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Abstract

Mapping bias can be introduced in analysis of short read sequencing data, if sequence
reads are aligned to a different genome than the sample genome. Here we study map-
ping bias in whole-genome bisulfite sequencing using data from inbred mice. We
show that the choice of reference genome used for alignment can profoundly impact
the inferred methylation state, both for high and low resolution analyses. This bias can
result in falsely identifying thousands of differentially methylated regions and hun-
dreds of megabases of large-scale methylation differences. We show that the direction
of these biased methylation differences can be reversed by changing the reference
genome, clearly establishing mapping bias as a primary cause. We develop a strategy
we call personalize-then-smooth for removing the bias by coupling alignment to per-
sonal genomes, with post-alignment smoothing. The smoothing step can be viewed as
imputation, and allows a differential analysis to include methylation sites which are
only present in some samples. Our results have important implications for analysis of
bisulfite converted DNA.
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Introduction

DNA methylation is a key epigenetic mark that has become widely implicated in hu-
man development and disease (Feinberg and Vogelstein, 1983; Feinberg, Koldobskiy, and
Gondor, 2016). Accurate determination of methylation at CpG dinucleotide positions
across the genome is critical for understanding its association with functional regula-
tion. Multiple techniques currently exist to perform this measurement, each with varying
degrees of genomic coverage and depth. One gold-standard method is whole-genome
bisulfite sequencing (WGBS), which pairs bisulfite conversion of cytosine residues with
next-generation sequencing (Lister et al., 2009). At each CpG site, an aligned read is called
as unmethylated if the sequence is TG (indicating bisulfite conversion) and methylated
if the sequence is CG (indicating protection by the methyl group). Statistical packages
such as BSmooth (Hansen, Langmead, and Irizarry, 2012) can then integrate this data
across larger regions to estimate and compare overall methylation patterns between sam-

ple groups.

WGBS short-read mapping is reliant on a reference genome, from which in silico bisulfite-
converted genomes are generated for use in read alignment (Lister et al., 2009; Hansen,
Langmead, and Irizarry, 2012; Krueger and Andrews, 2011). Because a reference genome
is used, deviations from that sequence, such as single nucleotide variants or indels, can
affect alignment quality and/or methylation estimation. Notably, C/T mutation occur-
ring at CpG sites is the most common dinucleotide mutation in the mammalian genome
due to the high rate of spontaneous deamination at methylated CpG (Hodgkinson and
Eyre-Walker, 2011; Coulondre et al., 1978; Bird, 1980). Such a variant would still align
to a bisulfite-converted reference, but appear as an entirely unmethylated CpG site, even
though the CpG site no longer exists.

Mapping bias associated with non-reference alleles has been examined in transcriptomics,
particularly in studies associating genotype with expression. Degner et al. (2009) studied
bias in allele-specific expression and showed it is predominantly in the direction of higher
expression of the reference allele. Satya, Zavaljevski, and Reifman (2012) and Geijn et al.
(2015) showed this bias can be alleviated by integrating prior knowledge of non-reference
alleles present in the population, and Rozowsky et al. (2011) showed that a similar im-
provement can be achieved using a personalized diploid reference genome, a strategy
also used in later studies (Munger et al. (2014) and Hodgkinson, Grenier, et al. (2016)).
Panousis et al. (2014) studied bias in eQTL analysis, and concluded that it has little impact
because the bias affects quantification locally around a sequence variant, whereas eQTL
analyses consider aggregate expression over a region extending beyond the variant.

Given the prevalence of C/T mutations at CpGs in mammals, it is sensible to wonder
about its effect on analysis of WGBS data, but currently, little data exists on the magni-
tude of its impact on analysis results. Related, tools have been developed for the joint
methylation quantification and genotyping of bisulfite converted DNA (Liu et al., 2012;
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Barturen et al., 2013; Gao et al., 2015), but bisulfite conversion makes this task difficult.

Here, we examine the consequences of using an improper reference genome for alignment
of bisulfite converted DNA. We compare WGBS results from two inbred mouse strains:
C57BL/ 6], upon which the mouse reference genome is based; and the highly divergent,
wild-derived CAST/Ei]. We show that the choice of reference genome has a profound im-
pact on inferred strain differences in methylation and that this is predominately caused by
CpG mutations between the strains. We show that this bias can be corrected by alignment
to personal genomes, and we introduce smoothing as a method to compare methylomes
in different genomic coordinate systems. Finally, we examine two other strategies for ad-
dressing this bias: alignment to a common reference followed by filtering of variable CpG
sites, and genotyping using bisulfite-converted DNA.

Results

Global methylation estimates are strongly influenced by choice of reference genome

We performed whole-genome bisulfite sequencing on liver samples from two inbred
mouse strains, C57BL/6] (BL6) and CAST/Ei] (CAST), with 4 mice per strain. BL6 was
chosen as it is the standard laboratory strain and the basis of the mm9 reference genome;
the wild-derived CAST was selected as a highly divergent strain for comparison. The
purpose of the experiment was to identify strain-specific regions of differential methyla-
tion, possibly driven by genetic changes. As sequencing data was generated at relatively
low coverage (Table 1), we chose to perform downstream methylation analysis using the
BSmooth package (Hansen, Langmead, and Irizarry, 2012), which is designed in part to
handle low-coverage data.

