 3. We also 264

superimpose, in Fig 3, the evolution of the average cell density for each type of assay 265

and each initial seeding condition. We see that the differences in initial density 266

between the proliferation assay and the scratch assay are minimal. The most obvious 267

trend in the data is that the cell density in both the proliferation assay and the 268

scratch assay increases dramatically with time, regardless of the initial condition. 269

We note that it could be possible to calibrate the solution of Eq (1) to any of the 270

density curves in Fig 3, and this approach has been widely used [2, 4, 8, 10]. However, 271
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there is no guarantee that simply fitting the solution of the logistic equation to this 272

kind of data means that the logistic model describes the underlying mechanism [26]. 273

To provide further insight into whether the logistic model applies to these data, we 274

re-interpret the data in terms of the per capita growth rate. 275

Per capita growth rate 276

To estimate the per capita growth rate, (1/C)(dC/dt), we use the cell density data in 277

Fig 3 to estimate dC/dt using a finite difference approximation. Our estimate of dC/dt 278

at the first and last time points is obtained using a forward and backward difference 279

approximation, respectively, while our estimates at all other time points are obtained 280

using an appropriate central difference approximation [27]. With these estimates, we 281

plot the per capita growth rate as a function of the density in Fig 4. Results are shown 282

for both proliferation and scratch assays, for the three initial densities considered. 283

To interpret our results, it is instructive to recall that the data in Fig 3 show that 284

the cell density, in each type of experiment for all three initial densities of cells, 285

increases with time. Therefore, when we interpret each plot showing the per capita 286

growth rate as a function of density in Fig 4, it is useful to recall how the data in these 287

plots vary with time during the experiment. Data for smaller values of C in each 288

subfigure in Fig 4 correspond to the early part of the experiment, and hence small t. 289

In contrast, data for larger values of C in each subfigure in Fig 4 correspond to the 290

latter part of the experiment, and hence larger t. 291

If the logistic growth model is valid, then we expect that the per capita growth rate 292

will be a linearly decreasing function of the density. In contrast, other kinds of 293

carrying-capacity limited growth models, such as the Gompertz law, imply a 294

non-linear relationship [17]. Visual inspection the per capita growth rate data in Fig 4 295

reveals several trends: 296

1. The relationship between the per capita growth rate and the density in the 297

proliferation assay is very different to the relationship between the per capita 298

growth rate and the density in the scratch assay; 299

2. The relationship between the per capita growth rate for each proliferation assay, 300

at each initial seeding condition, appears to be reasonably well approximated by 301
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a linearly decreasing function of density; and, 302

3. The relationship between the per capita growth rate for each scratch assay is 303

more complicated, with the per capita growth rate increasing with density when 304

the density is small, and then decreasing with density when the density is 305

sufficiently large. 306

These observations suggest that the proliferation of cells in the scratch assay is very 307

different to the proliferation of cells in a proliferation assay. Because we are examining 308

the proliferation of cells that are located well away from the scratch, this result implies 309

that the process of scratching the monolayer can induce non-local effects. 310

The fact that we observe two very different trends in the per capita growth rate 311

data for the scratch assay motivates us to conjecture that the proliferation of cells in 312

the scratch assay, far away from the location of the scratch, takes place in two phases. 313

The first phase, which occurs at small cell densities and at early time, involves the per 314

capita growth rate increasing with density. This trend is the opposite of what we 315

expect if the logistic growth model is valid and not what we observe in the 316

proliferation assay. The second phase, which occurs at larger cell densities and at later 317

time, involves the per capita growth rate decreasing with the density. These two 318

phases occur consistently across all three initial seeding conditions (Fig 4B, D and F). 319

