bioRxiv preprint doi: https://doi.org/10.1101/077271; this version posted September 25, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

RlIblast: An ultrafast RNA-RNA interaction prediction
system for comprehensive IncRNA interaction analysis

Tsukasa Fukunaga®**, Michaki Hamada®“**

“Faculty of Science and Engineering, Waseda University, Tokyo, Japan
bResearch Fellow of Japan Society for the Promotion of Science
¢Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University

Abstract

Long non-coding RNAs (IncRNAs) play important roles in various biological pro-
cesses. Although more than 58,000 human IncRNA genes have been discovered,
most known IncRNAs are still poorly characterised. One approach to understand-
ing the functions of IncRNAs is the detection of the interacting RNA target of
each IncRNA. Because experimental detection of comprehensive IncRNA-RNA
interactions are difficult, computational prediction of IncRNA-RNA interactions
is an indispensable technique. However, the high computational costs of existing
RNA-RNA interaction prediction tools prevents their application to large-scale
IncRNA datasets. Here, we present “RlIblast”, an ultrafast RNA-RNA interaction
prediction method based on the seed-and-extension approach. RlIblast discovers
seed regions using suffix arrays and subsequently extends seed regions based on
an RNA secondary structure energy model. Computational experiments indicate
that RIblast achieves a level of prediction accuracy similar to those of existing
programs, but at speeds over 63 times faster than existing programs.

Long non-coding RNAs (IncRNAs) play integral roles in diverse biological pro-
cesses including histone modification [1], transcriptional regulation [2] and sub-
nuclear structure formation [3]. The dysfunctions of many IncRNAs are associ-
ated with severe diseases such as coronary artery disease, diabetes, and various
cancers [4, 5], and thus elucidating IncRNA functions is an important research
area in molecular biology. Although large-scale transcriptome analysis has re-
vealed that more than 58,000 IncRNA genes are encoded by the human genome
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[6], most of these IncRNAs are still poorly characterised [7].

Sequence similarity search and RNA secondary structure similarity search
have achieved substantial success in characterising the function of protein-coding
genes and short non-coding RNAs, respectively [8, 9]. However, these strategies
are unsuitable for inferring the function of IncRNAs because IncRNAs frequently
lack sequence and structure conservation [10, 11]. In contrast, the identification of
interaction partners for each IncRNA should be a powerful approach to determin-
ing functions because IncRNAs function by being assembled with other proteins
or RNAs into various complex molecular machinery [12].

Several IncRNAs have been experimentally confirmed to regulate biologi-
cal processes through their interactions with target RNAs. For example, Abdel-
mohsen et al. [13] determined that IncRNA 7SL reduces p53 protein translation
levels by binding TP53 mRNA. Similarly, Carrieri et al. [14] found that IncRNA
Uchl1-AS regulates the translation level of Uchll mRNA through an RNA-RNA
interaction. Gong and Maquat [15] discovered that IncRNA 1/2-sbsRNAs inhibit
the translation of the interaction target RNA through a Staufenl-mediated mRNA
decay process. These examples show that the identification of IncRNA-RNA in-
teractions is an important step in characterising IncRNA functions.

Several sequencing-based technologies have been developed as methods for
the experimental discovery of RNA-RNA interactions. RIA-seq [16] and RAP-
RNA [17] can identify target RNAs attached to an anchored RNA using in vivo
cross-linking and antisense oligonucleotide probes. Although these methods are
outstanding technologies to exhaustively detect interaction targets of a specific
IncRNA, repeating these experiments across many IncRNAs is extremely labour
intensive. In contrast, PARIS [18], SPLASH [19], LIGR-seq [20] and MARIO
[21] can comprehensively identify RNA-RNA interactions in vivo based on prox-
imity ligation. However, the majority of the detected interactions have been re-
lated to ribosomal RNAs or small RNAs, and the number of identified IncRNA-
RNA interactions has been limited. In addition, because most of the IncRNAs
show tissue-specific expression patterns [6, 10], these experiments on various tis-
sues or cell lines are necessary but they require quite hard work and are therefore
impracticable. Since the detection of genome-wide IncRNA-RNA interactions
exclusively through experiments is difficult, computational prediction of IncRNA-
RNA interactions is an indispensable technique.