We first aligned sequencing reads from both strains to the standard BL6/mm?9 reference
genome, then computed the average methylation across all read-covered autosomal CpGs
in the reference; we refer to this measurement as global methylation. When compared, the
two strains showed a dramatic difference in global methylation, with the CAST strain’s
estimates lower by over 7.6% (Fig. 1, p < 1.3 x 107°). This difference is comparable in
magnitude to the level previously observed between tumor and normal colon (Hansen,
Timp, et al., 2011) and associated with EBV-mediated oncogenesis (Hansen, Sabunciyan,
et al.,, 2014), and is far larger than what we would normally expect from a comparison
between strains or individuals. Note that global methylation is an average across millions
of CpGs, and thus is unlikely to be affected to this extent by differences in local coverage.

We next aligned the BL6 and CAST samples to the CAST reference genome. Strikingly,
the global methylation levels computed for these alignments showed a reverse relation-
ship to the levels observed in the alignment to the BL6 reference, with BL6 now showing a
global methylation lower by around 8.7% (Fig. 1, p < 1.6 x 107°). As these drastically dif-
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ferent estimates were obtained from the same sets of sequencing reads, we conclude that
the choice of reference genome is by itself a major determinant of global methylation esti-
mates. Interestingly, we also observe that aligning data from a strain to its own reference
genome yields the same global methylation level in the two strains, whereas aligning a
strain to the more distant reference genome results in lower global methylation. This im-
plies that the true global methylation level in both strains is similar, and observing lower
methylation is an effect of what we term mapping bias.

We observe that samples have higher alignment rate (fraction of reads aligned) when
aligned to the proper strain (Table 1). However, we also observe that CAST samples
aligned to the BL6 genome have higher alignment rates than BL6 samples aligned to the
BL6 genome. We conclude that alignment rates could be useful when considering which
reference genome to use for a given sample, but are not necessarily comparable across
samples.

Mapping bias induces focal changes in DNA methylation

Having established that alignment to a reference genome of a different strain substantially
impacts global methylation, we asked whether this could also result in focal changes.
We previously showed that DNA methylation patterns can change at different scales
(Hansen, Timp, et al., 2011; Hansen, Langmead, and Irizarry, 2012; Hansen, Sabunciyan,
et al., 2014). Both in those studies and in the current study, we focused on (a) small dif-
ferentially methylated regions (DMRs), ranging in size from hundreds to a few thousand
bases, and (b) methylation blocks on the hundred-kilobase to megabase scale. We used
the BSmooth pipeline (Hansen, Langmead, and Irizarry, 2012) to analyze the two mouse
strains described previously and identified both small DMRs and methylation blocks. We
repeated the analyses using the BL6 and CAST reference genomes in order to associate
differential methylation events with strain differences. We assessed significance of the
DMRs using a permutation scheme which controls the genome-wide family-wise error
rate (§FWER), a stringent error rate for genome-wide studies (Methods).

As we expected, the choice of reference genome determined the overall direction of dif-
ferences observed between strains. We identified 2,354 blocks covering 1.89 million CpGs
and 347 Mb in BL6-aligned data and 4,199 blocks covering 6.42 million CpGs and 1,101
Mb in CAST-aligned data meeting our cutoff criteria (gFWER < 1/18, length > 10 kb).
In both alignments, the vast majority of blocks were hypermethylated in the same strain
as was used for the reference genome (98.6% when aligned to BL6, 99.3% when aligned
to CAST), which is consistent with the pattern observed in global methylation. Figure 2
illustrates a large-scale methylation block present in both analyses, where the sign of the
methylation difference depends on the choice of reference genome. Notably, when we
compared only samples aligned to their own reference (adjusting for coordinate changes
due to indels between genomes), we found that methylation levels across the block were
approximately equal (Figure 2c). This observation is again consistent with our findings
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on global methylation, and forms the basis of our proposed solution to mapping bias,
which we detail in a later section.

We found 2,865 DMRs covering 57k CpGs and 3.14 Mb of the genome that met our cutoff
criteria (gFWER < 1/18, mean difference > 0.1, Methods) when samples were aligned to
BL6, compared to 6,498 DMRs covering 94k CpGs and 5.72 Mb when aligned to CAST.
In contrast to the methylation blocks, however, these small DMRs were not uniformly
hypermethylated in the strain to which the samples were aligned; only 45.8% were hy-
permethylated in BL6 when aligned to BL6, and 65.4% were hypermethylated in CAST
when aligned to CAST. This observation can be explained by the presence of “true” strain
DMRs within the analysis which, unlike DMRs that arise from mapping bias, would
not necessarily reverse direction between alignments. Figure 3 depicts an example small
DMR identified in both alignments, the direction of which reverses depending on which
genome was used for mapping. Again, when samples aligned to their own reference were
compared, methylation levels were approximately equal (Figure 3c).

