
dbOTU3: A new implementation of

distribution-based OTU calling

Scott Olesen, Claire Duvallet, and Eric Alm

Department of Biological Engineering, MIT

Center for Microbiome Informatics and Therapeutics

1 Abstract

Distribution-based operational taxonomic unit-calling (dbOTU) improves on
other approaches by incorporating information about the input sequences’ dis-
tribution across samples. Previous implementations of dbOTU presented chal-
lenges for users. Here we introduce and evaluate a new implementation of
dbOTU that is faster and more user-friendly. We show that this new imple-
mentation has theoretical and practical improvements over previous implemen-
tations of dbOTU, making the algorithm more accessible to microbial ecology
and biomedical researchers.

2 Introduction

Preheim et al. [1] formulated the distribution-based OTU-calling (dbOTU) al-
gorithm, an extremely accurate algorithm for grouping DNA sequences from
microbial communities into operational taxonomic units (OTUs) for ecologi-
cal or biomedical research. Unlike most OTU-calling approaches, which group
sequences based only on the similarities of the sequences themselves, this algo-
rithm also uses information about the distribution of sequences across samples.
This allows dbOTU to distinguish ecologically-distinct but sequence-similar or-
ganisms or populations.

2.1 The algorithm

2.1.1 Motivation

The algorithm aims to separate genetically-similar sequences that appear to
be ecologically distinct (or, conversely, to join less-genetically-similar sequences
that appear to be ecologically identical). For example, if two sequences differ
by only one nucleotide, an OTU-calling algorithm would likely group those two

1

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2016. ; https://doi.org/10.1101/076927doi: bioRxiv preprint 

https://doi.org/10.1101/076927
http://creativecommons.org/licenses/by/4.0/


sequences into the same OTU. However, if the two sequences never appeared
together in the same sample, an observer would probably conclude that that
one nucleotide difference corresponds to two distinct groups of organisms, one
which lives in one group of samples, the other living in the other.

Conversely, if two sequences differed by a few nucleotides, an OTU-calling
algorithm would probably place two sequences into different OTUs. However,
if the two sequences appeared in the same ratio in all samples (e.g., sequence
2 was always almost exactly ten times less abundant than sequence 1), an ob-
server might conclude that the second sequence was either sequencing error or
a member of the same ecological population as the first sequence.

2.1.2 Mechanics

The original workflow was:

1. Process 16S data up to dereplicated sequences.

2. Create a table of sequence counts showing the number of times each se-
quence appears in each sample.

3. Align the dereplicated sequences. Using the alignment, make a phylo-
genetic tree and a “distance matrix” showing the genetic dissimilarity
between sequences.

4. Feed the matrix and the table of sequence counts into the algorithm
proper, which groups the sequences into OTUs.

In outline, step 4 meant:

1. Make the most abundant sequence an OTU.

2. For each sequence (in order of decreasing abundance), find the set of OTUs
that meet “abundance” and “genetic” criteria. The abundance criterion
requires that the candidate sequence be some fold less abundant than the
OTU (e.g., so that it can be considered sequencing error). The genetic
criterion requires that the candidate sequence be sufficiently similar to
the OTU’s sequence (e.g., so that it can be considered sequencing error or
part of the same population of organisms).

3. If no OTUs meet these two criteria, make the candidate sequence into a
new OTU.

4. If OTUs do meet these criteria, then, starting with the most closely-
genetically-related OTU, check if the candidate sequence is distributed
differently among the samples than that OTU. If the distributions are
sufficiently similar, merge the candidate sequence into that OTU. Specif-
ically, add the candidate sequence’s counts across samples to the OTU’s
counts.

2

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2016. ; https://doi.org/10.1101/076927doi: bioRxiv preprint 

https://doi.org/10.1101/076927
http://creativecommons.org/licenses/by/4.0/


5. If the candidate sequence does not have a distribution across sample suffi-
ciently similar to an existing OTU, then make this sequence a new OTU.

