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Deep sequencing is a powerful and cost-effective tool to characterize the genetic diversity and evolution of virus
populations. While modern sequencing instruments readily cover viral genomes many thousand fold and very
rare variants can in principle be detected, sequencing errors, amplification biases, and other artifacts can limit
sensitivity and complicate data interpretation. Here, we describe several control experiments and error correction
methods for whole-genome deep sequencing of viral genomes. We developed many of these in the course of
a large scale whole genome deep sequencing study of HIV-1 populations. We measured the substitution and
indel errors that arose during sequencing and PCR and quantified PCR-mediated recombination. We find that
depending on the viral load in the samples, rare mutations down to 0.2% can be reproducibly detected. PCR
recombination can be avoided by consistently working at low amplicon concentrations.

Next-generation sequencing has become a standard tool for
detection and genetic characterization of viruses. In most ap-
plications, the aim is to obtain one consensus sequence of the
virus population in a sample with high viral titers (Gire et al.,
2014; Quick et al., 2016; Zhou et al., 2014). Plasma sam-
ples from HIV positive individuals often contain relatively
few virus genomes and PCR amplification prior to sequencing
is necessary. Moreover, minor variants within the sample are
important to understand the biology and evolution of the virus,
hence a single consensus sequence is not enough; the goal is to
obtain a faithful representation of viral diversity despite PCR
amplification. To this end, the amplification protocol must sat-
isfy several criteria: the majority of template RNA molecules
should be represented without bias; it should minimize mis-
incorporations; and it should avoid PCR-mediated recombi-
nation to preserve linkage information. These requirements
are partially conflicting — for instance more processive poly-
merases might generate less recombinants but also more fre-
quent misincorporations — and finding an optimal compromise
is essential.

Most projects characterizing diversity and minor variants
in viral populations via deep sequencing have focused on spe-
cific amplicons that are short enough to be fully covered by
a single (paired-end) read, typically using 454, IonTorrent,
or Illumina technology (Bunnik et al., 2011; Eriksson et al.,
2008; Hedskog et al., 2010; Jabara et al., 2011; Rozera et al.,
2009; Tsibris et al., 2009). Such amplicon strategies provide
great depth and allow a simple analysis workflow since ev-
ery read covers the same locus on the viral genome. To our
knowledge, Bimber ef al. (2010) first demonstrated the fea-
sibility of whole genome deep sequencing of SIV/HIV. Sev-
eral similar strategies using different sequencing technologies
have been developed since (Gall et al., 2012; di Giallonardo
et al., 2014; Henn et al., 2012; Ode et al., 2015; Zanini et al.,
2016). Whole genome deep sequencing provides a compre-
hensive picture of the diversity within viral populations, but
requires substantially more data processing steps than the sin-

gle short amplicon design.

Here, we review different strategies for whole genome HIV
deep sequencing with an emphasis on control experiments and
computational tests necessary to quantify the accuracy of mi-
nor variant frequencies and the loss of linkage during sample
preparation. We developed several such control experiments
and checks as part of a previous study in which we sequenced
HIV-1 genomes from a large number of plasma samples with
low RNA HIV-1 copy number (Zanini et al., 2016). In the
following, we outline the critical steps during Illumina Se-
quencing of PCR amplified virus in order to obtain reliable
linkage information and an assessment of actual sequencing
depth starting from few template molecules.

Extraction, amplification, and sequencing strategy

RNA extraction. If virus specific PCR primers at conserved
genomic regions are used, as in the majority of whole genome
deep sequencing studies to date, RNA extraction must focus
on maximal template yield rather than on purity of the ex-
tracted material, because non-viral nucleic acids that do not
match the PCR primers will not be amplified. We used the
RNeasy Lipid Tissue Mini Kit (Qiagen Cat. No. 74804) to
extract total RNA, with two separate extractions each from
200 pl of plasma and each with a double 50 ul elution. Other
extraction methods were tried, but we found that this method
combined high sensitivity with relative ease of use. A similar
kit, the Viral RNA Mini kit (Qiagen), was recently found to
be performing well by the BEEHIVE Consortium (Cornelis-
sen et al., 2016).