A schematic illustration of the differences observed between the per capita growth rate 320

in the scratch assay and the proliferation assay is given in Fig 5. In this schematic, we 321

refer to the first phase in the scratch assay as the disturbance phase, and the second 322

phase in the scratch assay as the growth phase. The per capita growth data in the 323

proliferation assay appear to be similar to the growth phase of the scratch assay for 324

the entire duration of the experiment. 325

In the schematic in Fig 5, we suggest that the relationship between the per capita 326

growth rate and the density during the growth phase is a linearly decreasing function, 327

which is consistent with the logistic model. To quantitatively examine whether this 328

assumption is valid for our dataset we now fit a series of straight lines to our averaged 329

per capita growth rate data during the growth phase to see how well the data match a 330

linearly decreasing relationship between (1/C)(dC/dt) and C. 331

Results in Fig 6A, C and E show the averaged per capita growth rate as a function 332
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of density for the proliferation assays together with the linear relation of best fit 333

obtained using lsqcurvefit [25]. A visual comparison of the match between the 334

linear regression and the data suggests that the putative linear relationship is 335

reasonable. In contrast, it is clear that the per capita growth data in Fig 6B, D and F 336

for the scratch assays does not follow a linearly decreasing straight line for the entire 337

duration of the experiment. However, it seems reasonable to investigate whether the 338

data in the second phase are logistic. To examine this question we need to 339

quantitatively separate the first and second phases. To do this we separate the data in 340

Fig 6B, D and F into two groups, the disturbance phase for the period of time up to 341

18 hours, and the growth phase from 18 hours onwards. To examine whether the data 342

in the growth phase are logistic we determine the best fit linear relationship using 343

lsqcurvefit [25] for the data in the growth phase. This best fit straight line is 344

superimposed on the averaged data for t ≥ 18 hours in Fig 6B, D and F. Again, a 345

visual comparison of the match between the linear regression and the data in the 346

growth phase suggests that the putative linear relationship is reasonable. 347

In summary, we have used the per capita growth rate information in Fig 4 to make 348

a distinction between the disturbance phase and the growth phase in the scratch assay. 349

These differences are highlighted in the schematic in Fig 5. Furthermore, guided by 350

the observed relationship between the per capita growth rate and the density in the 351

proliferation assay we assume that the logistic growth model applies and fit a straight 352

line to the per capita growth rate data and find that the match between the data and 353

the straight line appears to be reasonable. Similarly, we assume that the logistic 354

growth model applies to the growth phase in the scratch assay, for t ≥ 18 hours. 355

Fitting a straight line to the per capita growth data suggests that the logistic growth 356

model is reasonable in the growth phase for the scratch assay. Now that we have used 357

the per capita growth rate data to identify the disturbance and growth phases in the 358

scratch assay, as well as providing evidence that cells proliferate logistically in the 359

growth phase, we re–examine the cell density profiles with a view to estimating λ and 360

K. 361
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The logistic growth model 362

To calibrate the logistic growth model to our data from the proliferation assay, we 363

match the solution of Eq (1) to the averaged data in Fig 3A, C and E over the entire 364

duration of the experiment, 0 ≤ t ≤ 48 hours. To calibrate the logistic growth model 365

to our data from the scratch assay, accounting for the differences in the disturbance 366

and growth phases, we match the solution of Eq (1) to the averaged data in Fig 3B, D 367

and F during the growth phase only, 18 ≤ t ≤ 48 hours. This provides us with six 368

estimates of λ̄ and K̄. To demonstrate the quality of the match between the 369

experimental data and the calibrated logistic model, we superimpose the experimental 370

data and Eq (2) with λ = λ̄ and K = K̄, for each initial seeding condition and for 371

both assays in Fig 7. These results show that the quality of match between the 372

solution of the calibrated model and the experimental data is excellent. Our estimates 373

of λ and K are summarised in Tables 1 and 2 for the proliferation assay and the 374

scratch assay, respectively. In summary, our estimates of λ vary within the range 375

λ = 0.050− 0.067 h−1, and our estimates of K vary within the range 376

K = 1.6− 2.5× 10−3 cells/µm2. Strictly speaking, since λ and K are supposed to be 377

constants in Eq (1), the fact that we see only a relatively small variation in our 378

estimates of these parameters is encouraging. In particular, we also report, in Tables 1 379

and 2, the sample standard deviation showing the variability of our estimates. Overall, 380

we find that the coefficient of variation is approximately 10%, which is relatively small 381

when dealing with this kind of biological data [28]. 382

Table 1. Estimates of λ̄ and K̄ for the proliferation assay using data from 0 ≤ t ≤ 48
hours. All parameter estimates are given to two significant figures. Results are
reported as the sample mean and the uncertainty is quantified in terms of the sample
standard deviation.