Together, these observations show that the choice of reference genome can introduce
widespread focal changes in DNA methylation at both the kilobase and megabase scale,
and that these changes are biased such that strains more genetically distant from the ref-
erence strain appear more hypomethylated.

Strain differences in CpG dinucleotides

We examined sequence differences between the BL6 and CAST strains, specifically at CpG
locations, to see how they affect methylation estimates. Notably, a CG-to-TG (or CG-
to-CA) mutation in CAST, when aligned to the BL6 reference genome, would produce
unmethylated calls without inducing any alignment mismatches (i.e. essentially being
“undetectable” by standard WGBS pipelines), resulting in an excess of 0% methylated
locations and the previously observed decrease in global methylation. Such mutations
are in fact the most common dinucleotide mutation in mammalian genomes (Hodgkinson
and Eyre-Walker, 2011).

To facilitate accurate sequence comparisons between strains, which do not share coordi-
nate systems, we used the modmap tool (Huang et al., 2013). This tool functions similarly
to UCSC'’s liftOver (Hinrichs et al., 2006) to convert a set of genomic locations to their
corresponding coordinates in another strain, and was the method we used to compare
methylation regions of self-aligned samples in the previous section (Methods).

Using modmap and the FASTA file for CAST, we extracted and tabulated the forward-
strand dinucleotide sequences corresponding to the 21.3 million CG dinucleotides in BL6;
the results are shown in Table 2. Approximately 19 million CGs from BL6 were retained
by CAST; 1.60 million were mutated to either TG or CA, with another 0.52 million mu-
tated to GG/CC and AG/CT (which would result in alignment errors). 100k CpGs could
not be mapped from BL6 to CAST, which occurs when an indel over a CpG results in
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an ambiguous position after modmap conversion. We observed similar results when we
performed the reverse analysis, tabulating sequences of CAST CpGs when modmapped
to BL6: about 2.3 million CGs were unique to CAST with a differing or unmappable se-
quence in BL6 (Table 2).

The CpG mutation rate of roughly 2.1/23.1=9.1% can be compared to the genomic muta-
tion rate of roughly 1.2% (computed by considering single nucleotide mutations as well
as indels, using modmap between the two genomes, see Methods). This CpG mutation
rate is not uniform across the methylome, being much lower in CpG islands (1.2%) and
somewhat lower in allosomes (6.4%) and CpG island shores (5.4%). Interestingly, though
the CpG mutation rate fluctuates throughout the genome, it is generally similar across
the two strains for any given region (Figure 4). It is well understood that the high rate of
CpG mutation is caused by the nature of DNA methylation; methylated C positions are
more likely to undergo spontaneous deamination to T (Coulondre et al., 1978; Bird, 1980;
Hodgkinson and Eyre-Walker, 2011).

To confirm that CpG sequence differences have a large impact on observed DNA methy-
lation, we computed global methylation as in Figure 1, but with respect to only the 19M
CpGs common between the strains (Figure 5). We found that the large differences previ-
ously observed were no longer present. Instead, we saw a similar level of global methy-
lation across strains regardless of which genome was used for alignment. We conclude
that CpG loss due to mutation, which is largely undetectable by bisulfite sequencing, is
responsible for the mapping bias.

Alignment to personal genomes addresses mapping bias

Having identified mapping bias and its source, we next explored strategies for mitigat-
ing or eliminating the bias, with the goal of providing recommendations for future stud-
ies. First, we considered the strategy of using personal (i.e. strain-specific) genomes for
alignment. The computational cost of this strategy is not onerous. It requires building
a personal genome sequence and a corresponding index for bisulfite read alignment us-
ing a tool like BSmooth or Bismark. But the strategy incurs essentially no computational
overhead at alignment time.

While the personal genome alignment strategy is easy in the alignment stage, it creates
issues for downstream analysis. Following alignment, the data for each sample is in dif-
ferent genome coordinates. For DNA methylation data in mammals, the critical issue is
to map CpG dinucleotides between the different genomes, arguably an easier task than
full genome alignment. An aspect which needs special attention is the treatment of a CpG
which only exists in some of the genomes. It is tempting to simplify an analysis by only
considering CpGs present in all genomes. However, CpGs present in only some of the
genomes will be of particular interest if the purpose is to jointly analyze the genome and
the epigenome, since a loss of a CpG is a direct way for a sequence change to impact the
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epigenome by forcing 0% methylation at that nucleotide.

To address this problem, we propose the following strategy. Following alignment to per-
sonal genomes, place CpGs from different genomes in a common coordinate system using
a conversion tool, such as modmap or liftOver. Next, use BSmooth (or another smoothing
technique) to smooth the methylation data. This yields a continuous methylation curve
across the whole genome. From this curve, we can infer a methylation value at any site,
including at a site with a CpG shared by the two strains strains, and, crucially, at a site
with a CpG in one strain but not the other. The smoothed curves can then be evaluated
within the set of common CpGs; however, data from sample-specific CpGs influence the
imputed methylation values at these common CpGs, and thus still contribute to the fi-
nal analysis. In the following, we use the term “personalize-then-smooth” to refer to this
combination of alignment and smoothing.

