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Abstract 

Understanding the mechanisms behind Alzheimer’s disease (AD) is one of the most 

challenging problems in neuroscience. Recent efforts provided valuable insights on the 

genetic, biochemical and neuronal correlates of AD. The advances in structural and 

functional neuroimaging provided massive evidence for the AD related alterations in 

brain connectivity. In this study, we investigated the whole-brain resting state functional 

connectivity (FC) and variability in dynamic functional connectivity (v-FC) of the 

subjects with preclinical condition (PC), mild cognitive impairment (MCI) and 

Alzheimer’s disease (AD). The synchronization in the whole-brain was monotonously 

decreasing during the course of the progression. However, only in the AD group the 

reduced synchronization produced significant widespread effects in FC. Furthermore, we 

found elevated variability of FC in PC group, which was reversed in AD group. We 

proposed a whole-brain computational modeling approach to study the mechanisms 

behind these alterations. We estimated the effective connectivity (EC) between brain 

regions in the model to reproduce observed FC of each subject. First, we compared ECs 

between groups to identify the changes in underlying connectivity structure. We found 

that the significant EC changes were restricted to temporal lobe. Then, based on healthy 

control subjects we systematically manipulated the dynamics in the model to investigate 

its effect on FC. The model showed FC alterations similar to those observed in clinical 

groups providing a mechanistic explanation to AD progression. 
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Introduction 

Alzheimer’s disease (AD), being the most prevalent dementia, became a major concern in 

developed countries as a consequence of increasing life expectancy (Blennow, de Leon, 

and Zetterberg 2006; Plassman et al. 2007). During the past two decades advancements in 

genetics, neurobiology and neuroimaging techniques allowed researchers to study the 

mechanisms behind the underlying causes of AD. In particular, resting state functional 

Magnetic Resonance Imaging (rs- fMRI) became a useful tool to study the alterations in 

brain activity of AD patients as well as many other clinical conditions. In the absence of a 

task, rs-fMRI examines the spontaneous fluctuations of the BOLD signal (Blood-

Oxygenation Level Dependent) to identify spatially distributed networks of temporally-

synchronized regions. Using seed-based functional connectivity (FC), independent 

component analysis (ICA) and graph theoretical approaches, recent research on rs- fMRI 

in AD revealed specific patterns of connectivity associated to the disease (Brier, Thomas, 

and Ances 2014; Dennis and Thompson 2014; Filippi and Agosta 2011).  

The studies that used seed-based approach showed widespread decreases in hippocampal 

(Allen et al. 2007; W. Li et al. 2012; Wang et al. 2006) and posterior cingulate functional 

connectivity (Bai et al. 2011; Zhang et al. 2009) in AD. Also, they reported increased FC 

between prefrontal cortex and hippocampus (Wang et al. 2006), and posterior cingulate 

(Bai et al. 2011; Zhang et al. 2009) in AD. The increased connectivity regarding 

prefrontal cortex was interpreted as a compensation mechanism during the initial stages 

of the disease (Dickerson et al. 2004; Filippi and Agosta 2011; Sanz-Arigita et al. 2010). 

The studies that used ICA showed decreased activation of default mode network (DMN) 

(Agosta et al. 2012; Koch et al. 2010; Qi et al. 2010; Sorg et al. 2007) and increased 
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activation of fronto-parietal network (FPN) (Agosta et al. 2012). Various other studies 

found impaired deactivation of DMN during task in AD and dementia (Celone et al. 

2006; Greicius et al. 2004; Lustig et al. 2003; Petrella et al. 2007; Rombouts et al. 2009; 

Rombouts et al. 2005).  

Some studies showed evidence for a prolonged phase of “preclinical AD” in which 

amyloid-  (A42) plaques accumulate decades before the onset of the first disease 

symptoms (Price and Morris 1999). The relationship between DMN and AD was further 

confirmed by the overlap between the spatial pattern of the DMN and that of Aβ42 

accumulation that happens in this preclinical phase of AD (Buckner, Andrews-Hanna, 

and Schacter 2008; Hedden et al. 2009). However, in AD there is a need for biomarkers 

that link early molecular alterations with later functional manifestations. In this regard, 

rs-fMRI has been proposed as a promising candidate to bridge this gap (Barkhof, Haller, 

and Rombouts 2014). In this regard, several studies using rs- fMRI have supplied 

supporting evidence of a decreased DMN connectivity in cognitively normal individuals 

with augmented cerebral amyloid load (Sheline, Raichle, et al. 2010; Hedden et al. 2009; 

Oh et al. 2011). In addition to A, altered functional connectivity in the DMN have 

also been associated to abnormal levels of phosphorylated Tau181 (p-tau) in the 

cerebrospinal fluid (CSF) (Wang et al. 2013) as well as the ratio Aβ42/p-tau, both of 

which constitute well-established markers of disease progression (X. Li et al. 2013). 

Indeed, reduced DMN functional connectivity has been reported in amyloid-free carriers 

of at least one copy of the APOE4 allele, the strongest genetic risk factor for AD 

(Sheline, Morris, et al. 2010), suggesting that differences in functional connectivity might 

even precede amyloid deposition (Sheline and Raichle 2013). A recent review 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2016. ; https://doi.org/10.1101/076851doi: bioRxiv preprint 

https://doi.org/10.1101/076851
http://creativecommons.org/licenses/by-nc-nd/4.0/


emphasized that an integrative approach between connectivity and biomarkers is needed 

(Ramirez et al. 2014). Furthermore, the structure-function relationship is more complex 

that it appears (Filippi and Agosta 2011).  