Szczesniak and Makalowska [22] predicted entire IncRNA-RNA interactions
across the human transcriptome using a fast sequence similarity search without
consideration of RNA secondary structure. However, benchmarking results of
RNA-RNA interaction predictions showed that omitting consideration of RNA
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secondary structure information decreases prediction accuracy [23]. To date,
many RNA-RNA interaction prediction tools that consider RNA secondary struc-
ture have been proposed, e.g. IntaRNA [24], RNAplex [25, 26] and RactIP [27],
and can detect small RNA (sRNA) interactions with high accuracy. However, as
these programs were designed for detecting sSRNA interactions, the computational
costs are too high to predict IncRNA interactions comprehensively. To predict a
comprehensive IncRNA interactome with consideration of RNA secondary struc-
ture, Terai e al. [28] first roughly screened interaction candidates based on only
sequence complementarity and then exhaustively predicted IncRNA interactions
using IntaRNA. Although their approach effectively narrowed down interaction
candidates, it still required extensive computational resources to utilise IntaRNA.
Therefore, a much faster RNA-RNA interaction prediction program that consid-
ers RNA secondary structure is required for further progress in comprehensive
investigations of IncRNA function.

In the present study, we developed an ultrafast RNA-RNA interaction pre-
diction algorithm for comprehensive IncRNA interaction analysis. While previ-
ous RNA-RNA interaction prediction tools employ a Smith-Waterman algorithm-
like method, our algorithm is based on the seed-and-extension approach, which is
widely adopted in sequence homology search tools including BLAST [8]. We im-
plemented this high-speed algorithm as a program named Rlblast, which detects
seed regions using query and database suffix arrays, and subsequently extends
both ends of seed regions based on an RNA secondary structure energy model.
While the prediction accuracies of RlIblast were comparable to those of existing
programs, RlIblast was more than 63 times faster than existing tools.

Results

Overview of the Rlblast algorithm

RIblast enumerates potentially interacting segments between a query RNA x and
a target RNA y. RlIblat uses two energies as the evaluation criteria to determine
whether two segments, (x, and y;) in sequences x and y, intermolecularly interact:
accessible energy and hybridization energy. Accessible energy is the energy re-
quired to prevent the segments from forming intramolecular base pairs and can be
calculated by utilising a partition function algorithm [29, 30]. Briefly, a segment
with high accessible energies tends to not form intermolecular base pairs because
the segment forms intramolecular base pairs (Fig. 1A). Hybridization energy is
the free energy derived from intermolecular base pairs between two segments and
can be calculated as the sum of stacking energies and loop energies in the formed
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base-paired structure based on a nearest-neighbour energy model (Fig. 1B). When
calculating hybridization energies, intra-molecular base pairs are not taken into
consideration. Here, we defined the interaction energy between two segments
x, and y; as the sum of the accessible energy of x,, accessible energy of y, and
hybridization energy between x; and y,. Rlblast outputs two segments with a par-
ticularly low interaction energy as a detected RNA-RNA interaction. Note that
RNAup [31], IntaRNA [24] and RNAplex-a [26] also predict RNA-RNA interac-
tions based on this combination of hybrid energy and accessible energy, and each
showed high prediction accuracies in a previous benchmarking test [23].

The accessible energy of each segment in an RNA sequence can be calculated
with time complexity O(NW?) [32]. Here, N is the length of the input sequence
and W is the constrained maximal distance between the bases that form base pairs.
For all-to-all interaction predictions of IncRNAs, the calculation time of accessi-
ble energies scales linearly with the number of sequences. This is because acces-
sible energies of an RNA sequence can be calculated independently of the other
RNA sequences. On the other hand, the calculation of hybridization energy be-
tween two RNA segments is similar to the calculation of a local alignment score
between two sequences [33]. Therefore, hybridization energy can be calculated
based on a Smith-Waterman algorithm-like method with time complexity O(NM),
where N and M are the lengths of two input sequences; IntaRNA and RNAplex-a
use this calculation approach. Unlike the calculation of accessible energies, the
calculation of hybridization energies cannot be calculated from only an RNA se-
quence. Thus, the calculation time of hybridization energies is quadratic with the
number of sequences when an all-to-all interaction prediction is conducted. This
calculation is the obstacle to comprehensive IncRNA-RNA interaction prediction.

In the subject of local sequence alignment, the same problem was awaiting a
solution, and a massive amount of research has been conducted to speed up the
calculation of alignment scores. Seed-and-extension heuristic is one of the most
successful approaches and has been adopted by many popular sequence align-
ment tools, such as BLAST [8], BLAT [34] and LAST [35]. This method first
finds short matching regions, which are called seeds, between a query sequence
and target sequence and subsequently extends alignments from both end points
of the detected seeds. We recognised that the application of this approach to the
calculation of hybridization energy should accelerate the computation speed con-
siderably.

RIblast implements two major steps: database construction and an RNA in-
teraction search. Fig. 1C shows the flowchart of the Rlblast algorithm. In the
database construction step, RIblast first calculates the accessible energy of each
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segment in the target RNA dataset using the Raccess algorithm [32]. To speed
up calculation, RIblast calculates approximated accessible energies, as proposed
in RNAplex-a [26], instead of exact accessible energies. Second, target RNA se-
quences are reversed and concatenated with delimiter symbols inserted between
the two sequences. Third, a suffix array of the concatenated sequence is con-
structed. The suffix array is an efficient text-indexing data structure that comprises
a table of the starting indices of all suffixes of the string in alphabetical order. It
can be constructed in linear-time relative to sequence length [36, 37]. Fourth,
in order to speed-up the RNA interaction search, search results of short strings
are exhaustively pre-calculated. Then, the approximated accessible energies, con-
catenated sequences, suffix array and search results of short strings are stored in a
database.