We reanalyzed the two mouse samples analyzed previously using our personalize-then-
smooth strategy. We aligned the samples to their respective strain-specific reference genomes
(i.e. BL6 to BL6 and CAST to CAST), used modmap to convert methylation calls at CpG
positions into BL6 coordinates, and used BSmooth to smooth data across all CpGs present
in one or both genomes. Strikingly, we identified a far fewer focal changes between strains
compared to our original approach. Using the same significance cutoffs as previously, we
found only 101 blocks containing 27k CpGs and covering 3.2 Mb (gFWER < 1/18, width
> 10°) and 976 small DMRs covering 23k CpGs and 1.13 Mb (gFWER < 1/18, mean dif-
terence > 0.1, Methods). Blocks identified were also very small (all were less than 120kb
in width, with 92% smaller than 50kb), which indicates that they are likely not true large-
scale blocks; additionally, blocks were no longer uniformly hypermethylated towards one
strain, with only 46.5% hypermethylated in BL6. Figures 2c and 3c provide examples
of respectively a biased block and biased DMR, that under the personalize-then-smooth
approach is observed to have no true methylation difference. Together, these results show
that our strategy largely removes false-positive blocks and DMRs produced by mapping
bias.

To illustrate what drives biased DMRs, we re-examined our list of 2,865 DMRs found
in the analysis where all samples were mapped to the BL6 genomes; we call these “bi-
ased DMRs”. Each DMR represents a genomic region in BL6 coordinates. For each such
region we determined whether the region overlapped one of the 976 DMRs identified
using the personalize-then-smooth strategy (hereafter referred to as “personal” DMRs),
and we computed the average difference in methylation across the two strains, using
methylation quantification from personal genomes. Comparing the average methylation
between the two analysis strategies, we observe that biased DMRs which do not overlap
personal DMRs show disagreement between the average methylation as quantified by
the two strategies, whereas biased DMRs overlapping personal DMRs show similar av-
erage methylation between the two strategies (Figure 6a,b). Additionally, for each biased
DMR we computed the number of CpGs unique to both the BL6 and the CAST genomes.
We observe that there are substantial differences between the number of unique CpGs in
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the BL6 genome for DMRs which do or do not overlap personal DMRs (Figure 6c). As
a control, we see similar levels of CAST specific CpGs in the two groups. Finally, the
percentage of unique CpGs is a major determinant of the methylation difference between
the two analysis strategies (Figure 6d). This shows that the large amount of BL6 specific
CpGs drives the bias for the biased DMRs.

Intriguingly, we find 192 biased DMRs which do not overlap personal DMRs and which
has no CpGs unique to either BL6 or CAST, suggesting that the set of biased DMRs is not
entirely caused by CpG mutations (Figure 6d). One of these regions is examined in detail
below.

Strain-specific DMRs are in functionally associated regions

Focusing on a possible functional role of strain-specific methylation, we investigated the
overlap between our set of 976 personal DMRs and various marks suggesting functional
relevance from ENCODE, as well as genomic regions of interest such as Refseq promoters
and CpG islands. Specifically, ENCODE has profiled peaks for H3K4mel, H3K4me3,
H3K27ac (marks enriched at enhancers and promoters), CTCF (a methylation-sensitive
transcription factor), and POL2 in liver in adult BL6 mice. We quantified enrichment by
computing a log, odds ratio; we also determined the number of strain-specific DMRs
overlapping the particular feature, n (Methods).

We observed strong enrichment of H3K4mel, H3K4me3, H3K27ac and CTCF at strain-
associated DMRS, a moderate enrichment of CpG island shores, and a small enrichment
at CpG islands and Refseq gene promoters; no enrichment was observed at POL2 peaks
(Table 3). In summary 750 out of 976 personal DMRs overlapped one or more features
(log,(OR) = 3.03,p < 2.2 x 107!6). This strongly suggests that these DMRs are found
at regions of functional relevance in liver. This should be interpreted with caution since
biased DMRs, which are not personal DMRs, are also overlapping known features: 1182
out of 2121 such DMRs overlapped one or more features (log,(OR) = 2.12,p < 2.2 x
10716

Despite large differences in methylation between strains, 94 of our 976 personal DMRs
contain no CpGs that are mutated between strains, and 20 of those 94 contain no sequence
variation whatsoever between strains within the DMR (10 of these 20 DMRs continue to
have no sequence variation within 1kb of the DMR and 4 /20 remain identical within 5kb).
For both these two smaller sets of DMRs, the effect sizes of the enrichment of the various
features are similar, with the exception that POL2 is depleted at DMRs over areas with
no sequence variation. 70 out of 94 DMRs with no mutated CpGs overlap at least one
functional feature (log,(OR) = 3.22,p < 2.2 x 107!%), and 15 out of 20 DMRs with no
sequence variation overlap (log,(OR) = 2.99,p < 2.2 x 10716).
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Alignment to common reference genome, followed by filtering