Amplification and primer design. We evaluated both gene-
specific primers and random hexamers for cDNA synthesis.
In agreement with others we found that gene-specific primers
are more sensitive than random hexamers (Acevedo et al.,
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2014). The majority of studies to date used specific primers to
amplify a moderate number 1.5-3kb fragments of the HIV-1
genome, either using two nested PCRs (di Giallonardo et al.,
2014; Ode et al., 2015) or a single PCR (Bimber et al., 2010;
Gall et al., 2012; Zanini et al., 2016).

When designing specific primers for viral amplification, the
first critical decision is on the number and length of ampli-
cons. Longer targets amplify less efficiently which typically
leads to a more biased representation of quasi-species diver-
sity in the sample. With more and shorter PCR targets, the ini-
tial viral RNA must either be split among more reactions with
fewer template molecules per reactions, or amplicons must be
carefully calibrated to ensure even amplification in a multiplex
reaction. Furthermore, it is difficult to find many sufficiently
conserved regions to accommodate a large number of primer
pairs. Gall et al. (2012) and (Bimber et al., 2010) proposed
a set of 4 primer pairs ranging from 2 to 3.5 kb in length. In
our study, we used 6 amplicons ranging from 1.5 to 2.1 kb in
length. We tried to multiplex PCR targets no. 1, 3 and 5 in one
PCR tube and targets 2, 4, and 6 in a second PCR tube, but we
experienced problems with PCR efficiency and did not pursue
this strategy further.

An alternative approach to using two specific primers per
amplicon has been demonstrated recently by Berg et al
(2016). These authors have adapted the SMART cDNA syn-
thesis strategy, which is commonly used for transcriptomics,
to viral sequencing of HIV (HIV-SMART). Briefly, a special
template-switching oligonucleotide (TSO) is used as a generic
forward primer; using gene specific reverse primers or random
hexamers together with the TSO, long stretches of HIV RNA
can be amplified. However, the amplification specificity can
be low such that a large fraction of reads don’t map to HIV. As
SMART protocols become more sensitive and robust (Picelli
et al., 2014), this approach might also be useful for quantify-
ing rare quasi-species variation.

Designing good primers for amplifying HIV-1 populations
is challenging because of the extensive genetic variability of
the virus. We proceeded with a two-step strategy. First, with
the help of the software PrimerDesign-M (Brodin et al., 2013;
Yoon and Leitner, 2015), we designed primers that target con-
served regions of HIV-1 genome, avoid primer dimers and
hairpins, and have a uniform annealing temperature that al-
lows all PCR reactions to be run in the same thermocycler.
Although many of the initial primers were effective for di-
verse HIV isolates, we encountered difficulties amplifying
fragment F5 covering the gpl20 gene. We were eventually
able to design primers for this region but, as apparent from
from the sequencing reads, we often amplified fewer tem-
plate RNA molecules for gp/20 compared to the other ampli-
cons. This difficulty appeared to be consistent across several
different primer pairs, which suggests that it may be due to
RNA secondary structure as the rev response element (RRE)
is known to form a very stable RNA hairpin (Heaphy et al.,
1990). Interestingly, we found that adding random hexamers
to the gene-specific primer increased sensitivity for some of
the HIV-1 targets; random hexamers might help cDNA syn-
thesis by destabilizing RNA secondary structures.

Ode et al. (2015) and di Giallonardo et al. (2014) used

nested PCR in their whole genome deep-sequencing projects,
which increases sensitivity and specificity of PCR amplifica-
tion (Albert and Fenyo, 1990). We tested nested PCR strate-
gies but settled on single round PCR since nested PCR in-
creases of amplification biases and PCR-induced recombina-
tion. We used nested PCR only for control experiments and
template quantification.