In the RNA interaction search step, RIblast first calculates approximated ac-
cessible energies and constructs a suffix array for a query RNA sequence. Second,
Rlblast finds seed regions whose hybridization energy is less than a threshold
energy level T based on two suffix arrays of the query and the database. To
efficiently enumerate seed regions, we used the modified algorithm of the seed
search method of GHOSTX [38], which is a sequence homology search tool
that is approximately 100 times faster than BLAST. Third, the interaction ener-
gies of the detected seed regions are calculated by summation of hybridization
energy and two accessible energies. In this step, RIblast removes seed regions
whose interaction energies exceed 0O kcal/mol. Fourth, RIblast extends interac-
tions from seed regions without a gap. If RIblast extends the threshold length Y
from the length requiring the minimum interaction energy in the extension but
the minimum interaction energy has not been updated, then RIblast terminates
the gapless extension. Fifth, the interactions that fully overlap with other in-
teractions are removed. In addition, those interactions with interaction energies
exceeding the threshold energy 7, are also excluded. Note that no interactions
are removed if 73 is set to 0 kcal/mol, and lower T, values cause faster compu-
tation speed with lower prediction accuracy. Finally, RIblast extends interactions
from seed regions with a gap. As in the gapless extension step, if Rlblast ex-
tends the threshold length X from the length requiring the minimum interaction
energy in the extension but the minimum interaction energy has not been updated,
then RlIblast terminates the gapped extension. Further details of the algorithm are
given in the Methods section. The source code of Rlblast is freely available at
https://github.com/fukunagatsu/RIblast.
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Evaluation of basepair prediction performance on bacterial sRNA dataset and
fungal snoRNA dataset

We assessed the performance of RlIblast using three evaluation methods. First,
we investigated base pair prediction performance by evaluating whether programs
predict correct base pairs between two RNAs with experimental interaction ev-
idence. We used 109 validated bacterial SRNA-mRNA pairs and 52 validated
fungal snoRNA-rRNA pairs as the evaluation dataset, which were constructed by
Lai and Meyer [23] for the purpose of benchmarking RNA-RNA interaction pre-
dictions. To compare the performance of RlIblast with other tools, we evaluated
the base pair prediction performances of IntaRNA and RNAplex-a, which are the
best performing current tools [23]. As the energy parameter characterising RNA
secondary structures, we used two energy parameters, Turner’s energy parameter
[39] and Andronescu’s BLx* energy parameter [40]. Because IntaRNA did not
have an option to change the energy parameter, we used only the default Turner’s
energy parameter in the IntaRNA evaluation. We used three accuracy measures:
true positive rate (TPR), positive prediction value (PPV) and Matthews correlation
coefficient (MCC). Positive base pairs were experimentally validated intermolec-
ular base pairs [23]. The values of the adjustable parameter 7 and X in RlIblast
were determined based on the base pair prediction performance of the bacterial
sSRNA-mRNA dataset. The performances of various 7 and X values were in-
vestigated, and the parameter set that yielded the best performance was adopted
(Supplementary Table S1 and S2). These determined values of 7 and X were
used in the following analyses. T, was set to 0 kcal/mol in this evaluation.

Tables 1 and 2 show the evaluation results of base pair prediction performance.
For the bacterial SRNA-mRNA dataset, RIblast with Andronescu’s energy param-
eter achieved the best PPV (0.73) and MCC (0.67) performance. The best TPR
score was obtained by IntaRNA (0.66). For the fungal snoRNA-mRNA dataset,
RNAplex-a with Andronescu’s energy parameter was the best performing tool ac-
cording to all three accuracy measures (TPR, 0.74; PPV, 0.69; MCC, 0.71), and
was followed by RlIblast using Andronescu’s energy parameter (TPR, 0.66; PPV,
0.60; MCC, 0.62). In both datasets, tools using Andronescu’s energy parameter
showed superior performance to the same tool with Turner’s energy parameter.

Evaluation of transcriptome-wide target prediction accuracy on bacterial sRNA
dataset

Second, we evaluated bacterial SRNA target prediction performance by validat-
ing whether the predicted interaction energies of positive SRNA-mRNA interac-
tions are lower than those of negative SRNA-mRNA interactions. This evaluation
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method was originally proposed by Richter and Backofen [41]. We used 64 ex-
perimentally validated interactions in E. coli as positive data. As negative data,
we used all non-positive interactions in all-to-all interactions between 18 sRNAs
and all 4319 E. coli mRNAs. We sorted mRNAs for each SRNA by minimum in-
teraction energy. Then, we plotted ROC-like curves whose x- and y-axes were the
number of true positive predictions and the total number of target predictions per
sRNA, respectively. The parameter 7, was also set to 0 kcal/mol in this evaluation.