In this study, we investigated the grand average FC and the variability in FC (v-FC) 

across time in Alzheimer’s disease. Grand average FC refers to the conventional measure 

that quantifies the temporal correlation between brain regions based on Pearson’s 

correlation coefficient. Variability of FC, on the other hand, takes into account the time 

dependent variations (standard deviation) of these temporal correlations. For ease of 

interpretation, to study the alterations during the progression of Alzheimer’s disease we 

used nodal strengths (i.e. mean connectivity of each individual region)  of FC and v-FC. 

We compared the nodal FC and v-FC strengths of healthy control group (HC) to those of 

the preclinical (PC), mild cognitive impairment (MCI) and the Alzheimer’s disease 

patients (AD) groups. Then, we proposed a whole-brain computational model that 

provided a mechanistic model for the neuronal manifestation of the disease. The model 

described the BOLD signals of each region with coupled non-linear differential equations 

that alternates between random fluctuations and sustained oscillations depending on the 

bifurcation parameter and the interactions between brain regions. As DSI/DTI-based 

measures cannot capture the biophysical properties (i.e. synaptic conductance, neuronal 

excitability, time scale…etc.) of the links, we estimated the optimal parameters that 

aggregate these features (i.e. Effective Connectivity) for each subject. Being specific, 

effective connectivity (EC) reflects the actual connectivity behind the observed FC. 

Moreover, we studies the association between FC, v-FC and EC strengths and CSF 

biomarkers such as Aβ42 and t-tau. Finally, by conducting a computational experiment, 
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we investigated the role of the interplay between random fluctuations and sustained 

oscillations on the progression of AD. 
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Materials and Methods 

Subjects 

A total of 109 participants (58 HC, 12 PC, 23 MCI and 16 AD) were recruited at the 

Alzheimer’s disease and other cognitive disorders unit, from the Hospital Clinic of 

Barcelona. All subjects underwent clinical and neuropsychological assessment, MRI 

scanning and were submitted to a lumbar puncture to quantify the  content of Aβ42, p-tau 

and p-tau in CSF. CSF biomarker quantitation was done at the local laboratory by means 

of ELISA (Enzyme-Linked ImmunoSorbent Assay kits, Innogenetics, Ghent, Belgium). 

An interdisciplinary clinical committee formed by two neurologists and one 

neuropsychologist established the diagnoses. HC and PC presented no evidence of 

cognitive impairment on any of the administered neuropsychological tests, but PC 

presented an abnormal level of CSF-Aβ42 (below 500pg/ml). MCI and AD presented 

signs of dementia. MCI patients had an objective memory deficit, defined as an abnormal 

score on the total recall measure of the Free and Cued Selective Reminding Test 

(FCRST) (over 1.5 x Standard Deviation), impairment on one or more of the other 

cognitive tests or preserved activities of daily living, as measured by the Functional 

Activities Questionnaire (FAQ score <6). The NINCDS-ADRDA criteria were applied 

for probable AD diagnosis (Jack et al. 2011), taking into account clinical information and 

objective measures derived from the FAQ and neuropsychological results. AD patients 

were all in the mild stages of the disease (Global Deterioration Scale = 4). Diagnostic 

classification was made independent of CSF results. The study was approved by the local 

ethics committee and all participants gave written informed consent to participate in the 

study. Genomic DNA was extracted from peripheral blood of probands using the 
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QIAamp DNA blood minikit (Qiagen AG, Basel, Switzerland). Apolipoprotein E 

genotyping was performed by polymerase chain reaction amplification and HhaI 

restriction enzyme digestion. Average demographic characteristics of the four diagnostic 

groups are shown in Table 1. 

Image acquisition and preprocessing 

Subjects were examined on a 3T MRI scanner (Magnetom Trio Tim, Siemens, Erlangen, 

Germany) at the image core facilities of IDIBAPS (Barcelona, Spain). MRI session 

included a high-resolution three-dimensional structural T1-weighted image (sagittal 

MPRAGE; TR = 2300ms, TE = 2.98ms; matrix size = 256 × 256 x 240; isometric voxel 1 

x 1 x 1 mm3), a ten minute resting state fMRI (rs-fMRI; 300 volumes, TR = 2000ms, TE 

= 16ms, 128 x 128 x 40 matrix, voxel size=1.72 x 1.72 x 3 mm3) and two DTI (30 no-

collinear directions with a b value=1000 s/mm2 and one b0; TR = 7700ms, TE = 89ms; 

matrix size = 122 x 122 x 60; voxel size 2.05 x 2.05 x 2 mm3). 