6. Move on to the next candidate sequence.

Note that an OTU’s counts change every time a candidate sequence is merged
into that OTU, but an OTU’s sequence never changes. In other words, an
OTU’s candidate sequence is the sequence of its most abundant member.

2.2 Previous implementations

The dbOTU algorithm has been implemented twice. Here we will introduce a
third implementation. The implementations vary in terms of:

• the exact input files they require,

• how they evaluate the genetic (i.e., sequence similarity) criterion,

• how they evaluate the distribution (i.e., ecological similarity) criterion,
and

• the details of the software itself.

These differences are summarized in Table 1.

2.2.1 The first implementation

The original implementation1, coded in Perl and shell scripts, took a matrix of
genetic dissimilarities as input and used a χ2 of independence as the distribution
criterion.

In the original publication, the Jukes-Cantor distance was used as the genetic
dissimilarity metric. The Jukes-Cantor distance is − 3

4 log(1− 4d
3 ), where d is the

proportion of positions that differ (i.e., the number of mismatches in the aligned
sequences divided by the length of the aligned sequences, ignoring gaps).

This implementation also required aligned sequences as input. In the orig-
inal publication, sequences were aligned using the align.seqs command in
mothur [2], which implemented the NAST alignment algorithm [3], and the
Jukes-Cantor distances were computed using the -makematrix option in Fast-
Tree [4]. The resulting matrix of distances was used as input to the software.
The genetic criterion was actually articulated as the minimum of the aligned and
unaligned Jukes-Cantor distances, which was a work-around for the fact that
using the aligned sequences sometimes led to a greater distance between two
sequences than would be computed by just comparing the unaligned sequences.

In this implementation, the distribution criterion was evaluated using the
χ2 test of independence as implemented in the chisq.test function in R [5],
called in a separate process from a Perl script. Many of the comparisons in-
volved sequences with small numbers of counts, for which the asymptotic (i.e.,

1https://github.com/spacocha/Distribution-based-clustering

3

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2016. ; https://doi.org/10.1101/076927doi: bioRxiv preprint 

https://github.com/spacocha/Distribution-based-clustering
https://doi.org/10.1101/076927
http://creativecommons.org/licenses/by/4.0/


Im
p

le
-

P
ro

gr
a
m

m
in

g
R

eq
u

ir
ed

in
p

u
t

G
en

et
ic

te
st

D
is

tr
ib

u
ti

on
m

en
ta

ti
on

la
n

gu
ag

es
te

st

1
P

er
l,

R
,

sh
el

l
A

li
gn

ed
se

q
u

en
ce

s,
In

p
u

t
S

im
u

la
te

d
m

at
ri

x
of

ge
n

et
ic

d
is

ta
n

ce
s,

d
is

si
m

il
ar

it
ie

s?
χ
2

te
st

se
q
u

en
ce

co
u
n
t

ta
b

le

2
P

y
th

on
2,

A
li

gn
ed

se
q
u

en
ce

s,
P

ro
p

or
ti

on
of

S
im

u
la

te
d

P
er

l,
R

se
q
u

en
ce

co
u

n
t

ta
b

le
m

is
m

at
ch

ed
si

te
s?

χ
2

te
st

3
P

y
th

o
n

3
U

n
al

ig
n

ed
se

q
u

en
ce

s,
L

ev
en

sh
te

in
L

ik
el

ih
o
o
d

–
se

q
u

en
ce

co
u
n
t

ta
b

le
ed

it
d

is
ta

n
ce

ra
ti

o
te

st

T
ab

le
1
:

C
om

p
a
ri

so
n

of
th

e
d

b
O

T
U

im
p

le
m

en
ta

ti
on

s.
?
In

th
e

fi
rs

t
tw

o
im

p
le

m
en

ta
ti

on
s,

th
e

d
is

si
m

il
ar

it
y

b
et

w
ee

n
tw

o
se

q
u

en
ce

s
w

as
th

e
m

in
im

u
m

of
th

e
d

is
si

m
il

ar
it

ie
s

of
th

e
al

ig
n

ed
an

d
u

n
al

ig
n
ed

se
q
u

en
ce

s.