As the BEEHIVE project (Cornelissen et al., 2016), we
used Superscript III One-Step RT-PCR with Platinum Taq
High Fidelity for cDNA synthesis and PCR. We found this
reverse transcriptase mix to be efficient, sufficiently accurate
and easy to use. We also tried reverse transcription using
ThermoScript™ RT-PCR System and Superscript® III First
Strand System for RT-PCR but eventually chose the one-step
approach, among other reasons, because it requires less hands-
on time and thereby maximizes throughput.

To avoid PCR amplification bias and PCR recombination,
the number of PCR cycles should be kept to a minimum
(di Giallonardo et al., 2013; Mild et al., 2011) and library
preparation protocols that require small amounts of input
DNA are preferable. The Illumina Nextera XT technology
(using a Tn5 transposase preloaded with adapters) allows re-
liable preparation of sequencing libraries for from as little as
500 pg of purified cDNA in around 2.5 ul. We routinely used
30 cycles of single PCR to amplify HIV-1 from patient sam-
ples, with a yield of around 0.5-5 ng of purified cDNA. If the
DNA concentration after PCR was too low, we concentrated
the amplicon in a vacuum centrifuge. If only some ampli-
cons yielded measurable quantities of DNA, we nevertheless
pooled all amplicons for library preparation and in many cases
obtained useful sequencing data for most amplicons.

Library preparation and sequencing. 'The Tn5 transposase frag-
ments the 2kb amplicons into inserts of around 300 bp in
length, with a distribution between 100 and 700bp. Since
short inserts amplify preferentially during the final stages of
library preparation and attach more readily to the flow-cell,
the sequencing output tends to be dominated by short in-
serts. However, to study linkage between variants and opti-
mal use the long reads delivered by the MiSeq platform (up
to 2x300bp), long inserts are preferable. To obtain sequenc-
ing reads with inserts up to 700bp, we modified the standard
protocol in two ways: (i) we reduced the ratio of transposase
to input DNA by a factor of two, and (ii) replaced the bead
size selection with the Blue Pippin (Sage Science) gel-based
size selection. The latter allowed us to remove all reads with
inserts shorter than 350bp and fully utilize the read length of
the MiSeq sequencer. After size selection by the BluePippin,
we obtained an even insert size distribution between 400 and
700 bps.

Despite its shorter read length, we preferred the 2x250 bp
v2 MiSeq kit over the 2x300bp v3 kit since the 2x250bp v2 kit
consistently delivered a larger number of high quality reads.
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Bioinformatics pipeline

The analysis of high-throughput sequencing reads from di-
verse species such as HIV-1 presents unique challenges and
different approaches have been developed by different groups.
Our analysis pipeline is available at https://github.com/
neherlab/hivwholeseq (see Fig. S1 for an outline); here we
will briefly address our approach to turn raw sequencing out-
put into SNV frequencies, haplotypes, and linkage maps and
compare it to alternative strategies.

The pipeline has two critical steps. The first challenge is
mapping and assembling the reads in the presence of large
natural variation (up to 10% including insertions and dele-
tions). Many short read mappers such as BWA (Li and
Durbin, 2009) use a fixed number of mismatches from the ref-
erence as a criterion for alignment success, but such a single,
fixed threshold is difficult to apply to HIV-1 because within-
population and between-population diversity varies greatly
along the genome (Li et al., 2015; Zanini et al., 2016). Simi-
larly, assemblers such as SPAdes (Bankevich et al., 2012) can
be inaccurate because they are designed to reconstruct a single
haplotype and run into problems when assembling reads from
a diverse population. We approached this problem by using
a probabilistic mapper, Stampy (Lunter and Goodson, 2011)
and by writing a custom assembly script that combines rough
alignments to a HIV-1 reference sequence with de novo local
realignment of the reads into a single contig followed by iter-
ative refinement. Ode et al. (2015) also employed an iterative
strategy combined with de novo assembly using vicuna (Yang
et al., 2012). (Cornelissen et al., 2016) used the “iterative
virus assembler” IVA (Hunt ef al., 2015). All these methods
follow a similar strategy but rely do different degree on a ref-
erence for guiding assembly. While vicuna and IVA begin by
de novo assembly with iterative merging and refinement, our
strategy uses lenient mapping to a reference to scaffold reads
before going through iterative refinement.