Initial seeding condition λ̄ (/h) K̄ (cells/µm2)

1 0.052 ± 0.004 2.0 × 10−3 ± 8 × 10−5

2 0.059 ± 0.006 1.8 × 10−3 ± 6 × 10−5

3 0.067 ± 0.009 1.6 × 10−3 ± 2 × 10−5

Average 0.059 ± 0.008 1.8 × 10−3 ± 2 × 10−4

We now explore how our estimates of λ and K are sensitive to whether or not we 383
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Table 2. Estimates of λ̄ and K̄ for the scratch assay using data from 18 ≤ t ≤ 48
hours. All parameter estimates are given to two significant figures. Results are
reported as the sample mean and the uncertainty is quantified in terms of the sample
standard deviation.

Initial seeding condition λ̄ (/h) K̄ (cells/µm2)

1 0.051 ± 0.009 2.1 × 10−3 ± 2 × 10−3

2 0.059 ± 0.02 2.4 × 10−3 ± 1 × 10−3

3 0.050 ± 0.008 2.5 × 10−3 ± 2 × 10−4

Average 0.053 ± 0.005 2.3 × 10−3 ± 2 × 10−4

account for the differences in the disturbance and growth phases in the scratch assay. 384

We repeat the same calibration process as described for the results in Fig 7, except 385

now we take the standard, naive approach and calibrate the solution of Eq (1) to the 386

averaged data in Fig 3B, D and F over the entire duration of the scratch assay, 387

0 ≤ t ≤ 48 hours. This procedure provides us with three additional estimates of λ̄ and 388

K̄ for the scratch assay, as summarised in Table 3. To demonstrate the quality of the 389

match between the experimental data and the calibrated logistic model, we 390

superimpose the experimental data and Eq (2) with λ = λ̄ and K = K̄, for each initial 391

seeding condition and for both assays in Fig 8. These results show that the quality of 392

the match between the solution of the calibrated logistic growth equation and the 393

experimental data is also excellent. Indeed, when we visually compare the quality of 394

the match between the experimental data in Fig 7 and Fig 8, and the corresponding 395

calibrated solution of the logistic equation, there does not appear to be any significant 396

difference at all. However, when we examine the estimates of K̄ and λ̄ in Table 3, the 397

importance of properly accounting for the disturbance phase in the scratch assay 398

becomes strikingly obvious. For example, taking this latter approach, our estimates of 399

the carrying capacity vary within the range K = 1.6× 10−3 − 2.8× 107 cells/µm2, and 400

our estimates of the proliferation rate vary within the range λ = 0.019− 0.067 h−1. 401

We find that the results of the Levenberg–Marquardt algorithm are robust, returning 402

the same least–squares estimates for any positive initial estimate of K and λ in the 403

iterative algorithm [25]. 404

Comparing the ranges of estimates for λ and K in Tables 2 and 3 shows that the 405

model calibration procedure is extremely sensitive. For example, our range of 406
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Table 3. Estimates of λ̄ and K̄ for the scratch assay using data from 0 ≤ t ≤ 48
hours. All parameter estimates are given to two significant figures. Results are
reported as the sample mean and the uncertainty is quantified in terms of the sample
standard deviation.

Initial seeding condition λ̄ (/h) K̄ (cells/µm2)

1 0.028 ± 0.001 2.8 × 107 ± 1 × 107

2 0.029 ± 0.005 8.7 × 10−3 ± 3 × 106

3 0.019 ± 0.0002 1.6 × 107 ± 6 × 106

Average 0.025 ± 0.006 1.5 × 107 ± 1 × 107

estimates of K when we account for the disturbance phase is smaller than a factor of 407

two amongst the six estimates. In contrast, when we neglect the disturbance phase, 408

our estimates of K vary across more than ten orders of magnitude amongst the six 409

estimates. Similarly, our range of estimates of λ when we account for the disturbance 410

phase is smaller than a factor of 1.5 among the six estimates. Again, in contrast, when 411

we take a standard approach and neglect the disturbance phase our estimates of λ 412