Fig. 2 shows the bacterial SRNA target prediction performance. The best per-
forming tool was RNAplex-a with Andronescu’s energy parameter. The predic-
tion performance of RIblast with Turner’s energy parameter was slightly lower,
but RIblast with Andronescu’s energy parameter showed similar performance to
the other programs.

Evaluation of human IncRNA TINCR target prediction accuracy

Third, we validated human IncRNA target prediction performance by comparing
predicted interactions of human IncRNA TINCR with interactions experimentally
validated by RIA-seq [16]. We used the same dataset and evaluation method as
Terai et al. [28]. The dataset was composed of 5195 target RNAs (including both
mRNAs and IncRNAs) and 1062 RNAs among them that interact with TINCR
at one or more interacting segments. The target RNAs that have more interact-
ing segments are more likely to be TINCR-interacting RNAs. As positive data,
we used RNAs that at least had a threshold number of the interacting segments.
When this threshold was set to 1, 2, 3, 4 and 5 interactions, the numbers of positive
data were 1062, 434, 191, 104 and 65, respectively. Instead of comparing RIblast
to IntaRNA or RNAplex-a, we compared the performance of RlIblast with those of
the pipeline by Terai ef al. [28] and LAST [35], a fast local alignment tool. This
is because IncRNA target predictions by IntaRNA and RNAplex-a have heavy
computational costs. LAST was used by Szcze$niak and Makalowska to make
comprehensive human IncRNA-RNA interaction predictions [22]. We sorted tar-
get RNAs based on the minimum interaction energy among all predicted interac-
tions in the target RNA (denoted by MINENERGY) or the sum of the interaction
energies that are lower than some threshold value in the target RNA (denoted by
SUMENERGY). Then, we calculated area under the receiver operating character-
istic curve (AUROC) scores using the pROC R package [42].

Supplementary Table S3 shows AUROC results for MINENERGY sorting.
LAST, the pipeline by Terai et al. [28] and RlIblast exhibited performances that
were similar to each other in this case. On the other hand, Fig. 3 and Supple-
mentary Table S4-6 show AUROC scores for SUMENERGY sorting. This result
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illustrates that SUMENERGY sorting performs better than MINENERGY sorting
among all methods. This result is consistent with at least one previous study [28].
In addition, for SUMENERGY sorting, RIblast achieved higher AUROC scores
than the other methods for any threshold number of interacting segments. Un-
like the evaluation of base pair prediction or SRNA target prediction performance,
there was no difference in performance between Turner’s and Andronescu’s en-
ergy parameters. Finally, to obtain the appropriate parameter 75, we investigated
the influence of 7, on TINCR target prediction accuracy (Supplementary Tables
S7-8). These results show that the accuracy was robust to the T, parameter setting.
We set T, to -6 and -4 when the energy models were Turner’s and Andronescu’s
energy parameters, respectively.

Evaluation of running time

We finally evaluated the computational speed of RIblast by comparing its run time
with the times required for IntaRNA, RNAplex-a, and the pipeline by Terai et
al. [28]. We excluded the joint secondary structure prediction step using RactIP
[27] in the Terai et al. [23] pipeline because this step does not affect interac-
tion prediction accuracy. The calculation time for RNAplex-a included the run
time of accessibility calculation by RNAplfold [43], and that of RIblast includes
both the execution time of the database construction step and the RNA interaction
search step. The query and target sequences were randomly selected from human
IncRNAs and mRNAs in Gencode version 24, respectively [44]. Then, all-to-all
interaction predictions between query and target sequences were conducted. The
computation was performed on an Intel(R) Xeon E5 2670 2.6GHz CPU with 4 GB
of memory. Table 3 shows the computational times depended on the dataset size
for each software tool. In all cases, RIblast was much faster than the other pro-
grams. As the dataset size increased, the speed advantage over the other programs
became quite large. In particular, when the dataset consisted of 500 InRNAs and
mRNAs, RlIblast was 63-fold and 73-fold and faster than the Terai et al. pipeline
and RNAplex-a, respectively (Table 4).

Discussion

In this study, we developed a novel RNA-RNA interaction prediction algorithm
based on the seed-and-extension approach and implemented it as RIblast. RIblast
showed comparable accuracies to the current tools with the best base pair pre-
diction performance and sRNA target prediction performance, and RlIblast also
showed superior performance to existing tools in human IncRNA TINCR target
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prediction. Moreover, RIblast is much computationally faster than the other pro-
grams assessed. These results strongly suggest that the seed-and-extension ap-
proach is effective for accelerating RNA-RNA interaction predictions, and RIblast
is the top choice as a tool for comprehensive IncRNA-mRNA interaction predic-
tion.