In this section we describe an alternative to the personal genome strategy described
above. We term this strategy the “shared CpG” strategy where all samples are aligned
to the BL6 genome, but subsequently we only keep methylation measurements for 19M
CpGs present in both genomes for input into BSmooth. By aligning to a single genome,
this strategy sidesteps the issue of multiple coordinate systems, but still uses full knowl-
edge of the CpG dinucleotides in the involved genomes. We consider this strategy for
two purposes. First, it allows us to assess the impact of only considering common CpGs
for analysis. Second, this strategy is a variant of the “align, then filter” strategy, which
is popular in transcriptomics, where a set of known regions exhibiting mapping bias are
used to remove certain loci (Lappalainen et al., 2013; Castel et al., 2015). In transcrip-
tomics, this set of known loci can be identified using simulation together with knowledge
about population-level single nucleotide variants. Such an approach is more difficult for
bisulfite converted DNA, since the methylation state of a CpG influences the sequence of
any read covering the CpG.

We found that this shared CpG approach removes bias to a similar extent as our personalize-
then-smooth strategy. We identified only 108 methylation blocks covering 28k CpGs and
3.8 Mb meeting our cutoff criteria (gWER < 1/18, length > 10 kb), an amount similar to
what we found using personalize-then-smooth. For small DMRs we found 622 in total,
covering 15k CpGs and 729 kb of the genome (gFWER < 1/18, mean difference > 0.1,
Methods). As expected, most (542) of these small DMRs overlapped personal DMRs, and
another 69 overlapped the set of putative personal DMRs with gFWER > 1/18 (we use
putative to indicate candidate DMRs which do not meet our criteria for a genome-wide
family-wise error rate). However, there were some notable differences between the two
analyses. The set of personal DMRs was markedly larger (at 976) than the set of shared
CpG DMRs, and accordingly many personal DMRs were not identified by the shared
CpG approach; conversely, 11 regions identified in the shared CpG analysis overlapped
no personal DMRs or putative personal DMRs.

One of these 11 DMRs (Figure 7) illustrates an intriguing example of non-CpG alignment
bias. This region contains no CpGs unique to either of our two genomes, which we have
shown is the usual driver of bias. Nevertheless, the region displays the typical hallmarks
of mapping bias, with samples extremely hypomethylated when aligned to a distant ref-
erence (Figure 7a, b) and no true differences in methylation when samples are aligned
to personal genomes (Figure 7c). Notably, this bias is not removed in the shared CpG
analysis, where CAST samples continue to be hypomethylated (Figure 7d). We investi-
gated further and found that an unusually high number of sequencing reads from CAST
samples aligned to this region when the BL6 reference was used. When the CAST ref-
erence was used, these same reads aligned instead to the mitochondrial genome. These
fragments were all unmethylated, which would lower methylation estimates for 6 CpGs
in the region and produce hypomethylation bias. Surprisingly, the exact same happens
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for a set of BL6 reads when aligned to the CAST genome; this is the reason for the switch
in direction seen in Figures 7a,b. We concluded that non-CpG sequence variation be-
tween strains, both in this region and the mitochondrial genomes, caused misalignment
and subsequent mapping bias in this particular region. This example, while obviously
unusual, shows that alignment bias can occur with alignment to a distant reference, even
after accounting for CpG differences.

Personal DMRs which are also shared CpG DMRs have a lower proportion of strain
unique CpGs compared to personal DMRs which are not shared CpG DMRs (Figure 8).
Personal DMRs which are also shared CpG DMRs are strongly enriched for functionally
associated regions (434 out of 542, log,(OR) = 3.28,p < 2.2 x 1071¢); more so than per-
sonal DMRs which are not shared CpG DMRs (316 out of 434, log,(OR) = 2.67,p <
2.2 x10719),

Together, these observations suggest that personalize-then-smooth has more power to
identify strain differences.

Genotyping bisulfite converted data

It is possible to genotype samples using bisulfite converted data (Liu et al., 2012; Bar-
turen et al., 2013; Gao et al., 2015). Here, we want to investigate the use of these tools
in case personal genomes are not available in a given application. In general, the au-
thors of these methods recommend against using less than 10x coverage data, suggesting
that genotyping using our low-coverage data will be challenging. To overcome this, we
pooled 4 genetically identical CAST replicates into one metasample with 24x coverage,
aligned to the BL6 genome, and genotyped using BS-SNPer (Gao et al., 2015).

There are 2.26M CpGs which only exist in CAST, and these CpGs are well covered when
the samples are aligned to the CAST genome (2.26M are covered at 1x, 2.17M are covered
at 10x). BS-SNPer does not have similar performance on CpGs which are unique to the
BL6 genome and CpGs which are unique to the CAST genome. BS-SNPer recovers 51% of
CpGs unique to the CAST genome (where a gain of CpG needs to be identified) and 24%
of the CpGs unique to the BL6 genome (where a loss of a CpG needs to be identified), see
Table 4.