vary by more than a factor of three amongst the six estimates. 413

Conclusions 414

In this work we investigate the suitability of the logistic growth model to describe the 415

proliferation of cells in scratch assays. Scratch assays are routinely used to study the 416

ability of a population of cells to re–colonise an initially vacant region on a 417

two–dimensional substrate [1–4]. Most experimental interpretations of scratch assays 418

are made using relatively straightforward measurements [1]. However, to provide 419

additional insights into the mechanisms involved in the re–colonisation process, some 420

previous studies have calibrated the solution of a reaction–diffusion equation to data 421

from a scratch assay [5, 6, 9–16]. In these reaction–diffusion equations, it is commonly 422

assumed that carrying capacity–limited proliferation of cells can be described by a 423

logistic growth model. However, the suitability of this assumption is rarely examined 424

beyond the process of simply calibrating the solution of the relevant model to match 425

the experimental data. 426

To examine the suitability of the logistic growth model, we perform a series of 427

scratch assays and proliferation assays for three different initial cell densities. Cell 428
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proliferation assays are prepared in exactly the same way as a scratch assay, except 429

that the monolayer of cells is not scratched. This allows us to treat the cell 430

proliferation assays as a control experiment so that we can examine whether the 431

process of artificially scratching the monolayer of cells affects the way that cells 432

proliferate, even when those cells are located far away from the scratch. Instead of 433

examining the dynamics of the cell density near the scratched region where there will 434

be a net flux of cells into the vacant region [15], we quantify the cell density in two 435

subregions that are located far behind the location of the scratch, where the cell 436

density is approximately spatially uniform (Supplementary Material). This means that 437

the temporal dynamics of the cell density in these subregions is due to cell 438

proliferation only [16]. 439

We plot the time evolution of cell density, far away from the initially scratched 440

region, in both the scratch and proliferation assays. To examine whether our results 441

are sensitive to the initial density of cells, we repeat each experiment using three 442

different initial cell densities. Plots of the evolution of the cell density are given over a 443

total duration of 48 hours, and these plots appear to correspond to a series of sigmoid 444

curves. At this point it would be possible to simply calibrate the solution of the 445

logistic growth model to these data to provide an estimate of the proliferation rate, λ, 446

and the carrying capacity density, K. This is a standard approach that has been used 447

by us [16] and many others [2, 10,11]. However, while this standard calibration 448

procedure can be used to provide estimates of the parameters, this model calibration 449

procedure does not provide any validation that logistic growth is relevant [26]. 450

Rather than calibrating the logistic growth model to our experimental data, we 451

attempt to assess the suitability of the logistic growth model by converting the cell 452

density evolution profiles into plots of the per capita growth rate as a function of 453

density. We find that the plots of the per capita growth rate as a function of density 454

reveal several key differences between the scratch and proliferation assays. If the 455

logistic growth model is valid, then we expect to see a decreasing linear relationship 456

between the per capita growth rate and the cell density for the entire duration of the 457

experiment. While the plots of the per capita growth rate as a function of density for 458

the proliferation assays appear to be consistent with the logistic model, the per capita 459

growth rate data for the scratch assays are very different. For the scratch assay data, 460
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the per capita growth rate increases with cell density at low density during the early 461

part of the experiment. This behaviour, which is observed for all three initial densities 462

of cells in the scratch assays, is the opposite of what we would expect if the logistic 463

growth model were valid. However, at higher cell densities during the latter part of 464

the experiment, we observe that the per capita growth rate in the scratch assays 465

appears to decrease, approximately linearly, with the cell density. This motivates us to 466

propose that cell proliferation in a scratch assay involves two phases: (i) a disturbance 467

phase in which proliferation does not follow the logistic growth model during the early 468

part of the experiment; and, (ii) a growth phase where proliferation is approximately 469

logistic during the latter part of the experiment. Guided by our per capita growth rate 470

data, it appears that the disturbance phase in the scratch assays lasts for 471

approximately 18 hours before the growth phase commences. 472

To estimate the parameters in the logistic growth model, we calibrate the solution 473

of the model to our cell proliferation data for the entire duration of the experiment. 474