We used an interaction energy cutoff to exclude likely incorrect predictions in
this research, but this method may be highly arbitrary. As such, we should ulti-
mately determine the reliability of the predicted interactions based on a statistical
score like the e-values generated by BLAST. Rehmsmeier et al. [45] developed
a calculation method for the statistical significance of predicted RNA-RNA in-
teractions. However, their calculation method cannot be applied to our software
directly because their interaction prediction method did not consider the effect of
accessible energies. Therefore, we need to develop a novel e-value calculation
method for RlIblast’s predicted interactions.

Although Hajiaghayi er al. reported that the accuracy of RNA secondary
structure prediction with Andronescu’s energy parameter outperforms those that
use other energy parameters [46], our research provides the first report that An-
dronescu’s energy parameter also delivers superior performances compared with
Turner’s energy parameter in small RNA-RNA interaction predictions. Currently,
major miRNA target prediction tools, such as miRanda [47] and TargetScan [48],
and snoRNA target prediction tools, such as RNAsnoop [49], utilise Turner’s en-
ergy parameter. The application of Andronescu’s energy parameter to these pro-
grams may easily improve their target prediction accuracy.

RIblast efficiently calculates RNA-RNA interaction predictions, but further ac-
celeration is an essential task because the number of IncRNA is increasing daily.
Considering that the seed-and-extension approach greatly contributes to the ac-
celeration of RNA-RNA interaction predictions, other acceleration techniques in
sequence homology search may be effective for the acceleration of RNA-RNA
interaction predictions. Specifically, algorithm parallelization is a promising tech-
nique. At present, many parallelization methods based on GPGPU [50, 51, 52],
MPI [53] and SIMD [54] have been proposed for sequence homology search and
have successfully speed up calculation.

While typical mRNAs tend to be localised in the cytoplasm, typical IncRNAs
tend to be localised in the nucleus [55]. This tendency may suggest that IncRNAs
exert their gene regulatory functions by interacting with nascent pre-mRNAs [17].
Thus, comprehensive interaction prediction between IncRNAs and pre-mRNAs is
a fascinating research topic, but the current version of RIblast cannot be applied
to this task. This is because the accessible energy calculation of pre-mRNAs by
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the Raccess algorithm is computationally difficult for long RNA sequences. For
this purpose, we will integrate the ParasoR algorithm [56], which can calculate
accessible energies for quite long RNAs on a computer cluster, with RIblast.

The evolution of IncRNA is a hot topic in RNA biology [57]. Although the
majority of IncRNAs are lineage-specific, a thousand human IncRNAs have ho-
mologs with conserved short sequence regions [11]. In addition, Ngueyn et al.
revealed that experimentally validated RNA-RNA interaction sites are evolution-
arily conserved [21]. These results suggest that the interaction relationships be-
tween IncRNA and RNA are widely conserved among species. We aim to vali-
date this hypothesis by comparing RlIblast-based IncRNA interactome networks
between species.

Methods

The method for calculating accessible energy

We presumed that the conformation distribution of RNA secondary structures of
an RNA sequence is represented by the Boltzmann distribution. We defined x[i.. j]
as a segment from position i to position j in an RNA sequence x. Here, the
accessible energy E,..(i, j) that is required to make the segment form a single-
stranded structure is given by

Eqec(is J)

pacc(ia j)

—RT 10g(pacc(i, j))
1
% Z exp (-AG(o, x)/RT)

o€Q(i,j)

2(x) = ) exp(-AG(o, x)/RT)

(TEQ()

where AG(o, x) represents the Gibbs free energies of the given structure o on the
sequence x, R represents the gas constant and 7 represents the absolute temper-
ature (we used 7 = 310.15 K in this study). €, represents the set of all possible
secondary structures of x, and €(i, j) is the set of all possible secondary structures
that the segment x[i..j] forms in single-stranded structure. Hence, p,..(i, j) is the
probability that the segment x[i..j] is single-stranded. For a fixed segment length,
Raccess can calculate accessible energies of all segments with O(NW?) using dy-
namic programming, where N is the sequence length and W is the constraint of
maximal distance between the bases that may form base pairs. In this research,
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we uniformly set W to 70 as a research benchmark for RNA-RNA interaction
prediction tools [23].