We used the output of BS-SNPer to compute global methylation as a proxy for bias. The
BL6 metasample had a global methylation of 72.0%, very similar to our previous estimates
of global methylation in BL6, whereas the CAST metasample had a global methylation of
68.2%, better than our estimates of CAST samples aligned to BL6, but not a full recovery
of the unbiased global methylation. In conclusion, for our data, BS-SNPer does not rescue
the bias introduced by using a wrong reference genome.
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Discussion

In this paper, we demonstrate that aligning whole-genome bisulfite sequencing reads
to a divergent reference genome induces massive bias in the quantification of methyla-
tion, and this can dramatically confound comparisons between samples with different
genomes. This bias drastically affects both large- and small-scale analyses. In a clear
sign that the genetic differences are to blame, the direction of methylation change can be
reversed by changing reference genomes. We show the bias is predominately — but not ex-
clusively — caused by differences in CpG sites between the sample and reference genome;
this is also the most common type of dinucleotide change. If large, the bias can be de-
tected by examining the global methylation between samples. The bias can be eliminated
by aligning data to personal genomes. Analyzing data mapped to personal genomes re-
quires working in distinct coordinate systems until the quantification step. We show how
smoothing can be used to impute methylation at strain-specific CpGs, allowing methyla-
tion measurements to be compared in a common coordinate system without discarding
any measurements. We use the term “personalize-then-smooth” to refer to this combina-
tion of alignment and post-alignment smoothing.

We have used the term mapping bias throughout this work, because the bias is controlled
by the choice of reference genome used for alignment. However, in the case of a Cto T
transition between the reference genome and the sample genome, the aligner is placing
the read correctly, and what fails is our inference based on a combination of the aligned
read and the existence of a CpG in the reference genome.

Previously, (Degner et al., 2009) showed that allele specific expression can be affected
by mapping bias, whereas (Panousis et al., 2014) showed that eQTL analysis is unaf-
fected. eQTL analysis is largely unaffected by mapping bias because the bias occurs
locally around a sequence variant, whereas gene expression is averaged across a much
larger region than affected by the bias. In contrast, for DNA methylation — like allelle-
specific expression — the quantity of interest is directly on top of a sequence variation.
Furthermore, DNA methylation in mammals occur primarily at CpG dinucleotides which
are also the most frequent sites of sequence variation.

We have examined three approaches for removing the bias: (1) use of personalize-then-
smooth, (2) (complete) knowledge of population level variation in CpGs, and (3) use of
tools which jointly genotypes and quantifies methylation in bisulfite converted DNA. The
use of personalize-then-smooth is our method of choice, but it does require the availabil-
ity of sample specific genomes. To examine the utility of knowledge of population level
variation we considered an extreme case where complete knowledge about CpG variants
in the samples under study is available. With this knowledge, mapping bias can be re-
moved, but our results should be considered an upper bound on the effectiveness of this
approach. Finally, we were unsuccessful in using BS-SNPer to remove bias; this could
be caused by the use of this particular tool or the coverage of our sequence data. The
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later point could be addressed by generating much deeper WGBS data; whether this is
cost-effective compared to performing DNA sequencing of the strains depends on the ex-
perimental design. In this context, an advantage of our smoothing approach is the ability
to deal with low-coverage bisulfite sequencing data.

To detect the bias we recommend routinely examining global methylation across samples.
This is easy and effective, but will only detect strong genome-wide mapping bias. Care
should be taken; it is well established that global methylation is cell type dependent.

The impact of mapping bias depends critically on experimental design. Compare two
scenarios where inbred mice from different strains are used. The scenario we consider
in this manuscript is a direct comparison between strains, and we show that mapping
bias results in biased methylation differences. A different scenario would be to compare
two groups of mice, with both groups of mice being balanced among different strains;
an example could be to compare young to old mice. In such an experiment mapping
bias would not cause biased methylation differences, but would rather cause unneces-
sary between-sample variation within the two groups, with an associated loss of power.
The personalize-then-smooth strategy we advocate here would address both situations,
removing bias or decreasing variation.

In future work, it will be important to extend this method to the situation where the
samples are outbred. Munger et al. (2014) explored this in the context of allele-specific
expression and found that a personal genome strategy was also effective there. But the
task of constructing the personal genome is complicated by the fact that each sample’s
genome is a distinct composition of founder haplotypes. This requires the additional
step of inferring founder haplotypes across the subject genomes, which incurs additional
computational overhead. Depending on the population under study, it may be possible
to use auxillary genetic data to infer this.

In general, we believe that studies in model organisms involving multiple different strains
will require the availability of strain specific genomes. This is because such studies are
usually undertaken to understand the impact of genotype and therefore involves the com-
parison of groups of individuals with different (sometimes vastly different) genomes.
This is for example the rationale behind the development of the mouse Collaborative
Cross (Churchill et al., 2004). Arabidopsis thaliana is frequently used for the same purpose,
although plants have extensive non-CpG methylation which we have not considered in
our work.