The pre-processing pipeline of rs- fMRI consisted in the slice-timing correction, the 

realignment and re-slice, smoothing with a Gaussian kernel (FWHM = 5mm), second 

order de-trending and regressing out Volterra expanded parameters of movement (24 

parameters), mean white matter (WM) signal, cerebro-spinal fluid (CSF) mean signal and 

nulling regressors (Lemieux et al. 2007). The quality criteria to consider a volume wrong 

and to override it by a nulling regressor, was that its correlation coefficient (cc) with the 

mean image of its series were beyond three standard deviations (cc < 0.991) from the 

mean cc of all the images from all subjects to their corresponding mean image (mean cc = 

0.995). No subjects presented more than 15% of bad volumes, being the average 

percentage of bad volumes of 1.6% and the standard deviation of 3.7%. To obtain the 
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time series of each region from the Anatomical Automatic Labeling (AAL) atlas 

(Tzourio-Mazoyer et al 2002), AAL atlas was adapted to every subject native space by 

co-registering it to the T1 structural image by mean of ANTS (UPENN, UVA and 

UIowa, USA; http://stnava.github.io/ANTs/). AAL maps in native space were resliced to 

fMRI resolution using nearest neighbor interpolation and masked with the gray mater 

(GM) mask. GM mask was constructed for every subject from the tissue probability maps 

resulted from segmentation of T1 images. The mask was formed by those voxels whose 

probability of belonging to GM was bigger than the probability of belonging to any other 

tissue. GM masks were dilated one voxel to include edges and to fill noise-related small 

gaps and, finally, resliced to fMRI resolution. Time series were obtained by averaging the 

fMRI signal in the each area of the GM-masked AAL atlas in native space (Tzourio-

Mazoyer et al. 2002). The software used for the whole fMRI pre-processing, apart from 

the above mentioned ANTS, was a homemade MATLAB (Mathworks, Sherborn, MA, 

USA) script mostly formed by functions from SPM package (Wellcome Trust Center for 

Neuroimaging; UCL, UK; http://www.fil.ion.ucl.ac.uk/spm/). 

Diffusion weighted images (DWI) were first corrected for eddy current distortions using 

FMRIB Software Library (FSL) package (Jenkinson et al. 2012). We denoised resulting 

data using the overcomplete local PCA method described in (Manjón et al. 2013). 

Similarly, T1-weighted image were denoised using a non- local mean filter (Coupe et al. 

2008) and then corrected for the usual acquisition bias with the N4 method from the 

Advanced Normalization Tools (ANT) package (Tustison et al. 2010). Anatomical 

images were then segmented with the Statistical Parametric Mapping (SPM) VBM8 

toolbox (Ashburner and Friston 2000) to create grey matter (GM), white matter (WM) 
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and cerebro-spinal fluid (CSF) probabilistic maps. Bias-corrected T1 images were then 

co-registered to the non-gradient diffusion image and to the MNI template using 

respectively ANT’s elastic and symmetric method (Avants et al. 2011). Brain regions of 

the Anatomical Automatic Labeling (AAL) template (Tzourio-Mazoyer et al. 2002) were 

then resampled to the anatomical and diffusion space of each subject. Finally, FSL's 

Bedpostx and Probtrackx tractography was performed with default parameters on AAL 

regions, except the cerebellum, resulting in a 90x90 connectivity matrix. 

Whole-Brain Connectivity Measures 

We quantified the measures of connectivity based on level of synchronization in the 

BOLD time series of the four diagnostic groups. After defining a narrowband frequency 

with 0.03Hz window size, we computed Hilbert transform of the narrowband signal. 

Hilbert transform converts the narrowband signal as a(t) = A(t)cos(φ(t)), where A(t) is the 

instantaneous amplitude (or envelope), and A(t), and φ(t) is the instantaneous phase. The 

first and last 20 seconds (10 TR) of the transformed BOLD signal was then removed. The 

global coherence and metastability of time-series were computed based on the Kuramoto 

Order Parameter (KOP)(Kuramoto 1986; Shanahan 2010; Cabral et al. 2012; Hellyer et 

al. 2014): 𝐾(𝑡) =  
1

𝑁
 ∑ exp (𝑖𝜑𝑗(𝑡))𝑁

𝑗=1 , where N is the number of ROIs and φ(t) is the 

instantaneous phase of each region estimated using Hilbert Transform. The temporal 

average of Kuramoto Order Parameter defined as the coherence (mean synchronization), 

while the standard deviation of Kuramoto Order Parameter defined as the metastability 

(i.e. the variation in synchronization over time). To find the optimal frequency range for 

band-pass filter, we estimated the group differences in coherence and metastability using 
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7 distinct frequency onsets varying between 0.01Hz and 0.07Hz (one-way ANOVA). The 

group differences were optimal at 0.06-0.09Hz narrowband (supplementary figure 1). 

Functional Connectivity (FC) was computed as the Pearson’s co rrelations between the 

time-series of different brain regions. Dynamic Functional Connectivity was computed 

using a sliding-window analysis approach. We used 2 minutes (60 TR) window size with 

20 seconds sliding step size (10 TR). Then, we variability in FC was estimated as the 

standard deviation of each connection across time. For simplicity we used the mean FC 

and v-FC of each node characterize the strengths of each node.  

Computational Model 

We modeled the whole-brain spontaneous activity using 78 nodes, excluding subcortical 

regions. Each node was coupled with each other via effective connectivity (EC) matrix. 