However, RlIblast requires the accessible energies of segments with arbitrary
length, and the exhaustive calculation is computationally expensive. Therefore,
RIblast uses approximated accessible energies E,..(i, j) instead of E,.(i, j). This
method was proposed in RNAplex-a [26]. E..(i, j) was defined as follows:

EGCC(i’ j)

—RT 10g(Pocc(i, J))

J
pacc(ia .]) = pacc(ia i+0-— 1) ' 1—[ ﬁacc(a)
a=i+d
pacc(a - 6, Cl)
pacc(a - 6’ a— 1)

ﬁacc(a)

By this approximation, we only have to calculate the accessible energies of seg-
ments with length ¢ and ¢ + 1. In addition, by restricting the minimum length of
seeds to 0, we need not calculate accessible energies of segments whose length
is less than 6. Note that when the segment length is 6 or ¢ + 1, the approximate
accessible energy E...(i, j) becomes the exact accessible energy E,..(i, j). In this
research, 0 was set to 5.

Seed search

The seed design strongly influences the accuracy and calculation speed of the
program. BLAST searches seeds with a fixed length, but this method is unsuitable
for RNA-RNA interaction search. For example, in Andronescu’s energy model,
the hybridization energy of a 6-mer seed consisting of only G-C base pairs is about
-10 kcal/mol, but that consisting of only G-U base pairs is about -1 kcal/mol. The
large difference in hybridization energies between seeds of the same length should
depress the performance of tools. Therefore, RIblast adopts score-based seeds, as
proposed in GHOSTX [38]. Our score-based seeds were defined as the perfect
base-pairing region whose hybridization energy is less than the threshold energy
T, and length is at least 6. Note that the seed search step takes hybridization
energy into consideration, but does not consider the accessible energies of the two
segments.

RlIblast detects seeds using a depth-first search. Supplementary Figure S1
shows the schematic illustration of the seed search. First, RIblast searches for a
single inter-molecular base pair such as G-C. If this pair is found in the query
and the database, then RlIblast extends the base pair by one base pair as GG-CC,
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GC-CQG, ..., GU-CG and then checks whether these extended strings are found
in the query and the database. If the extended strings are detected and meet the
conditions for score-based seeds, then RIblast stores the string pair as a seed. If
extended strings are detected but do not meet the conditions for score-based seeds,
then RlIblast extends the strings by one base pair again and repeats this step. If
extended strings are not detected, then the extension is stopped. To avoid overly
long seeds, we restricted the max seed length length,,,. (we set this parameter to
20 in this study). Supplementary Figure S2 shows the pseudo-code of the Rlblast
seed search algorithm. Here, S, and S 4, represents the query RNA sequence and
the reversed and concatenated database RNA sequence, respectively. SA, and
S Ay are the suffix arrays of S, and S 4, respectively. seed, and seedy, represent
the temporary seeds for the query and database, respectively. sp,, ep,, spa and
epgp are the indices of SA, and SAy,. The S AS earchNextS tring function returns
the indices of the new extended string in a suffix array. If the string exists in
the query and the database, then the returned sp(sp’) is smaller than the returned
ep(ep’).

In order to accelerate this seed search step, we pre-calculate the indices of
the strings whose length is shorter than / for a database of RNA sequence in the
database construction step. The results of the short sequence search are used on
the database sequences. Therefore, this binary search of the suffix array is needed
only for the search of query sequences or long strings in the database sequence.
In this research, we set [ to 8.

Extension

After the seeds are found in the query and the database, RIblast tries to extend
interactions from both end points of these seed regions. The gapless extension is
first conducted, and then the gapped extension is performed in a similar way to
BLAST, LAST and GHOSTX.

RIblast first extends interactions without a gap from seed regions. If extended
interactions have lower interaction energies than the present minimum interac-
tion energy in this extension step, then RIblast updates the minimum interaction
energy. Otherwise, extensions are repeated. If Rlblast extends Y nucleotides
from the length that requires the minimum interaction energy in this extension
but the minimum interaction energy has not been updated, then Rlblast termi-
nates the gapless extension. In this step, we assume that the possible complemen-
tary bases always interacts with each other. After the gapless extension step, if
two interactions{S ,[i, j1, S ap[k, [1} and {S ,[7", j'], S ap[K’, ']} satisfy the conditions
i<i,j>j,k<k'and! > I, then we exclude the later interaction. In addition, if
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the interaction energy of an interaction exceeds threshold 75, then we also remove
the interaction. In this research, we set 5 to Y.

Next, RIblast tries to extend interactions with a gap. Like the gapless extension
step, if the interaction energy of extended interactions is lower than the present
minimum interaction energy in this extension step, then the minimum interaction
energy is updated. If RIblast extends X nucleotides from the length that requires
the minimum interaction energy in this extension but the minimum interaction
energy has not been updated, then RIblast terminates the gapless extension. The
calculation of the interaction energy of extended interactions is as follows (Sup-
plementary Figure S3 shows the schematic illustration). Here, we regard {S ,[i, jl,
S vk, 1]} as an interaction after gapless extension. In the extension towards the
5’ end of the query sequence (and 3’ end of the database sequence), Rlblast cal-
culates E;,(a, b), which is the minimum interaction energy for sequences S ,[a, j]
and S 4 [b, [], as the following equation.