In many human studies different groups of interest are composed of different individu-
als. We know from genome-wide association studies that individuals are rarely random
samples from a background distribution, and such studies are therefore susceptible to be
affected by mapping bias. But two different humans are genetically closer than the two
mouse strains studied here, and in practice the impact of this bias will depend on the
genetic heterogeneity of the samples and the size of the signal of interest.
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Conclusion

We have shown that mapping bias can severely affect analysis of bisulfite converted DNA.
We have proposed a method we call personalize-then-smooth for addressing the map-
ping bias, which involves alignment to personal genomes followed by smoothing of the
methylation data. This method requires the availability of sample specific genomes. Fu-
ture studies employing bisulfite sequencing need to carefully consider this issue.
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Materials and Methods

Sample information

Liver samples from two mouse strains (C57BL/6] and CAST/Ei], 4 mice per strain) were
obtained from Jackson Laboratories. All mice were 6-week-old females; additionally, mice
of the same strain were littermates.

DNA extraction and sequencing

Genomic DNA was extracted from liver using the Qiagen DNEasy kit, with an additional
RNase incubation step (50 ug/sample, 30 minutes) prior to column application to remove
RNA.

WGBS single indexed libraries were generated using the TruSeq DNA LT Sample Prepa-
ration Kit (Illumina) according to the manufacturer’s instructions with modifications. 1ug
gDNA for BL6 samples (1.34ug gDNA for CAST samples due to observed partial DNA
degradation) was quantified via Qubit dSDNA BR assay (Invitrogen) and 0.8% agarose
gel. 1% Unmethylated lamda DNA (cat#D1521, Promega) was spiked in for monitoring
bisulfite conversion efficiency. Samples were fragmented by Covaris S2 sonicator to an
average insert size of 350bp (80sec, Duty cycle 10%, Intensity 5, Cycles per burst 200). Size
selection was performed using AMPure XP beads and insert sizes of 300-400bp were iso-
lated. Samples were bisulfite converted after size selection using EZ DNA Methylation-
Gold Kit (cat#D5005, Zymo) following the manufacturer’s instructions. Amplification
was performed following bisulfite conversion using Kapa Hifi Uracil+ (cat#KK282, Kapa
Biosystems) polymerase and cycling conditions: 98degC 45s /8cycles: 98degC 15s, 65degC
30s, 72degC 30s / 72degC 1 min.

Final libraries were confirmed via 2100 Bioanalyzer (Agilent) High-Sensitivity DNA as-
say. Libraries were quantified by qPCR using the Library Quantification Kit for Illumina
sequencing platforms (cat#KK4824, Kapa Biosystems), using 7900HT Real Time PCR Sys-
tem (Applied Biosystems).

Libraries were sequenced on an Illumina HiSeq2000 sequencer using 100bp paired-end
runs with a control lane.

Data availability
Data are available under accession number GSE87101 in NCBI GEO. This includes align-

ments of the samples to both CAST and BL6 genomes, expressed in BL6 coordinates as
well as alignment of the samples to the CAST genome, expressed in CAST coordinates.

14


https://doi.org/10.1101/076844
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/076844; this version posted September 22, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Short-read alignment

Alignment and CpG read-level measurement were performed using Bismark version
0.16.1 (Krueger and Andrews, 2011) and Bowtie2 version 2.1.0 (Langmead and Salzberg,
2012). Reference genomes for BL6 and CAST were generated from their corresponding
FASTA files (build 37), obtained from UNC Systems Genetics (UNC Systems Genetics n.d.).
Sequencing reads were first trimmed using Trim Galore! version 0.3.7 (Trim Galore! web-
site 2014) using default options, then aligned with Bismark using options —-bowtie2
——bam. BAM output files were merged and sorted in preparation for methylation extrac-
tion using Samtools version 1.3 (Li et al., 2009). Read-level measurements were obtained
using the Bismark methylation extractor, with options -p --ignore 5 --ignore._r2
5 —--ignore_3prime 1 --ignore_3prime_r2 1.Read measurementswere modmapped
if applicable (see section below), then converted to BSseq objects in R version 3.3.0 using
the bsseq package (Hansen, Langmead, and Irizarry, 2012). When creating BSseq objects,
forward- and reverse-strand reads were combined for each CpG.

Coordinate mapping between strains

To facilitate direct comparison of CpGs between strains, we converted genomic coordi-
nates using the “modmap” package from UNC Systems Genetics (Huang et al., 2013).
This package functions similarly to the liftOver tool (Hinrichs et al., 2006) on the UCSC
Genome Browser, and takes as input two files: 1) the user’s list of genomic coordinates to
be converted; 2) a strain-specific MOD file, again obtainable from UNC, describing how
to convert coordinates between strains. We used this package to convert a list of all CpG
locations in the CAST genome to their corresponding locations in the BL6 genome, and
vice versa. CpGs containing negative positions on either strand in the modmap output
(indicating the location resided within an insertion or deletion in the other strain) were
discarded.