4

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2016. ; https://doi.org/10.1101/076927doi: bioRxiv preprint 

https://doi.org/10.1101/076927
http://creativecommons.org/licenses/by/4.0/


commonly-used) calculation of the p-value of a χ2 test is not accurate. This im-
plementation therefore used a simulated p-value, available through the R com-
mand’s simulate.p.value option. This empirical calculation required many
simulated contingency tables, which was expensive.

2.2.2 The second implementation

The second implementation2, coded in Python 2 and interfaced with R using
r2py3, also requires aligned sequences as input uses the simple metric d (as
defined above), rather than the Jukes-Cantor distance. Rather than taking a
matrix of pairwise distances, the dissimilarities between sequences were com-
puted only as necessary, which eliminated the requirement to store N2 numbers
in memory, where N is the number of sequences to be clustered. Like the
first implementation, this one used the minimum of the aligned and unaligned
sequences.

Like the first implementation, this one used R’s chisq.test, but this time
called via r2py from the Python script. This removed the need for temporary
files, but it was still slow and required both R and Python.

2.3 The genetic criterion

A critical piece of the dbOTU algorithm is determining which sequences are
sufficiently genetically dissimilar that they belong in different OTUs regardless
of their distribution across samples.

The first two implementations used sequence dissimilarities that relied on
alignments. The alignments were apparently not foolproof, as evidenced by the
need for using the minimum of the distances between the aligned and unaligned
pairs of sequences.

2.4 The distribution criterion

The first two implementations tested for the independence of the candidate
sequence’s and OTU’s distribution across samples using an empirical p-value.
When the number of counts in the candidate sequence and OTU being compared
were large, the asymptotic p-value for the χ2 test was valid, which made it
easy to compute. However, the χ2 test is fairly sensitive: it often concludes
that a candidate sequence and OTU are distributed differently when inspection
suggests that the differences between the two distributions are due to noise and
not true ecological differences.

For example, if a candidate sequence and an OTU had relative abundances
of 50% and 55% respectively, each supported by ten thousand counts, then the
χ2 will register the two as different, even though a human observer could easily
conclude that the 5% different in relative abundance was due to noise inherent
in the sampling, library preparation, or sequencing procedures. Thus, using

2https://github.com/spacocha/dbOTUcaller
3http://rpy2.bitbucket.org

5

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2016. ; https://doi.org/10.1101/076927doi: bioRxiv preprint 

https://github.com/spacocha/dbOTUcaller
http://rpy2.bitbucket.org
https://doi.org/10.1101/076927
http://creativecommons.org/licenses/by/4.0/


the χ2 test will sometimes prevent sequences that should be merged from being
merged.

2.4.1 This implementation

This implementation, dbOTU3, aims to improve speed and ease of use. It is
written in pure Python 3. Rather than aligning sequences, this implementation
uses the Levenshtein edit distance (from the python-Levenshtein package4) as
an approximation for the sequence dissimilarity. Rather than using an empirical
χ2 test, this implementation uses a likelihood ratio test. The merit of these
choices are discussed in the Results.

3 Methods

3.1 New genetic and distribution criteria

This implementation evaluates the genetic criterion using the Levenshtein edit
distance, i.e., a candidate sequence will not be merged into an OTU if 2E/(`1 +
`2) is greater than some threshold, where E is the Levenshtein edit distance,
`1 is the length of the candidate sequence, and `2 is the length of the OTU’s
sequence. As shown in the Results, this metric is a good approximation of the
proportion d of mismatched sites in an alignment.

This implementation evaluates the distribution criterion using a likelihood-

ratio test. Define x
(i)
1 be the number of counts that the OTU has in sample

i and x
(i)
2 be the number of counts the candidate sequence has. Define also

X1 =
∑

i x
(i)
1 and similarly X2.