Eiu(a,b) =
Eloop(a’ b9 c, d) + Eint(c» d)
min[ —E,.c(c,j) = Egee(n =1 —=1Ln—1-4d) ) (if S4[al and S 4[b] can pair)
N Bl ) + Egeen = 1 = Lin = 1= b)
00 (otherwise)

where Ej,,,(a, b, ¢, d) indicates the free energy of the loop consisting of base pairs
(a,b) and (c,d) and n is the sequence length of the database sequence. Here,
a<c<i<jandb <d <k < [are satisfied. In addition, the internal loop size
¢ —a+d - bis restricted to within X. Note that many RNA secondary structure
prediction tools such as RNAfold [58] adopt this restriction of internal loop size.
The extension in the opposite direction is calculated in the same manner. Dangling
energies are added only after gapped extensions are finished.

Repeat masking

Three types of repeat masking were implemented in RIblast: no-masking, soft-
masking and hard-masking. The no-masking procedure treats repeats just like
non-repeat sequence. The soft-masking procedure excludes repeat sequences in
the seed search step, but considers them in the extension step. The hard-masking
procedure completely ignores repeats. We used the soft-masking procedure to
evaluate TINCR target prediction in order to match our study with previous re-
search by Terai ef al. [28]. For the other evaluations, as we did not use repeat
masking tool, the type of repeat masking used did not affect the results.
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Method for evaluating base pair prediction performance

To evaluate the base pair prediction performance, we used 109 validated bacte-
rial SRNA-mRNA pairs and 52 validated fungal snoRNA-rRNA pairs as datasets.
The bacterial SRNA-mRNA interaction dataset was composed of 64 E. coli and
45 Salmonella enterica interactions as well as 18 query sSRNAs and 82 target mR-
NAs. Following the benchmark research of Lai and Meyer [23], we used the
sequences between 150 bp upstream and 150 bp downstream of each start codon
as the target sequences. All fungal snoRNA-rRNA interactions in the dataset were
S. cerevisiae C/D box interactions, and these interactions were between 43 snoR-
NAs and 2 rRNAs. For target rRNAs, full rRNA sequences (1800 nucleotide 18S
rRNA and 3396 nucleotide 25S rRNA) were used. We compared the performance
of Rlblast with those of IntaRNA and RNAplex-a. The command line options
used for IntaRNA and RNAplex-a in the present study were the same as those
used by Lai and Meyer in their benchmark research [23]. TPR, PPV and MCC
were calculated for each RNA-RNA interaction, and the averaged scores were
evaluated. The definitions of these three scores are as follows:

TP TP
TPR = —— PPV = ——
TP+ FN TP+ FP
TPXTN-FPXFN
McCcC

. V(TP + FPYTP + FN)TN + FP)(TN + FN)

We discarded suboptimal predictions and only evaluated the minimum energy
interactions. To determine the values of parameter 7 and X, we investigated
the accuracy of 63 parameter combinations for each energy parameter. 7 is a
threshold energy for score-based seed detection, and X is a threshold length for
extension termination. The parameter combinations consisted of 7 X parameters
and 9 T, parameters. We adopted the parameter combination that yielded the
highest MCC score. If there were several parameter combinations with the best
performance, we adopted the smallest X and largest T parameter combination in
order to accelerate computation. As a result, we set X and 7, to 18 and -10.0,
respectively, when we using Turner’s model, and we set X and T to 16 and -6.0,
respectively, when we used Andronescu’s model.

Method for evaluating sRNA target prediction performance

We evaluated the sSRNA target prediction performance by predicting all-to-all in-
teractions between 18 sRNAs and all 4319 E. coli mRNAs. As target mRNA
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sequences, we used sequences between 150 base-pairs (bp) upstream and 50 bp
downstream from each start codon. This sequence length setting is the same as
that used by Terai et al. [28]. The sequence data were downloaded from NCBI
(http://www.ncbi.nlm.nih.gov/nuccore/ NC_000913). We used 64 experimentally
validated interactions as positive data, which were also used to evaluate base pair
prediction performance. Only the predicted interaction with the minimum inter-
action energy was evaluated.

Evaluation method for human IncRNA TINCR target prediction accuracy

To evaluate the TINCR target prediction performance, we used an RIA-seq-based
TINCR interaction dataset [16]. The simple repeat regions were masked by TAN-
TAN [59] with the default options. We compared the performance of Rlblast with
that of LAST [35] and the pipeline by Terai et al. [28]. In LAST, we set G-C,
A-U and G-U match scores to 4, 2 and 1, respectively. The mismatch score, gap
opening penalty and gap extension penalty were set to -6, -20 and -8, respec-
tively. These parameter settings are the same as those used by Szczesniak and
Makalowska [22]. We regarded the score of the detected alignment X (—1) as
the interaction energy between the regions. The short summary of the Terai et
al. pipeline is as follows. First, accessible energies were calculated by Raccess,
and inaccessible regions were removed from the analysis. Second, pairs of com-
plementary gapless subsequences were detected as interaction regions by LAST.
Finally, the interaction energies of the interaction regions were calculated by In-
taRNA.