We described the local dynamics of each individual node using normal form of a 

supercritical Hopf bifurcation. The advantage of this model is that it allows transitions 

between asynchronous noise activity and oscillations. Where ω is the intrinsic frequency 

of each node, a is the local bifurcation parameter, η is additive Gaussian noise with 

standard deviation β, the temporal evolution of the activity, z, in node j is given in 

complex domain as: 

𝑑𝑧𝑗

𝑑𝑡
= [𝑎𝑗 + 𝑖𝜔𝑗 − |𝑧𝑗

2|] + 𝛽𝜂𝑗 (𝑡) 

and, 

𝑧𝑗 = 𝜌𝑗 𝑒𝑖𝜃𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗  

This system shows a supercritical bifurcation at aj = 0. Being specific, if aj is smaller 

than 0, the local dynamics has a stable fixed point at zj = 0, and for aj values larger than 
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0, there exists a stable limit cycle oscillation with a frequency f = ω/2π. Finally, the 

whole-brain dynamics is described by the following coupled equations: 

𝑑𝑥𝑗

𝑑𝑡
= [𝑎𝑗 − 𝑥𝑗

2 − 𝑦𝑗
2]𝑥𝑗 − 𝜔𝑗𝑦𝑗 + 𝐺 ∑ 𝐶𝑖𝑗(𝑥𝑖 − 𝑥𝑗)

𝑖

+ 𝛽𝜂𝑥𝑗 (𝑡) 

𝑑𝑦𝑗

𝑑𝑡
= [𝑎𝑗 − 𝑥𝑗

2 − 𝑦𝑗
2]𝑦𝑗 + 𝜔𝑗𝑥𝑗 + 𝐺 ∑ 𝐶𝑖𝑗(𝑦𝑖 − 𝑦𝑗)

𝑖

+ 𝛽𝜂𝑦𝑗 (𝑡) 

Where Cij is the Effective Connectivity (EC) between nodes i and j, G is the global 

coupling factor, and the standard deviation of Gaussian noise, β = 0.02. The simulated 

activity corresponds to the BOLD signal of each node. The simulations were run for 

30000s, sampled at 2s, if not stated otherwise. Both the empirical and simulated BOLD 

signals were band-pass filtered in narrowband 0.06–0.09Hz, since the group differences 

in coherence and metastability were optimal in this narrowband. The intrinsic frequency 

of each node was estimated as the peak frequency in the associated narrowband of the 

empirical BOLD signals of each brain region. 

Optimization of Effective Connectivity 

We implemented a heuristic approach to infer the most likely connectivity matrix (i.e. 

Effective Connectivity) that explains the empirical functional connectivity. As an initial 

guess, we started with the anatomical connectivity matrices.  First, we adjusted the global 

coupling parameter (G) to prevent overflow during the optimization procedure, and to 

ensure the stability of the system of equations. Where Ksim and Kemp are simulated and 

empirical coherences (average Kuramoto order parameter), we updated global coupling 

parameter as: 𝐺 = 𝐺 𝑒𝑥𝑝(𝐾𝑠𝑖𝑚 − 𝐾𝑒𝑚𝑝 ), until the desired condition, |𝐾𝑠𝑖𝑚 − 𝐾𝑒𝑚𝑝 | <

0.1, was satisfied. 
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We evaluated both zero-time- lag Functional Connectivity (FC0) and time-lagged FC 

(FCτ) for both empirical and simulated BOLD signals. Time- lagged FC measure was 

chosen for two reasons. First, it provides an additional constraint ensuring that the 

optimal solution is unique. Second, time- lagged correlations allow inference on the 

directionality of the connections. The defined the distance metric as Euclidean Distance 

between simulated and empirical FC values for both FC0 and FCτ: 

𝐷𝑙 = √∑ (𝐹𝐶
𝑖𝑗

𝑠𝑖𝑚,𝑙 − 𝐹𝐶
𝑖𝑗

𝑒𝑚𝑝,𝑙)2
𝑁

𝑖,𝑗=1

, 𝑙 ∈ {0, 𝜏} 

Then, where E is the average error between empirical and simulated FC measures; 

𝐸 =
(𝐹𝑒𝑚𝑝

0 − 𝐹𝐶𝑠𝑖𝑚
0 ) + (𝐹𝐶𝑒𝑚𝑝

𝜏 − 𝐹𝐶𝑠𝑖𝑚
𝜏 )

2
 

Where Sij is the anatomical connectivity matrix, N is the number of regions, and Λ 

denoted inter-hemispheric links; we updated the effective connectivity between i and j = 

(1, …, N) according to: 

𝐶𝑖𝑗
𝑢𝑝𝑑𝑎𝑡𝑒

= 𝐶𝑖𝑗
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 0.01𝐸𝑖𝑗, 𝑖𝑓 𝑆𝑖𝑗 > 0, 𝑜𝑟 𝑆𝑖𝑗 ∈ {Λ} 

𝐶𝑖𝑗
𝑢𝑝𝑑𝑎𝑡𝑒

= 0, 𝑖𝑓 𝑆𝑖𝑗 = 0, 𝑜𝑟 𝐶𝑖𝑗
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 0.01𝐸𝑖𝑗 < 0 

In other words, we updated the EC based on the average error between empirical and 

simulated FC measures for non-zero connections and inter-hemispheric connections. 

Negative weights were not allowed, and they all set to zero during the update procedure.  