The alternative hypothesis for this test is that the OTU and candidate se-

quence are distributed “differently”, that is, that each of the x
(i)
1 and x

(i)
2 are

draft from different random variables. Specifically, the alternative hypothesis is

H1 : x
(i)
1 ∼ Poisson(λ

(i)
1 ) and x

(i)
2 ∼ Poisson(λ

(i)
2 ), (1)

where there are no constraints on the Poisson parameters.
The null model asserts that the OTU and candidate sequence are distributed

“the same”, that is, that the candidate sequence’s counts in each sample is
drawn from a Poisson random variable whose parameter is proportional to the
parameter of the OTU’s Poisson variables, where the constant of proportionality
is the same across samples. Specifically, the null model is

H0 : x
(i)
1 ∼ Poisson(λ(i)) and x

(i)
2 ∼ Poisson(ρλ(i)), (2)

We expect that, because the candidate sequence is overall less abundant than
the OTU, 0 < ρ < 1.

4https://github.com/ztane/python-Levenshtein

6

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2016. ; https://doi.org/10.1101/076927doi: bioRxiv preprint 

https://github.com/ztane/python-Levenshtein
https://doi.org/10.1101/076927
http://creativecommons.org/licenses/by/4.0/


Asserting maximum likelihood for each model shows that

λ
(i)
1 = x

(i)
1 (3)

λ
(i)
2 = x

(i)
2 (4)

ρ =
X2

X1
(5)

λ(i) =
X1

X1 +X2

(
x
(i)
1 + x

(i)
2

)
(6)

so that the test statistic Λ = −2(L1 − L0) is

Λ = −2 [f(x1 + x2)− f(x1)− f(x2)] , (7)

where x1 = {x(1)1 , x
(2)
1 , . . .} and

f(y) =
∑
i

y(i) ln y(i) −

(∑
i

y(i)

)
ln

(∑
i

y(i)

)
. (8)

3.2 Accuracy of new implementation

To evaluate the performance of the new implementation, we compared the re-
sults of calling OTUs with this dbOTU implementation, the second (previous)
dbOTU implementation, and with UPARSE [6]. We used the Turnbaugh mock
community data set analyzed in the original publication [7].

To prepare the data for input into the OTU callers, we first downloaded the
data5, which included:

• Mock clean.fna: quality-screened sequences from all 6 mock communities

• Mock nochimeras.fna: quality-screened, de-noised, and non-chimeric se-
quences.

We trimmed all sequences in Mock nochimeras.fna to 187 nucleotides, the
length of the shortest sequence in that file. To align the sequences in Mock clean.fna

with those in Mock nochimeras.fna, we trimmed the first 14 nucleotides from
each sequence in Mock clean.fna and then trimmed the remaining sequences
to 187 nucleotides.

To generate a table of sequence counts, we dereplicated the unique trimmed
sequences from Mock nochimeras.fna. For each sequence in Mock clean.fna,
we checked if that sequence appeared among the unique sequences. If so, we
counted it as present in the sample corresponding to the metadata for that
sequence.

To generate the aligned sequences required for the previous dbOTU imple-
mentation, we aligned the unique sequences using QIIME’s align seqs.py with
default parameters [8].

5https://gordonlab.wustl.edu/TurnbaughSE_2_10/PNAS_2010.html

7

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2016. ; https://doi.org/10.1101/076927doi: bioRxiv preprint 

https://gordonlab.wustl.edu/TurnbaughSE_2_10/PNAS_2010.html
https://doi.org/10.1101/076927
http://creativecommons.org/licenses/by/4.0/


Both dbOTU implementations were run using a genetic dissimilarity thresh-
old of 0.1 and using p = 0.001 as the distribution test threshold. UPARSE OTUs
were called using usearch -cluster otus and the same list of unique sequences
(but with the summary “size” information required by usearch) at similarity
thresholds of 95%, 97%, and 100%. Notably, UPARSE includes chimera check-
ing, which identified chimeras among the sequences from Mock nochimeras.fna.
The specific sequences that UPARSE identified as chimeras depended on the
clustering similarity threshold.