While filtering non-HIV reads is straightforward, detecting
and removing sample cross-contamination is more subtle. Too
strict filtering may lead to underestimation of “real” diver-
sity whereas too little filtering results in inflated diversity esti-
mates. Illicit reads might come from a number of sources, in-
cluding (i) contamination of pre-PCR areas by cell lines used
for viral production, (ii) cross-sample contamination during
cDNA synthesis, PCR, or library preparation, and (iii) cross-
talk between barcodes during multiplexed sequencing. The
latter case is rare but not negligible: we observed about one in
10,000 reads coming from a different sample. While contam-
ination can minimized by clean laboratory practices, cleaning
the sequencing reads is essential. To this end, we compared
each read to all consensus sequences from all patients studied
and manually inspected the histograms of hamming distances
of reads to the sample consensus for each genomic region.
This way, contamination from a different HIV population can
be detected and removed. However, in order for this strategy
to work, genetically similar samples (e.g. from the same pa-
tient) have to be prepared on different days and in different
PCR plates.

Error rate
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Figure 1 Quality scores reported by the MiSeq sequencing instru-
ment are a reliable indicator of the per base error rate.

Error rates in PCR and sequencing

To distinguish natural genetic variation in HIV-1 popula-
tions from sequencing errors, error profiles need to be known
(Eriksson et al., 2008; Orton et al., 2015; Rosen et al., 2012).
Errors are generated during the reverse transcription, dur-
ing PCR amplification (including any PCR during the library
preparation), and during sequencing.

To assess the relative contributions of these sources of er-
rors, we performed a series of control sequencing experi-
ments. In each sequencing run, we included a 1% PhiX plas-
mid spike-in to evaluate the general performance of the run
and the accuracy of the per-base phred quality scores. We per-
formed similar control experiments for the combined amplifi-
cation and sequencing pipeline by amplifying and sequencing
HIV-1 plasmid DNA (2000 plasmid copies per PCR run). Er-
rors were quantified by the frequency of nucleotides differing
from the consensus sequence of the plasmid.

Using the phiX spike-in, we found that the quality scores
reported by the Illumina instrument are reliable indicators of
sequencing quality as shown in Fig. 1. We restricted analysis
to positions with a phred score > 30. This threshold was cho-
sen such that the sequencing error rate would be lower than the
error rate of the PCR (see below). Not much data is lost due
to this filter since a large fraction of bases in a typical MiSeq
run have phred qualities between 30 and 35. We also trimmed
beginning and end of each read such that it doesn’t contain
low-quality regions of size 10 with 2 or more bases with phred
quality 20. The latter criterion is arbitrary but not critical, as
the phred quality for each base is kept in the pipeline later on.

Ode et al. (2015) also observed that quality scores are use-
ful for filtering sequencing errors, but used a slightly differ-
ent strategy to remove errors. Instead of discarding base calls
with qualities below a certain threshold, they averaged phred
scores by nucleotide at each position. If the average score for
a specific nucleotide was low (i.e. this nucleotide was predom-
inantly found in low quality reads), this variant is classified as
an error. While this strategy retains a larger number of bases,
true rare variants might be lost among a large number of low
quality reads. We routinely found that >70% of all bases have
phred scores >30, such that masking all low quality bases was
not a concern.
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Fig. 2 characterizes sequencing and substitution errors.
Panel A shows an error matrix for phiX control spike-in,
i.e. how often nucleotide X is called when the correct nu-
cleotide would have been Y — for instance, the first column,
second row entry refers to the rate of mutation C — A. The
error matrix shows a flat distribution across all mutations,
which is expected given that we filter for high phred scores.
In contrast, error matrices measured for the combined PCR
amplification and sequencing protocol show a transition bias
Fig. 2BC. Among transversions, C — A and G — T substitu-
tion errors are most frequent.