This calibration procedure gives estimates of λ and K that are approximately 475

consistent across the three initial conditions. We then calibrate the solution of the 476

logistic growth model to the data from the growth phase in the scratch assay. This 477

procedure also gives estimates of λ and K that are consistent across the three initial 478

conditions, as well as being consistent with the estimates obtained from the cell 479

proliferation assays. In contrast, if we take a naive approach and simply calibrate the 480

solution of the logistic growth equation to the scratch assay data for the entire 481

duration of the experiment, our estimates of λ and K vary wildly, despite the fact that 482

the match between the experimental data and the calibrated solution of the logistic 483

growth equation looks very good. 484

The results of our study strongly suggest that care ought to be taken when 485

applying a logistic growth model, or a reaction-diffusion equation with a logistic 486

source term, to describe scratch assays. Simply calibrating a mathematical model to 487

experimental data might appear to produce an excellent match between the solution of 488

the model and the experimental data, but this commonly-used procedure does not 489

guarantee that the model is at all relevant [26]. Our results suggest that cell 490

proliferation is impacted by the scratching procedure in a scratch assay, and that we 491

require some time to pass before the disturbance phase ends. This is important 492
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because previous applications of logistic growth models and reaction-diffusion 493

equations with logistic source terms have been calibrated to data from scratch assays 494

without any regard for the disturbance phase [2, 10,15,16]. 495

It is also relevant to note that for the particular cell line we use, the disturbance 496

phase that we identify lasts for approximately 18 hours. This is important because 497

many scratch assays are performed for relatively short periods of time [1] and it is 498

possible that standard experimental protocols do not allow for a sufficient amount of 499

time to pass for the disturbance phase to end. Therefore, we suggest that scratch 500

assays should be maintained for as long as possible so that sufficient time is allowed 501

for the disturbance phase to pass. 502

One of the limitations of our study is that we have not identified the precise 503

mechanism that causes the disturbance phase; however it seems clear that the process 504

of scratching a monolayer of cells has some impact on the proliferative behaviour of 505

the cells away from the scratch, suggesting that either chemical or mechanical 506

disturbance is transported throughout the experimental well as consequence of the 507

scratching action. Regardless of the mechanism at play, our procedure of converting 508

the cell density profiles into plots of the per capita growth rate allows us to identify 509

the result of this disturbance. Another limitation of our work is that we deal only with 510

one particular cell line, and it is not obvious how our estimate of the duration of the 511

disturbance phase will translate to other cell lines. Regardless of these limitations, we 512

suggest that our experimental procedure and data analysis can be repeated for scratch 513

assays using different cell lines so that other researchers can explore how these issues 514

apply in each case. 515

References

1. Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and

inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007; 2:

329–333.

2. Tremel A, Cai A, Tirtaatmadja N, Hughes BD, Stevens GW, Landman KA, et

al. Cell migration and proliferation during monolayer formation and wound

healing. Chem Eng Sci. 2009; 64: 247–253.

PLOS 19/31

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 26, 2016. ; https://doi.org/10.1101/077388doi: bioRxiv preprint 

https://doi.org/10.1101/077388


3. Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschläger M, et al.
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Figure Legends
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Fig 1. Experimental images. (A)–(C) A summary of IncuCyte ZOOMTM

experiments for proliferation assays. (D)–(F) A summary of IncuCyte ZOOMTM

experiments for scratch assays. Images show both types of experiments initiated with

16,000 cells per well. The time at which the image is recorded is indicated on each

subfigure, and the scale bar (red line) corresponds to 300µm. The image in (D), at

t = 0 hours, shows the approximate location of the position of the leading edges

(dashed green). (G)–(I) To quantify the cell density profile, two rectangles of width

200µm, are superimposed on the experimental image as shown in (G). Manual cell

counting is used to estimate the number of cells in each subregion, and these estimates

are converted into an estimate of cell density in these regions at two–hour intervals

during the first 18 hours of the experiment, and then at six–hour intervals during the

remaining 30 hours of the experiment. To count individual cells we zoom in to focus

on certain subregions, such as shown in (H), which corresponds to the yellow rectangle

highlighted in (G). Using the counting features in Adobe Photoshop [24], we identify

individual cells and place a unique marker on each cell (red disk), as shown in (H).