We compared the results of the OTU callers with the true composition of
each mock community sample (Table S3 in Turnbaugh et al. [7]). To link the
sequence data with the true mock community composition, which is expressed in
terms of the abundances of input isolates, we identified, for each dereplicated se-
quence, the most genetically-similar reference sequence in MockIsolatesV2.fna,
specifically, the one with the smallest dissimilarity d to the query sequence. To
compare compositions, we combined the abundance data from all the derepli-
cated sequences that mapped to the same species.

3.3 Speed of the genetic tests

To benchmark the speed of the new genetic test, dissimilarity between the first
two sequences in the list of dereplicated sequences from the mock community was
computed 10 times using each of three alignment methods: the new Levenshtein-
based method, Biopython’s pairwise2.align.globalxx [9], and an external
call to Clustal Omega [10].

3.4 Accuracy of the genetic tests

To evaluate the performance of the new Levenshtein-based genetic dissimilar-
ity metric, we compared the dissimilarities computed by the new metric, the
previously-implemented unaligned and aligned dissimilarity metrics, and a gold
standard: a pairwise alignment of the two sequences using Clustal Omega. We
computed genetic dissimilarities for all pairs of sequences for which the genetic
test was evaluated during OTU calling on the mock data set.

3.5 Accuracy of the distribution tests

To evaluate the performance of the new likelihood-ratio test, we compared the
p-values computed by the new test against the simulated χ2 test used in earlier
implementations. 107 simulations were used to compute the p-value for that test.
For comparison, the same computations were performed using the asymptotic
χ2 test. Accuracies were quantified F -scores (considering the simulated χ2 test
as the truth).

8

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2016. ; https://doi.org/10.1101/076927doi: bioRxiv preprint 

https://doi.org/10.1101/076927
http://creativecommons.org/licenses/by/4.0/


Metric Relative time

Levenshtein-based 1.0
Clustal Omega 210.4
Biopython 3127.2

Table 2: Benchmarks for the speed of the dissimilarity metric computations
relative to the Levenshtein-based metric.

Metric Correlation (%) 95% confidence interval (%)

Levenshtein-based 82.8 72.5–89.5
Minimum d 80.5 69.1–88.0
Aligned d 49.5 27.1–66.8
Unaligned d 40.8 16.8–60.3

Table 3: Correlation coefficients between genetic dissimilarities computed by a
pairwise alignment using Clustal Omega and other metrics. d is the proportion
of mismatched sites.

4 Results

4.1 The new implementation performs similarly to the
previous one

This dbOTU implementation and the previous implementation yield nearly
identical species-level compositions (Figure 1). Both dbOTU implementations
performed similarly to 100% clustering with UPARSE but less similarly to other
clustering thresholds with UPARSE.

4.2 The Levenshtein-based dissimilarity is fast and per-
forms as well as the previous metric

The Levenshtein-based genetic dissimilarity was much faster than either in-
Python alignments made using Biopython’s alignment or out-of-Python align-
ments using Clustal Omega (Table 2).

The correlations between the gold standard (the pairwise-alignments made
with Clustal Omega) and the other genetic dissimilarity metrics are shown in Ta-
ble 3. The new Levenshtein-based metric performs comparably (or even slightly
better than) the minimum of the aligned and unaligned d dissimilarities, which
was used for the previous implementations.

9

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2016. ; https://doi.org/10.1101/076927doi: bioRxiv preprint 

https://doi.org/10.1101/076927
http://creativecommons.org/licenses/by/4.0/


UPARSE (95%)

−1

0

1

−2 −1 0 1
PC1

PC
2

OTU caller

dbOTU2
dbOTU3

True composition

UPARSE (100%)
UPARSE (97%)

Sample
Even1
Even2
Even3
Uneven1
Uneven2
Uneven3

Even samples

Uneven1

Uneven2

Uneven3

Figure 1: This implementation (dbOTU3) produces nearly identical results with
the previous implementation (dbOTU2) as visualized in a principal coordinate
analysis ordination plot, communities resulting from analysis of the mock com-
munity data with various OTU callers. (The two triangles representing dbOTU2
and dbOTU3 always appear on top of one another, making a six-pointed tri-
angle.) The “true composition” is the community composition expected based
on how the communities were constructed. The principal components were
computed using a matrix of the square roots of the Jensen-Shannon divergence
between each pair of computed community compositions.