We accepted the total distance between empirical and simulated FC measures, 

DT=D0+Dτ, for updated EC is lower than the minimum total distance observed during the 

procedure. We repeated this procedure using 100 iterations, and the best solution 

(minimum D) was considered as EC for a given subject. The entire procedure was also 
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repeated for bifurcation parameter a = {-0.1, -0.05, 0, 0.05, 1}. The best fit was achieved 

at a = -0.05 (supplementary figure 2A). Finally, the joint strengths of EC were computed 

to quantify the overall strength of each node. 

Given the inferred EC matrices, we disrupted the dynamics in healthy controls based on 

the bifurcation parameter, a, of the supercritical Hopf Normal Model. First, we computed 

the FC of the healthy controls at a = -0.05, where the optimal similarity between 

simulated and empirical values was observed. Then, we decreased the bifurcation 

parameter by 0.001 at each iteration, spanning values between -0.05 and -0.15. The nodal 

strengths of the FC and the variability of FC were computed for each value and 

quantified the alterations as FCa – FC-0.05.  

The predicted alterations in healthy controls were then compared to the empirical 

alterations observed in clinical populations as FCclinical – FCHC (clinical={PC,MCI,AD}. 

The similarity was quantified as Euclidean distance between predicted and empirical 

alterations. 

Statistical Analyses 

The group comparisons (for coherence, metastability, FC strength, v-FC strength, EC 

strength) were done using permutation t-test (1000 permutations), and multiple 

comparisons were corrected using FDR approach with Benjamini&Hochberg algorithm if 

necessary (Hochberg and Benjamini 1990). Prior to group comparisons, we regressed out 

subject’s age from each measure. The networks were visualized using BrainNet Viewer 

toolbox in Matlab (Xia, Wang, and He 2013). Correlations between CSF biomarkers 

(APOE-4, Aβ-42, and t-tau) and the measures (coherence, metastability, FC strength, v-

FC strength, EC strength) were estimated as the partial correlations controlled for age, 
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gender and education level. APOE was quantified as the carriers and non-carriers of the 

gene.  

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2016. ; https://doi.org/10.1101/076851doi: bioRxiv preprint 

https://doi.org/10.1101/076851
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 

Alterations in Global Connectivity Measures 

We compared the mean (coherence) and standard deviation (metastability) of the 

Kuramoto order parameter (synchronization) of PC, MCI, and AD groups with the 

healthy controls (HC) using permutation t-test (10000 permutations, p-value < 0.05). The 

results showed a monotonous decrease in both measures along with the progression of the 

disease (Figure 2). The coherence and metastability of the AD group  were significantly 

different than HCs (coherence: T-statistic = 3.4, p-value < 0.01; metastability: T-statistic 

= 3.27, p-value < 0.01) and PCs (coherence: T-statistic = 2.77, p-value < 0.05; 

metastability: T-statistic = 2.84, p-value < 0.05). We found no significant differences in 

the rest of the clinical populations. 

Alterations in Regional Connectivity Measures 

We compared the nodal strengths of functional connectivity (FC), variability of 

functional connectivity (v-FC), and effective connectivity (EC) of PC, MCI and AD 

groups with the HCs. The nodal strengths of FC were decreased in the entire brain in PC, 

MCI and AD groups (Figure 3). AD group exhibited significantly decreased FC strengths 

widespread across the brain including the hubs in prefrontal and parietal regions  (Table 

2). The differences were more prominent in right hemisphere. No significant differences 

were found in FC strengths of PC and MCI groups.  

FC variability strength in right anterior cingulate cortex was increased in PC group (T-

statistic = -3.4667, FDR-corrected p-value < 0.05), while it was decreased (T-statistic = 

3.0661, FDR-corrected p-value < 0.05) in AD group. Right paracentral lobule was also 
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decreased in FC variability strength in PC group (T-statistic = -2.8062, FDR-corrected p-

value < 0.05). No significant differences were found in MCI group. 

In order to reveal the underlying connectivity alterations, we used whole-brain 

computational model to infer EC. The average correlation coefficient between empirical 

and simulated FC was r = 0.81 (std = 0.03). The correlation coefficients between 

empirical and simulated coherence and metastability were r = 0.93 (p-value < 0.001) and 

r = 0.72 (p-value < 0.001), respectively (supplementary figure 2). We found decreased 

nodal EC strengths in left hippocampus in PC group (T-statistic = 3.5721, FDR-corrected 

p-value < 0.05) and in left medial temporal gyrus in AD group (T-statistic = 3.4651, 

FDR-corrected p-value < 0.05). No significant differences were found in MCI group. 

Relation to APOE4 and CSF Biomarkers 

Coherence showed a significant correlation with Aβ-42 (rho = 0.25, p-value < 0.05), but 

not t-tau (rho = -0.13, p-value = 0.19) for all subjects. However, within clinical groups 

(i.e. PC, MCI, and AD) coherence was not correlated with Aβ-42 (rho = 0.09, p-value = 

0.53) and t-tau (rho = -0.01, p = 0.96) CSF biomarkers. In contrast, we found no 

significant correlations between metastability and Aβ-42 CSF biomarker (clinical groups: 

rho = 0.03, p-value = 0.86; all subjects: rho = 0.15, p-value = 0.13), but it was 

significantly correlated with t-tau CSF biomarker (clinical groups: rho = -0.31, p-value < 

0.04; all subjects: rho = -0.27, p-value < 0.05).  