After each image is processed in this way we have identified the total number of cells

in the two subregions in the image, as shown in (I), and then we convert these

estimates of cell numbers into an estimate of cell density.
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Fig 2. Variation of initial cell densities. Initial cell densities in the 96 replicates

of proliferation and scratch assays. Results for the three different initial seeding

conditions are shown. Initial seeding condition 1 corresponds to 12,000 cells per well;

initial seeding condition 2 corresponds to 16,000 cell per well; and initial seeding

condition 3 corresponds to 20,000 cells per well. For each initial seeding condition,

each experiment is repeated n = 16 times and the variation in initial cell density is

illustrated by comparing the spread of estimates of cell density on the horizontal axis.

Each blue square represents an individual replicate of the proliferation assay, and each

red circle represents an individual replicate of the scratch assay. The 18 black triangles

indicate the individual replicates chosen to construct the cell density information.
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Fig 3. Temporal evolution of cell density. Results in (A)–(F) correspond to

proliferation and scratch assays initiated with 12,000 (initial seeding condition 1);

16,000 (initial seeding condition 2); and, 20,000 (initial seeding condition 3) cells per

well, as indicated. Cell density profiles are shown at two–hour intervals during the first

18 hours, and at six–hour intervals during the remaining 30 hours of the experiment.

For each experiment, we report results for three identically prepared experimental

replicates, and the average of these three data sets is also shown.

PLOS 26/31

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 26, 2016. ; https://doi.org/10.1101/077388doi: bioRxiv preprint 

https://doi.org/10.1101/077388


Fig 4. Per capita growth rates as a function of cell density. Results in

(A)–(F) correspond to proliferation and scratch assays initiated with 12,000 (initial

seeding condition 1); 16,000 (initial seeding condition 2); and, 20,000 (initial seeding

condition 3) cells per well, as indicated. Per capita growth rate data is calculated

using the data in Fig 3. For each experiment, we report results for three identically

prepared experimental replicates, and the average of these three experimental

replicates is also shown.
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Fig 5. Schematic illustration of the differences between the proliferation

and scratch assays. (A) Schematic showing the per capita growth rate as a function

of density for the proliferation assays. (B) Schematic of the per capita growth rate for

the scratch assays illustrating two phases of proliferation. The solid blue line indicates

the disturbance phase in the scratch assay, and the solid green line indicates the

growth phase in both the proliferation and scratch assays. The arrow heads indicate

the direction of increasing time.
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Fig 6. Straight line fit to per capita growth rates in the growth phase.

Results in (A)–(F) show the average per capita growth rate data as a function of

density for both proliferation and scratch assays initiated with 12,000 (initial seeding

condition 1); 16,000 (initial seeding condition 2); and, 20,000 (initial seeding condition

3) cells per well, as indicated. Green dots correspond to averaged data in the growth

phase (Fig 5), and blue dots correspond to averaged data in the disturbance phase

(Fig 5). The solid lines show the best fit linear relationship between the averaged per

capita growth rate and averaged density. The best fit straight line is obtained for 0–48

hours in the proliferation assays, and for 18–48 hours in the scratch assays.
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Fig 7. Calibrated solutions of the logistic growth equation using data from

the growth phase. Results in (A)–(F) correspond to proliferation and scratch assays

initiated with 12,000 (initial seeding condition 1); 16,000 (initial seeding condition 2);

and, 20,000 (initial seeding condition 3) cells per well, as indicated. For each type of

experiment the calibrated solution of the logistic growth equation (solid line) is

compared to the experimental data in the growth phase (18–48 hours for scratch

assays and 0–48 hours for proliferation assays). The least–squares estimates of λ̄ and

K̄ are shown.
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Fig 8. Calibrated solutions of the logistic growth equation using the entire

data set. Results in (A)–(F) correspond to proliferation and scratch assays initiated

with 12,000 (initial seeding condition 1); 16,000 (initial seeding condition 2); and,

20,000 (initial seeding condition 3) cells per well, as indicated. For each type of

experiment the calibrated solution of the logistic growth equation (solid line) is

compared to the entire experimental data set. The least–squares estimates of λ̄ and K̄

are shown.
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