10

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2016. ; https://doi.org/10.1101/076927doi: bioRxiv preprint 

https://doi.org/10.1101/076927
http://creativecommons.org/licenses/by/4.0/


Counts
IDs Even1 Even2 Even3 Uneven1 Uneven2 Uneven3

seq84 462 398 622 17 96 1
seq40 33 25 26 4 0 1

seq15 138 129 163 92 257 14
seq45 15 11 28 1 13 1

seq31 193 151 254 11 497 2
seq45 15 11 28 1 13 1

seq25 172 145 279 7 512 5
seq45 15 11 28 1 13 1

Table 4: The four cases for which the simulated χ2 test determines that the OTU
(top row) and candidate sequence (bottom row) are identically distributed but
the likelihood-ratio test determines that they are differently distributed (both
with respect to the threshold p = 0.001).

4.3 The likelihood-ratio test mostly reproduces the pre-
vious distribution criterion

When calling OTUs on the mock data set, the new implementation’s distribution
criterion performed similarly to the simulated χ2 test. Of 58 comparisons, the
simulated χ2 determined that the candidate sequence and OTU in question were
differently distributed in 25 cases. The likelihood-ratio test concurred in those
25 cases. In 4 cases, the simulated χ2 test identified the candidate sequence
and OTU as similarly distributed but the likelihood-ratio test identified them
as differently distributed. Those cases are shown in Table 4. This performance
(25 true positives and 4 false positives) corresponds to an accuracy of F1 =
93%, while the asymptotic χ2 achieved an accuracy of only F1 = 79% (25 true
positives and 13 false positives).

Up to this point, the p-value threshold for the likelihood-ratio test was fixed
at the same value as was used for the χ2 test. To check if the likelihood-ratio test
would perform better when using a different threshold, we varied the likelihood-
ratio test’s threshold, keeping the χ2 test’s threshold fixed, and computed the
new test’s accuracy (Table 5). The likelihood-ratio test performs best, relative
to the χ2 test, when its p-value threshold is about ten-fold smaller.

5 Discussion

This implementation is overall more user-friendly than previous implementa-
tions. The software itself is faster, and the base codebase is smaller. The main
codebase is all in a single file (275 lines) which is supported by online documen-
tation and unit tests. The dependencies for running the code are simpler: it
requires only a few Python packages. The input files for this implementation

11

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2016. ; https://doi.org/10.1101/076927doi: bioRxiv preprint 

https://doi.org/10.1101/076927
http://creativecommons.org/licenses/by/4.0/


Threshold True All F1

p-value positives positives (%)

0.000000100 21 21 91.3
0.000000385 21 21 91.3
0.000000396 22 22 93.6
0.000001955 23 23 95.8
0.000004453 24 24 98.0
0.000244656 25 25 100.0
0.000351707 25 26 98.0
0.000352663 25 27 96.2
0.000516666 25 28 94.3
0.001740844 25 29 92.6
0.002082822 25 30 90.9
0.002162794 25 31 89.3
0.007798747 25 32 87.7
0.009193968 25 33 86.2
0.013793169 25 34 84.7
0.014450072 25 35 83.3
0.015746250 25 36 82.0
0.017184692 25 37 80.6
0.033304330 25 38 79.4
0.069550045 25 39 78.1
0.074798381 25 40 76.9
0.094045427 25 41 75.8

Table 5: The likelihood-ratio test perfectly reproduces the results of the χ2 test
for a smaller p-value threshold (∼0.0001). In these comparisons, the χ2 test’s
p-value threshold was fixed at 0.001, and the likelihood-ratio test’s threshold
was adjusted to intermediate values appearing in the list of p-values the test
computed. The χ2 test delivered 25 positives.