We also investigated how APOE-4 and CSF biomarkers are associated to FC, vFC and 

EC strengths (figure 4). CSF biomarker for Aβ-42 exhibited significant correlations with 

FC strengths of bilateral rolandic operculum (left: rho = 0.25; right: rho = 0.27, p-

value<0.05), middle cingulate gyrus (left: rho = 0.23; right: rho = 0.23, p-value<0.05), 
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cuneus (left: rho = 0.26; right: rho = 0.24, p-value<0.05), superior (left: rho = 0.26; right: 

rho = 0.20, p-value<0.05) and middle (left: rho = 0.33; right: rho = 0.20, p-value<0.05) 

occipital lobes, and postcentral gyrus (left: rho = 0.27; right: rho = 0.26, p-value<0.05). 

In left hemisphere Aβ-42 biomarker was significantly correlated with FC strenghts of 

inferior parietal lobe (rho = 0.24, p-value<0.05), supramarginal gyrus (rho = 0.25, p-

value<0.05), angular gyrus (rho = 0.23, p-value<0.05), heschl gyrus (rho = 0.25, p-

value<0.05), superior (rho = 0.30, p-value<0.05) and middle (rho = 0.34, p-value<0.05) 

temporal lobes, in right hemishere significant correlations were observed in precentral 

(rho = 0.20, p-value<0.05) and paracentral (rho = 0.28, p-value<0.05) lobules, superior 

(rho = 0.20, p-value<0.05) and middle (rho = 0.23, p-value<0.05) frontal lobes, pars 

opercularis (rho = 0.24, p-value<0.05), pars triangularis (rho = 0.28, p-value<0.05), and 

pars orbitalis (rho = 0.22, p-value<0.05) of inferior frontal gyrus. CSF biomarker for t-tau 

was significantly correlated with FC strengths of left superior (rho = -0.23, p-value<0.05) 

and inferior (rho = -0.23, p-value<0.05) occipital lobes, left superior parietal lobe (rho = -

0.22, p-value<0.05), left paracentral lobule (rho = -0.20, p-value<0.05), right superior 

(rho = -0.20, p-value<0.05) and middle (rho = -0.24, p-value<0.05) frontal lobes. No 

significant correlations were observed between FC strength APOE-4 allelle carrier status. 

Variability of FC strength showed significant correlations with Aβ-42 CSF biomarker in 

right pars triangularis of inferior frontal gyrus (rho = -0.21, p-value<0.05), right middle 

cingulate gyrus (rho = -0.26, p-value<0.05), right paracentral lobule (rho = -0.21, p-

value<0.05),  and right temporal pole (rho = -0.24, p-value<0.05). T-tau CSF biomarker 

was significantly correlated with FC variability strengths of bilateral inferior parietal lobe 

(left: rho = -0.20; right: rho = -0.26, p-value<0.05), left superior occipital lobe (rho = -
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0.21, p-value<0.05), right supramarginal gyrus (rho = -0.24, p-value<0.05), and right 

paracentral lobule (rho = -0.20, p-value<0.05). APOE-4 allelle carrier status was 

significantly correlated with FC variability strengths in left superior parietal lobe (rho = -

0.22, p-value<0.05), right middle frontal gyrus (rho = -0.20, p-value<0.05), right inferior 

parietal lobe (rho = -0.23, p-value<0.05), right supramarginal gyrus (rho = -0.23, p-

value<0.05) and right temporal pole (rho = 0.30, p-value<0.05). 

The correlation between EC strength and Aβ-42 CSF biomarker was significant in left 

superior (rho = -0.21, p-value<0.05) and medial (rho = -0.30, p-value<0.05) frontal gyrus, 

left superior (rho = -0.22, p-value<0.05) and medial (rho = -0.20, p-value<0.05) orbital 

frontal gyrus, left pars triangularis of inferior frontal gyrus (rho = -0.25, p-value<0.05), 

left precuneus (rho = -0.22, p-value<0.05), and right rectus (rho = -0.25, p-value<0.05). 

EC strength was significantly correlated with t-tau only in left inferior occipital lobe (rho 

= -0.22, p-value<0.05). No significant correlations were observed between EC strength 

and APOE-4 allelle carrier status. 

Computational Experiment 

Statistical comparisons between groups regarding global (coherence and metastability) 

and nodal (FC and vFC strengths) measures showed consistent yet complex progression 

of the alterations in whole-brain connectivity. However, the alterations in EC strength did 

not show widespread alterations as it was observed in FC strength. For this reason, we 

conducted a computational experiment to check whether there is a global factor that 

might explain the progression of the disease. Using the proposed model, we 

systematically altered the local bifurcation parameter (a) in healthy control subjects to 

study the progression of the disease. Being specific, we disrupted the optimal operating 
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point of the model in favor of noisy dynamics in healthy control subjects and check the 

effects of this manipulation on simulated FC strengths. The optimal similarity (Euclidean 

distance) between simulated and empirical FC strength changes were observed at a = -

0.065 for PC, a = -0.068 for MCI, and a=-0.084 for AD groups (Figure 5). We found that 

also the changes in the ratio between mean FC and v-FC in the model were in line with 

the empirically observed ratios at these optimal local bifurcation parameter values.  