Fig. 2D shows the distribution of error frequencies across
sites with phred scores >30. The main peak in error frequen-
cies for Platinum Taq Hifi agrees with that of phiX (~ a factor
2 lower, indicating run-to-run variation), but there is a pro-
nounced tail at higher error rates presumably introduced dur-
ing PCR. Nonetheless, the majority of sites have erroneous
minor variants at frequencies about 3/10000. Exchanging the
Platinum HiFi Taq polymerase for a normal Platinum Taq in-
creased the error rate by a factor of 2-5.

In addition to filtering errors based on quality scores, some
authors have employed clustering and haplotype reconstruc-
tion strategies to distinguish true variation from errors (di Gi-
allonardo et al., 2014; Rosen et al., 2012; Zagordi et al.,
2010). Such approaches are most useful to study populations
with limited recombination, e.g. HIV during early infection,
influenza virus, or HCV. During chronic HIV infection, how-
ever, recombination results in a rapid decay of linkage along
the genome (Neher and Leitner, 2010; Zanini et al., 2016) and
haplotype reconstruction might underestimate the genetic di-
versity of the population.

In summary, the majority of errors arise during PCR at a
rate of about 0.1% after filtering low quality base calls, as has
also been reported in other studies (di Giallonardo et al., 2013;
Mild et al., 2011).

Linkage

Previous studies have shown that in vitro recombination de-
pends strongly on the concentration of the amplicons (di Gi-
allonardo et al., 2013; Mild et al., 2011) as well as on the
RT-PCR conditions (Fang et al., 1998; Shao et al., 2013).
We therefore optimized the sequencing library preparation
to work with as little input DNA as possible (typically one
nanogram). This allowed us to amplify all samples with a
single PCR (as opposed to nested PCR), which strongly re-
duced PCR-induced recombination (see below). If nested
PCR is necessary to obtain enough material for sequencing,
however, several improvements over manufacturers specifica-
tions have been shown to reduce in vitro recombination from
10% or more recombinant reads to fewer than 1%: longer ex-
tension times during cDNA synthesis, a higher concentration
of primers, careful quantification of input DNA into the sec-
ond round of PCR, and potentially skipping the final extension
after PCR (Fang et al., 1998; di Giallonardo et al., 2013; Shao
etal.,2013).

We tested both nested and single PCR for our study on a

A B C

Lo
o o
ayel 1a oThO|

o o
-4.4
" ... w48
A C G T

A C G T A G T
0.4
D —— phiX - = TagHiFi Taq from A
—— phiX - =+ TagHiFi Taq from C
—— phiX = = - TagHiFi Taq from G
—— phiX - =+ TaqHiFi Taq from T

fraction of sites

error rate

Figure 2 Substitution errors. To quantify substitution errors during
PCR and sequencing, phiX DNA and virus plasmid NL4-3 were se-
quenced at high coverage. Panels A-C show the error matrices of the
sequencing machine alone (A, phiX), sequencing and amplification
errors using HiFi Taq polymerase (B) and regular Taq polymerase
(C). Each row of the error matrices corresponds to a true template
nucleotide. Entries in different columns indicate the rate at which the
incorrect nucleotides are called. The sequencing errors alone (A) are
evenly distributed and uniformly below 10~3. When the PCR step is
included (B,C), most of errors are transitions. Panel D shows the dis-
tribution of the frequency of non phiX or NL4-3 variants at each site
across the sequences. For TaqHiFi, error rarely exceed a frequency
of 1/1000 while they are between 2-5 times higher for regular Taq.

50/50 mix of two HIV-1 laboratory strains in order to quantify
the rate of PCR-induced recombination. We found a signifi-
cant fraction of recombinant reads after nested PCR (around
10%) but almost no recombinant reads after single PCR. The
loss of linkage due to recombination can be quantified by the
linkage disequilibrium measure D’. For two variants at fre-
quency p; and p;, D' is defined as

_ P12 —Ppip2
Dmax

D' D
where pi, is the fraction of reads that carry both mutations.
The denominator D,,,, normalizes for differences in p; and
p2 and is given by min(p1p2, (1 — p1)(1 — p,) if D’ < 0 and
min(p1(1—p2),(1—p1)p, if D' > 0 (Hartl and Clark, 2007).
Linkage disequilibrium after nested PCR (PCR2) decreases
within 200bp, a telltale sign of in vitro recombination (see
Fig. 3), but the curve is flat for single PCR (PCR1) indicating
that linkage is not lost during the PCR1.