To determine values for the parameter 7,, we examined the dependence of ac-
curacy decreases from AUROC scores of SUMENERGY on 7,. We used AUC
scores of -16 kcal/mol and -8.5 kcal/mol as interaction energy thresholds for
SUMENERGY when the energy parameters were Turner and Andronescu param-
eters, respectively.
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Figure 1: (A) A schematic illustration of the effect of accessible energies. While a segment with
low accessible energy tends to form inter-molecular base pairs, a segment with high accessible
energy tends not to form inter-molecular base pairs because such a segment tends to form intra-
molecular base pairs. (B) Example of hybridization energy calculation. Hybridization energy can
be calculated as the sum of stacking energies and loop energies in the formed base-paired struc-
ture. Generally, stacking energies stabilise RNA-RNA interactions but loop energies destabilize
interactions. This calculation is based on Turner’s energy parameter. (C) Overview of the Rlblast
algorithm. The interaction energy is defined as the sum of hybridization energy and two accessible
energies.
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Figure 2: The performance of bacterial SRNA target prediction. The x- and y-axes represent
target prediction numbers per SRNA and true positives, respectively. Red, sky blue, blue, light
green and green colours represent the performances of IntaRNA, RNAplex-a (Turner), RNAplex-
a (Andronescu), RlIblast (Turner) and RlIblast (Andronescu), respectively. The best performing
tool was RNAplex-a with Andronescu’s energy parameter. Rlblast with Andronescu’s energy
parameter exhibited performance similar to those of the other programs.
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Figure 3: The performance of human IncRNA TINCR target prediction. The x-axis represents
the threshold number of interacting segments in the positive data. The y-axis represents the area
under the receiver operating characteristic curve (AUROC) score. Purple, orange, light green and
green colours represent the performances of LAST, the Terai et al. pipeline, RIblast (Turner), and
RIblast (Andronescu), respectively.
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Tables

Table 1: The results of base pair prediction performance on the bacterial SRNA dataset

Program TPR PPV MCC

IntaRNA 0.66 0.61 0.62

RNAplex-a (Turner) 0.63 0.56 0.58

RNAplex-a (Andronescu) 0.60  0.68 0.63

RlIblast (Turner) 0.58 0.66 0.61

RlIblast (Andronescu) 0.63 073  0.67
The columns correspond to the three evaluation criteria: TPR, PPV and MCC.
The rows indicate the performance of each program. The bold values are the

highest scores in each column.

Table 2: The results of base pair prediction performance on the fungal snoRNA dataset

Program TPR PPV MCC

IntaRNA 0.61 0.53 0.56

RNAplex-a (Turner) 0.56 049 0.52

RNAplex-a (Andronescu)  0.74  0.69 0.71

RlIblast (Turner) 0.57 049 0.53

RlIblast (Andronescu) 0.66 0.60 0.62
The columns correspond to the three evaluation criteria: TPR, PPV and MCC.
The rows indicate the performance of each program. The bold values are the

highest scores in each column.
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Table 3: The results of the run time evaluation on partial human IncRNA and mRNA datasets

The number of IncRNAs and mRNAs

Program 5 10 50 100 500

IntaRNA  59m 04s  3h 30m 17s - - -
RNAplex-a 2m 34s 10m 37s 4h20m42s 17h56m  19d 20h 53m

Terai et al. pipeline 1m 02s 3m08s 2h26m43s 14h50m  17d 09h 44m
RIblast 27s 50s Sm 43s 18m 6h 32m

The columns correspond to the number of IncRNAs assessed in the dataset. The
rows indicate the run times of each program. The symbol “-” indicates that we
did not investigate the computational speed for a particular combination of
dataset size and program because the calculation time was prohibitively long.

Table 4: Calculation speed ratios of Rlblast to those of the other programs on partial human
IncRNA and mRNA datasets

The number of IncRNAs and mRNAs

Program 5 10 50 100 500
IntaRNA 1313 2523 - - -
RNAplex-a 5.7 128 456 61.0 73.0

Terai et al. pipeline 2.3 3.8 265 505 639
The columns correspond to the number of IncRNAs in the dataset. The rows
indicate the run time ratio of each program to RIblast. The symbol “-” indicates
that we did not investigate the computational speed for a particular combination
of dataset size and program because the calculation time was prohibitively long.
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