Furthermore, the correlation coefficients between the simulated and empirical alterations 

in FC strengths reached up to r = 0.46 (a = -0.088) for PC, r = 0.62 (a = -0.137) for MCI, 

and r = 0.72 (a = -0.139) for AD (supplementary figure 4-5).  
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Discussion 

In this paper, we studied the whole-brain functional connectivity in Alzheimer’s disease. 

We treated the condition as a continuum based on severity comprising PC, MCI and AD. 

We found that the coherence (average synchronization) and metastability (standard 

deviation of synchronization) monotonously decrease through this continuum. The results 

showed gradual decreases in FC as the disease progresses. However, the decrease in FC 

was only significant in AD group with respect to the HC group.  

Furthermore, the higher order statistics of the FC (i.e. variability of FC) provided critical 

information that might help the characterization of the disease. Increased v-FC in PC 

group suggests that presence of amyloid plaques without signs of dementia might be 

linked to abnormal FC dynamics. Therefore, a possible mechanism for the onset of 

neurodegenerative diseases might be the divergence from the optimal dynamical regime, 

in which the connectivity still remains intact. We found that the v-FC in anterior 

cingulate cortex (ACC) was significantly increased in PC group, but decreased in AD 

group. We speculate that whatever causes elevated variability in ACC in PC group might 

also be responsible for reduced variability observed in AD group. Ineffective 

communication in the entire cortex would primarily affect the connectivity hubs in the 

brain. Therefore, a small perturbation in whole-brain dynamics may spread out and cause 

the elevated variability in FC. As the perturbation advances to a point where the whole-

brain communication collapses, its effect might qualitatively change. Therefore, the 

dissociation between anterior and posterior parts of DMN, and the hyper-synchronization 

of several networks that was reported in previous studies might be explained as a network 

effect in the whole-brain.  
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Nevertheless, the data driven methods based on FC and v-FC reflect the cumulative 

effects of complex interactions between brain regions. Therefore, understanding the 

underlying mechanisms behind FC is non-trivial without model-based approaches. We 

proposed a computational model to characterize the interplay between coordinated noise 

and oscillations in the whole-brain. We estimated the optimal EC from the empirical 

observations to make inference on the causal origins of the FC alterations. Despite the 

widespread changes in FC in AD, EC revealed that right temporal lobe was the only 

region where the connectivity was actually altered. Moreover, in PC group EC was 

decreased in the hippocampus suggesting the role of this region in even there are no signs 

of memory deficits. 

It is important to note that the model-based inference of EC presented in this study should 

be considered in more abstract terms that are dependent to the computational model. 

Being specific, the EC reflects a high- level parameter space that lumps various 

biophysical features of the neural network as well as hemodynamic properties that cannot 

be accounted by the proposed model. However, the major advantage of this approach is 

that it allows constructing model-based hypotheses based on critical model parameters, 

given the EC. In this study, we focused on the influence of the bifurcation parameter on 

the FC alterations. We showed that the divergence from the bifurcation point (i.e. nodes 

exhibit noise dynamics) might cause similar alterations observed in the empirical data. 

This supports the view that perturbations in whole-brain dynamics cause structured 

alterations in FC. Moreover, the model illustrated slightly increased overall v-FC as 

observed in PC group, which later decreased as the system diverged more from the 

bifurcation point. The best correspondence between FC alterations in the simulations and 
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those in the AD group was observed at the point where the v-FC started to drop 

(supplementary figure 3). 

In this study we also addressed the influence of the genetic and the CSF biomarkers. We 

found that although coherence was correlated with Aβ-42 and t-tau, these correlations 

were driven by the contrast between healthy controls and clinical populations, as the 

correlations disappeared among clinical populations. On the other hand, t-tau CSF 

biomarker was significantly correlated with metastability both for all subjects and clinical 

groups. Therefore, metastability might be a robust measure that reflects the cognitive 

function of the brain as it was suggested before (Deco and Kringelbach 2014). The 

correlations between CSF biomarkers and FC were consistent with the alterations 

observed in AD group. Furthermore, these results suggest that Aβ-42 is more relevant to 

the presence of connectivity alterations, but not the progression of the disease. This is 

consistent with the related studies stating that amyloid-β associated abnormal DMN 

connectivity in elders without dementia (Sheline, Raichle, et al. 2010; Sperling et al. 

2009). Furthermore, the results support the findings that although amyloid-β has a major 

impact on the neurodegeneration, it is functionally less relevant than tau tangles 

(Yoshiyama, Lee, and Trojanowski 2013). Another study also discussed the role of Aβ-

42 as a necessary but not sufficient factor for AD related dementia (Musiek and 

Holtzman 2015). Our results are in line with this conclusion.  

Nevertheless, the model we propose to infer EC have some limitations. The most critical 

disadvantage rises from the optimization procedure. Given a highly non- linear model, the 

use of well-established techniques such as Bayesian inference becomes computationally 

infeasible. Heuristic approaches to infer EC are difficult to validate given the complexity 
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of the model and the available data. We addressed some of these problems by 

constraining the parameter space to non-zero connections in structural connectivity (SC) 

and limiting the possible values between 0 and 1. 