Linkage controls are usually artificial mixtures of plasmids
or almost homogeneous virus cultures. Some patient sam-
ples, however, provide an almost equally well-defined control.
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Figure 3 In vitro recombination. Short read sequencing data can be
used to quantify linkage between two mutations if the corresponding
positions are frequently sequenced on the same read. In our project,
we can measure linkage within fragments up to a distance of about
500 bps, as illustrated in the top panel. The lower panel quantifies
the effect of artefactual PCR recombination that potentially compro-
mises linkage information. The lack of decay of linkage disequi-
librium D’ with distance in the PCR1 control and the early patient
sample (33 days since the estimated date of infection (EDI)) demon-
strates that one round of PCR at low template concentrations does not
result in substantial in vitro recombination. A second nested PCR at
higher template concentration results in considerable PCR recombi-
nation (PCR2).

Among the samples investigated in (Zanini et al., 2016), one
sample was from an individual who was apparently infected
with more than one virion from the same donor very shortly
prior to the collection of the first sample. The sample showed
clearly two peaks of SNV frequencies suggesting that three
variants dominated the initial population. Linkage between
those variants was almost complete as shown by the lack of
LD decay in Fig. 3. This is an internal confirmation that our
single-PCR amplification strategy was not affected by in-vitro
recombination.

Indels

While Illumina’s sequencing technology generates much
fewer indel errors than most other NGS technologies, such er-
rors still occur during reverse transcription, PCR and sequenc-
ing. When sequencing libraries produced from homogeneous
plasmids, we observe deletions and insertions at frequencies
of about 1 in 10° sequenced bases (see Fig. 4 and Fig. 5).
Larger deletion rates are observed at homopolymeric tracts,
suggesting that slippage during PCR is a major source of these
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Figure 4 Insertion errors. Panel A shows the number of insertion
observed at different frequencies relative to reference plasmids, nor-
malized to the total number of bases sequenced. Dashed lines corre-
sponds to insertions of length 1, dash-dotted to insertions of length
2 and solid to length 3. Total number of observed insertions in each
experiment are given in the legend (length 1,2,3). Panel B shows
the equivalent results for virus cultures. Insertions of length one are
about three times more common in cultured virus than in plasmids.
Two base or longer insertions were very rare in sequencing reads de-
rived from plasmids, but were observed at appreciable frequencies in
virus cultures.

errors (see Fig. 5). Libraries produced from largely homoge-
neous viral cultures have a ten fold higher frequency of inser-
tions and deletions than plasmid samples, possibly indicating
a higher rate of indels during the RT step. Furthermore, the in-
sertions of length 2 and three are much less common relative
to those of length 1.
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Figure 5 Deletion Errors. Panels A and B show the density of
deletions along fragment 2 smooth with a 10 base window for plas-
mid controls and virus cultures, respectively. Deletions are more
evenly distributed in virus cultures but still correlate with homopoly-
mer densities. When sequencing plasmids, deletion errors localize
strongly at homopolymer tracts.
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Depth and the accuracy of variant frequency estimates

Several studies have quantified the accuracy at which vari-
ant frequencies can be measured with deep sequencing. The
predominant strategy is mixing of readily distinguishable viral
genomes in defined proportions. Ode et al. (2015) have found
that minor variants at 1% can be reliably detected. Seifert
et al. (2016) used a five virus mix to show that frequencies
of different viruses are reproducible to within one percentage
point.

These tests used several thousand molecules as input for
RT-PCR. In low viral load clinical samples, the accuracy of
variant frequencies is primarily determined by the number of
available template molecules (Iyer et al., 2015). It is therefore
important to quantify template input, PCR efficiency and bias
for each sample.