12

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2016. ; https://doi.org/10.1101/076927doi: bioRxiv preprint 

https://doi.org/10.1101/076927
http://creativecommons.org/licenses/by/4.0/


are easier for the user to prepare because they do not require an alignment step.
Aside from software, this implementation has two main differences from the

previous implementations. The first is the genetic dissimilarity criterion. Ide-
ally, the genetic dissimilarity metric would be computed by a pairwise alignment
of sequences. Unfortunately, there is no efficient implementation of this kind of
alignment in pure Python. We found that calling Clustal Omega as a separate
process was more than a hundred times slower than computed the Levenshtein
distance. If this kind of computation is efficiently implemented in Python (per-
haps in scikit-bio6), the Levenshtein-based metric should be replaced. In the
meantime, the Levenshtein-based dissimilarity is efficient and well-supported.

The second major difference from previous implementations is the distri-
bution criterion. In previous implementations, the simulated χ2 test, which is
computationally demanding, was used in place of the asymptotic χ2 test, which
is not computationally demanding, because the asymptotic χ2 test is not accu-
rate when some cells have low counts (i.e., the candidate sequence is overall rare
or is absent or nearly absent from some samples). This implementation used
a likelihood-ratio test that performed similarly to the simulated χ2 test when
using the same p-value threshold. When using the same threshold, the few cases
in which the likelihood-ratio test and the simulated χ2 test divergence do not
share any obvious pattern (Table 4). Adjusting the threshold for the likelihood-
ratio test to ten-fold smaller perfectly reproduced the criterion emerging from
the χ2 test. We therefore recommend that users migrating from dbOTU1 or 2
to dbOTU3 adjust their p-value threshold similarly.

In the analysis of the mock community data, these differences in imple-
mentation of the genetic and distribution criteria had a negligible effect on the
resulting inferred community compositions. Therefore, the degree to which this
implementation’s results did not recapitulate the “true” compositions is ad-
dressed by the original publication, which rigorously showed that the dbOTU
algorithm was more accurate than alternative methods.

6 Acknowledgements

We thank Sarah Preheim for reviewing and suggesting improvements to this
manuscript.

References

[1] S. P. Preheim, A. R. Perrotta, A. M. Martin-Platero, A. Gupta, and E. J.
Alm. Distribution-based clustering: Using ecology to refine the operational
taxonomic unit. Appl Environ Microbiol, 79(21):6593–6603, 2013. doi: 10.
1128/aem.00342-13. URL http://dx.doi.org/10.1128/AEM.00342-13.

[2] P. D. Schloss, S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann,
E. B. Hollister, R. A. Lesniewski, B. B. Oakley, D. H. Parks, C. J.

6http://scikit-bio.org

13

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2016. ; https://doi.org/10.1101/076927doi: bioRxiv preprint 

http://dx.doi.org/10.1128/AEM.00342-13
http://scikit-bio.org
https://doi.org/10.1101/076927
http://creativecommons.org/licenses/by/4.0/


Robinson, J. W. Sahl, B. Stres, G. G. Thallinger, D. J. Van Horn, and
C. F. Weber. Introducing mothur: Open-source, platform-independent,
community-supported software for describing and comparing microbial
communities. Appl Environ Microbiol, 75(23):7537–7541, 2009. doi: 10.
1128/aem.01541-09. URL http://dx.doi.org/10.1128/AEM.01541-09.

[3] T. Z. DeSantis, P. Hugenholtz, K. Keller, E. L. Brodie, N. Larsen, Y. M.
Piceno, R. Phan, and G. L. Andersen. NAST: a multiple sequence align-
ment server for comparative analysis of 16s rRNA genes. Nucleic Acids
Res, 34(Web Server):W394–W399, 2006. doi: 10.1093/nar/gkl244. URL
http://dx.doi.org/10.1093/nar/gkl244.