Our study showed that the neuronal basis of the transition between neurodegeneration 

and cognitive impairment might be understood by investigating the abnormalities in FC 

variability. We speculate that at this stage the outcome of the neuronal atrophy might be 

determined by peripheral mechanisms (e.g. involvement of neurotransmitters, non-

neuronal cells…etc.) that modulate the temporal aspects of the connectivity. Further 

studies might focus on the local circuitry and biophysical mechanisms behind the FC 

variability. Nevertheless, it is often non-trivial task to propose biophysically realistic 

models to study brain function in mesoscopic scale. We believe that as EC provides a 

quantitative measure to describe the causal origins of whole-brain connectivity, it can 

provide useful insights to propose better models.  
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Figures 

 

Figure 1. Overview of the model. Top panel illustrates the optimization procedure. 

Middle panel illustrates Hopf normal model. Bottom panel illustrates the computational 

experiment. 
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Figure 2. Group differences in coherence (average Kuramoto order parameter) and 

metastability (standard deviation of Kuramoto order parameter) in 0.06-0.09Hz 

narrowband signal. The comparisons were done using permutation t-test (1000 

permuations; * p<0.05, ** p<0.01). 
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Figure 3. Group differences in nodal strengths of FC, vFC, and EC (columns). Top row 

shows the comparisons between AD and HC groups, bottom row show comparisons 

between PC and HC groups. The comparisons were done using permutation t-test (1000 

permuations). Colorbars indicate T-statistic. Only significant differences after FDR 

correction were reported. 
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Figure 4. Partial correlations between FC , v-FC and EC (columns) and Aβ-42 (top row) 

and t-tau (bottom row) controlled for age, gender and education level. Colorbars indicate 

correlation coefficient (rho). Only significant correlations were reported. 
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Figure 5. Computational experiment based on altered local bifurcation parameter of 

healthy control subjects within the range -0.05 and -0.15. The optimal fit for HCs is at a = 

-0.05. Top: The similarity (Euclidean distance) between FC nodal strength changes in the 

simulated data (ΔFCa- ΔFCa=-0.05) and in the empirical data (green: ΔFCPC- ΔFCHC, blue: 

ΔFCMCI- ΔFCHC, red: ΔFCAD- ΔFCHC). Dashed lines indicate the minimum distance. 

Bottom: The ratio between grand average v-FC and FC. Circles indicate the empirical 

values for HCs (black), PC (green), MCI (blue) and AD (red) projected to the optimal fit 

to the simulated data. Dashed line is the linear fit to the empirical data.  
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Tables 

Table 1. Demographics 

 

HC PC MCI AD 

Age 60.72 (6.99) 69.00 (7.62) 69.73 (7.77) 65.00 (9.98) 

Sex 37 (M), 20 (F) 9 (M), 3 (F) 14 (M), 9 (F) 9 (M), 7 (F) 

APOE careers 0.15 0.42 0.52 0.50 

Biomarker Index 0.44 (0.26) 1.09 (0.55) 1.50 (0.42) 1.52 (0.43) 

AL 27.23 (6.92) 21.25 (6.59) 8.95 (7.14) 6.23 (4.04) 

AT 43.14 (4.44) 38.42 (7.06) 21.77 (12.95) 18.69 (12.48) 

RDL 10.43 (2.34) 8.58 (3.18) 2.55 (3.20) 2.00 (2.52) 

RDT 14.84 (1.26) 13.33 (2.46) 6.32 (5.25) 5.69 (4.87) 

 
  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2016. ; https://doi.org/10.1101/076851doi: bioRxiv preprint 

https://doi.org/10.1101/076851
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2. Group comparisons FC strength (T-statistic) 

FC Strength (AD vs. HC) 

ROI                   Left Right 

PreCG      1.9468 2.8517* 

SFGdor     1.8606 2.3775* 

ORBsup     -0.1604 3.2579** 

MFG        1.0807 2.6271* 

ORBmid     -0.4677 3.3205** 

IFGoperc   1.3351 2.4945* 

IFGtriang  2.4744* 3.0819** 

ORBinf     0.6945 3.3300* 

ROL        3.4757** 3.4013** 

SMA        2.5766* 1.8211 

OLF        -1.1313 0.2452 

SFGmed     3.1908* 3.3281** 

ORBsupmed  2.4408* 2.8573* 

REC        0.8826 0.4747 

INS        1.7096 3.2364** 

ACG        2.8703* 3.1387** 

DCG        2.9755** 3.4686** 

PCG        0.2593 -0.5377 

HIP        -0.3394 2.1593* 

CAL        1.6324 1.9620 

CUN        3.4414** 3.2861** 

LING       1.8809 2.0415 

SOG        3.3086** 3.0077* 

MOG        4.6237** 3.5258** 

IOG        3.6295** 2.6303* 

FFG        2.9761* 1.0922 

PoCG       3.5312** 4.5427** 

SPG        1.8369 2.8759* 

IPL        2.3735* 1.3246 

SMG        3.2118** 3.3754** 

ANG        3.1634** -0.0517 

PCUN       2.3624* 2.5367* 

PCL        1.7343 2.1213 

HES        3.7915** 1.8432 

STG        4.0204** 3.0325** 

TPOsup     1.1001 1.7304 

MTG        3.9036** 2.5762* 

TPOmid     0.4231 2.8015* 

ITG        1.2090 1.0448 

* p < 0.05 ** p < 0.01 
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