In our whole genome deep-sequencing project, we used
fragment 4 to estimate the template input by limiting dilution
since fragment 4 amplified most reliably. 10% of the sample
for fragment 4 was used for duplicate 10-fold dilution series
by nested PCR. The series of positive and negative PCR re-
action was used to estimate the number of templates based
on a Poisson model of template sampling. The estimates of
template input correlated well with viral load measurements
made at the time of sampling (rank correlation p = 0.7). The
median efficiency (the ratio between estimated template input
and viral load) was 30% (Zanini et al., 2016).

In addition to the low and variable template input, RT-PCR
efficiency and biases can vary from fragment to fragment.
Hence a global estimate of the of template numbers is some-
times not sufficient: ideally SNV frequency accuracy should
be determined for every PCR reaction. This is difficult since
determining those frequencies is the very goal of the sequenc-
ing experiment. However, overlapping PCR fragments allow
for a built-in control: Every SNV in the overlap region is am-
plified and sequenced twice in completely independent reac-
tions illustrated in Fig. 6. Concordance between these inde-
pendent estimates can be used to estimate the effective tem-
plate number contributing to each fragment.

Considering one overlap first, we can model the deviations
of SNV frequency estimates as follows. Let the true frequency
of the variant be x and assume that the leading and trailing
fragment are presented in the sequencing library by #; and
1, effective templates (we will discuss the effective nature of
these numbers below). If the templates are sampled indepen-
dently of the variant in question, the number of templates car-
rying the variant will be binomially distributed with means xt
and xr, and variances x(1 —x)#; and x(1 — x)z, in the leading
and trailing fragment, respectively. If we further assume that
many templates of either variant are captured, the binomial
distribution can be approximated by a Gaussian distribution.
The difference between the estimated frequencies in the lead-
ing and trailing fragment A = X, — X1 is then given by
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Figure 6 Estimating depth from SNV frequency overlap. The strat-
egy to amplify overlapping fragments allows estimation of template
numbers and the accuracy of SNV frequencies by comparing SNV
frequencies in fragment overlaps. The deviation between frequen-
cies estimated in trailing and leading fragment can be used to obtain
an effective number of templates contributing to sequencing reads for
each fragment — provided there is sufficient diversity in the overlap.
Reproduced from (Zanini et al., 2016).

where the integral is over the average frequency of the variant
in both segments. Hence the variance of the SNV frequency
discordance A is given by 6> = (¢ +1,)x(1 —x) /t; /t which is
dominated by the smaller of #; and 7. The ratio A/(x(1 —x)) is
expected to have a variance on the order of (¢; + 1)/t /t, and
we estimate the template numbers by averaging A/ (x(1 — x))
over different SNV i in the overlap. Approximating x by the
average estimate £ = (%] +%£;)/2, we obtain

1 n
S . 2
1315 nzfi(l—)?i) 2)

where the sum runs over different SN'Vs in the overlap. Given
enough diversity, we can estimate this variance for each of
the fragment overlaps. To stabilize estimates that are driven
by few data points, we add several pseudo-SNVs (three) each
of which contributes the inverse of the template number esti-
mated from limiting dilutions.

Approximate solution of the under-determined problem. For k
fragments we only have k — 1 overlaps and solving for the &
template numbers is therefore an ill-posed problem. However,
a simple heuristic lower bound to template numbers works
well. Since the variance observed in one overlap is dominated
by the smaller of the two template numbers, we can start with
the overlap with the smallest variance and solve for the lead-
ing and trailing template numbers assuming they are equal.
From there, we work our way outward to noisier overlaps,
always assigning the leftover variance to the outer fragment.
Alternatively, one could solve for the template numbers along
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with a regularization that keeps template numbers as similar
as possible.

Limitations. For the method to work, we require several
SNVs in the overlap region. The method is therefore unsuit-
able for short overlaps and homogeneous samples (e.g. very
early samples) and even in cases with several SNVs in the
overlap, the resulting estimates are noisy. Nevertheless, frag-
ment specific indicators of input and amplification success are
valuable controls; visual inspection of SNV frequency con-
cordance is helpful to spot poorly performing fragments even
if a quantitative analysis via equation (2) is not feasible.