[4] Morgan N. Price, Paramvir S. Dehal, and Adam P. Arkin. FastTree 2 –
approximately maximum-likelihood trees for large alignments. PLoS One,
5(3):e9490, 2010. doi: 10.1371/journal.pone.0009490. URL http://dx.

doi.org/10.1371/journal.pone.0009490.

[5] R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2016. URL
https://www.R-project.org/.

[6] Robert C Edgar. UPARSE: highly accurate OTU sequences from microbial
amplicon reads. Nat Methods, 10(10):996–998, 2013. doi: 10.1038/nmeth.
2604. URL http://dx.doi.org/10.1038/nmeth.2604.

[7] P. J. Turnbaugh, C. Quince, J. J. Faith, A. C. McHardy, T. Yatsunenko,
F. Niazi, J. Affourtit, M. Egholm, B. Henrissat, R. Knight, and J. Gordon.
Organismal, genetic, and transcriptional variation in the deeply sequenced
gut microbiomes of identical twins. Proc Natl Acad Sci USA, 107(16):7503–
7508, 2010. doi: 10.1073/pnas.1002355107. URL http://dx.doi.org/10.

1073/pnas.1002355107.

[8] J.G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman,
E.K. Costello, N. Fierer, A.G. Pena, J.K. Goodrich, J.I. Gordon, and G.A.
Huttley. QIIME allows analysis of high-throughput community sequencing
data. Nature, 7(5):335–336, 2010. doi: doi:10.1038/nmeth.f.303. URL
http://dx.doi.org/10.1038/nmeth.f.303.

[9] P. J. A. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox,
A. Dalke, I. Friedberg, T. Hamelryck, F. Kauff, B. Wilczynski, and M. J. L.
de Hoon. Biopython: freely available python tools for computational molec-
ular biology and bioinformatics. Bioinformatics, 25(11):1422–1423, 2009.
doi: 10.1093/bioinformatics/btp163. URL http://dx.doi.org/10.1093/

bioinformatics/btp163.

[10] F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez,
H. McWilliam, M. Remmert, J. Soding, J. D. Thompson, and D. G. Hig-
gins. Fast, scalable generation of high-quality protein multiple sequence

14

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2016. ; https://doi.org/10.1101/076927doi: bioRxiv preprint 

http://dx.doi.org/10.1128/AEM.01541-09
http://dx.doi.org/10.1093/nar/gkl244
http://dx.doi.org/10.1371/journal.pone.0009490
http://dx.doi.org/10.1371/journal.pone.0009490
https://www.R-project.org/
http://dx.doi.org/10.1038/nmeth.2604
http://dx.doi.org/10.1073/pnas.1002355107
http://dx.doi.org/10.1073/pnas.1002355107
http://dx.doi.org/10.1038/nmeth.f.303
http://dx.doi.org/10.1093/bioinformatics/btp163
http://dx.doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1101/076927
http://creativecommons.org/licenses/by/4.0/


alignments using clustal omega. Mol Syst Biol, 7(1):539–539, 2014. doi:
10.1038/msb.2011.75. URL http://dx.doi.org/10.1038/msb.2011.75.

15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2016. ; https://doi.org/10.1101/076927doi: bioRxiv preprint 

http://dx.doi.org/10.1038/msb.2011.75
https://doi.org/10.1101/076927
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Introduction
	The algorithm
	Motivation
	Mechanics

	Previous implementations
	The first implementation
	The second implementation

	The genetic criterion
	The distribution criterion
	This implementation


	Methods
	New genetic and distribution criteria
	Accuracy of new implementation
	Speed of the genetic tests
	Accuracy of the genetic tests
	Accuracy of the distribution tests

	Results
	The new implementation performs similarly to the previous one
	The Levenshtein-based dissimilarity is fast and performs as well as the previous metric
	The likelihood-ratio test mostly reproduces the previous distribution criterion

	Discussion
	Acknowledgements