While overlapping amplicons have value as intrinsic con-
trol, overlaps should not be excessively long. Once they be-
come longer than the length of the sequencing inserts, reads
can no longer be confidently assigned to one or the other frag-
ment unless reads begin or end at a primer site or are barcoded
in a fragment specific manner.

Discussion

With high throughput sequencing technologies millions of
viral genomes can be sequenced within hours or days. How-
ever, harnessing this sequencing capacity and obtaining ac-
curate and interpretable results remains a challenge as errors
and biases need to be carefully controlled. Sequencing tech-
nologies are changing rapidly and each new technology has
different error profile and input DNA requirements. The Illu-
mina MiSeq platform has comparatively long reads, low error
rates, low DNA input requirements, and fast turn around time;
it is therefore well suited for virus sequencing projects.

The main limitation when sequencing low viral load HIV-
1 plasma samples is the limited number of HIV-1 genomes
and efficient amplification of long segments. Similar chal-
lenges have been encountered efforts in recent efforts to se-
quence Zika virus genomes from clinical samples (Zibrapro-
ject, 2016). Quantification of template input is crucial for the
interpretation of the results, in particular when intra-host vari-
ation is of interest.

We used limiting dilution together with viral load mea-
surements and overlapping amplicons to assess the number
of input templates (Zanini et al., 2016). Another method to
quantify template input and PCR amplification biases is the
use of primerIDs — also called unique molecular identifiers
— where a unique random sequence tag is introduced in the
reverse transcription reaction to label the starting molecule.
If this tag is subsequently amplified and sequenced in multi-
ple reads, biases and sequencing errors can be corrected by
only considering consensus sequences sharing one tag (Jabara
et al., 2011). However, primerID methods are not applicable
when the amplicons are too long to be sequenced in one read,
since shearing or tagmentation decouples the sequence from
the ID. Digestion-circularization protocols have been recently
put forth as a way to overcome the latter issue but typically
require large amounts of input nucleic acids (Acevedo ef al.,
2014; Hong et al., 2014). Furthermore, primerID methods

might introduce additional amplification biases and not nec-
essarily improve the accuracy of variant frequency estimates
(Brodin et al., 2015; Seifert et al., 2016).

Long-read sequencing platforms such as the RS-II (Pacific
Biosciences) and the MinlON (Oxford Nanopore) might soon
make fragmentation of 2-4kb amplicons unnecessary. The
current library preparation protocols for these long read tech-
nologies require large amounts of DNA input, making them
unsuitable for low viral load samples. For instance, in order
to adapt our protocol to long-read sequencing platform, we
would need to add a second (nested) PCR that generates high
rates of in vitro recombination (see above). Another important
concern is that the error rates of single molecule sequencing
techniques are high, such that error correction methods need
to be applied. Despite these hurdles, circular consensus se-
quences from Pacific Biosciences have been recently used to
characterize whole env diversity in high viral load samples
(Laird Smith er al., 2016). With increasing read length, re-
duced error rates, and innovative error correction schemes,
whole genome viral sequencing in one contiguous read might
soon become possible.
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Appendix: Supplementary material

raw reads
map loosely
to reference (HXB2)

reads mapped
to reference

assign to amplicon 1-6
and trim PCR primers

reads assigned to
each amplicon

) assembly

consensus for
each amplicon

filter reads by
Hamming distance

filtered reads

filtered reads +
consensus sequences

merge early consensus
sequences

early genome wide reference
sequence for each patient

map more tightly to
patient reference

reads mapped to
patient reference

single nucleotide consensus
variant (SNV) counts seguences
counts of haplotype
SNV pairs counts

Figure S1 Outline of the data analysis workflow for HIV whole genome deep sequencing as performed in our previous study (Zanini et al.,
2016) (adapted from https://github.com/neherlab/hivwholeseq).
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