Genomic mutation rate

The MOD file for CAST lists 20,539,633 bp of single nucleotide variants, 6,633,124 bp
of insertions, and 5,279,608 bp of deletions from the BL6 genome to CAST (including
autosomes, allosomes, and chrM). The length of the BL6 genome is 2,654,911,517 bp, for
an overall genomic mutation rate of (20,539,633 + 6,633,124 + 5,279,608) / 2,654,911,517 =
1.2%.

Methylation analysis

We used the BSmooth pipeline as implemented in the bsseq package from Bioconductor
(Hansen, Langmead, and Irizarry, 2012), as employed previously (Hansen, Timp, et al.,
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2011; Hansen, Sabunciyan, et al., 2014). We only considered CpGs which had a covered
of 2 or more in at least 3 out of 4 samples in each group. For our small DMR analysis,
the data was smoothed using BSmooth with the following (default) parameters (ns = 70,
h = 1,000, maxGap = 10%). For our large DMR analysis, the data was smoothed using
BSmooth with the following (default for this type of analysis) parameters (ns = 500, h
= 20,000, maxGap = 108). Following smoothing, we used t-statistics to obtain putative
differentially methylated regions as described previously, only analyzing CpGs where at
least 3 samples in a group had at least a coverage of 2. For small DMRs we employed a
t-stat cutoff of at least 4.6 (with a maxGap of 300) and for large DMRs we used a cutoff
of 2 (with a maxGap of 10,000). Significance was assessed using a stringent permutation
approach as described previously (Hansen, Sabunciyan, et al., 2014). Specifically, we used
permutations which balanced the two strains (ie., each permutation has 2 mice from each
strain in each group); there are 18 such permutations. For each DMR we calculated how
many permutations we saw a better null DMR; dividing by the total number of permuta-
tions gives us the quantity we call gFWER. To compare DMRs we are searching for DMRs
with many large CpG-specific t-statistics; to be precise we say one DMR is better than
another if it has a greater number of CpGs as well as a greater total sum of t-statistics
across all CpGs in the DMR. By comparing each putative DMR to all null DMRs in each
permutation we control for multiple testing and control the familywise error rate, a strin-
gent multiple testing error rate. The interpretation of a gWER of 1/18 for a given DMR
is that in 1 out of 18 permutations do we see a bigger permutation DMR anywhere in the
genome.

Overlap with functional regions

Regions were obtained and defined as described under external data. Given a set of
DMRs as well as a class of regions, we compute the odds ratio of enrichment by consid-
ering the overlap in CpGs between the two sets of regions, accounting for the fact that
not all CpGs where measured in our data. This approach naturally addresses issues of
non-uniform distribution of CpGs.

Genotyping

We used BS-SNPer version 1.0 (Gao et al., 2015) to perform CpG genotyping of CAST sam-

ples. BL6 samples were also run as a control. To provide adequate coverage for BS-SNPer,
Bismark-aligned BAM files from all four samples from the same strain were merged

into a metasample using Samtools and used as input. BS-SNPer was run with options
——minhetfreq 0.1 —--minhomfreq 0.85 —--minquali 15 —--mincover 10 —--maxcover
1000 ——minread2 2 --errorate 0.02 --mapvalue 20.

Four main files were produced for each metasample, and used for methylation analysis of
BS-SNPer output: a table of single nucleotide variants, and read-level methylation mea-
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surements in CG, CHG, and CHH contexts. Variants not marked as passing BS-SNPer’s
filtering criteria, or with an a frequency lower than 0.5, were excluded from analysis.
Surprisingly, BS-SNPer output does not easily include methylation quantification for po-
sitions which are not CpGs in the reference genome; we obtained these estimates through
looking at the CHG and CHH files, as follows. First, measurements in the CG file that
overlapped a C/N variant in the C position or a G/N variant in the G position were
counted as lost CpGs and discarded. Second, measurements from the CHG or CHH files
that overlapped N/C or N/G variants producing a CpG position were counted as gained
CpGs and added to the CG file. Global methylation was then computed from this edited
measurement table.

External data

Genomic intervals for ENCODE/LICR histone (ENCODE/LICR Histones 2016) and TFBS
tracks (ENCODE/LICR TFBS 2016), RefSeq genes (Refseq genes 2016), and CpG islands
(CpG Islands 2016) were obtained via the UCSC Genome Browser. Histone and TFBS
data were generated by the ENCODE Consortium (ENCODE Project Consortium, 2012)
and the Bing Ren laboratory, and are also available at GEO accessions GSE31039 and
GSE36027. ENCODE filenames as listed in the UCSC download server are provided in
Table 5. Promoter regions of Refseq genes were defined as the 5-kb region flanking a
gene’s transcription start site. CpG shores were defined as the 2-kb regions upstream and
downstream of a CpG island.
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Tables
Table 1. Number of reads and alignment statistics.
BL6 CAST
Sample nReads nAligned aRate’ CpG’ nAligned aRate’ CpG?’
BL6-1 165,455,305 92,198,446 55.7 58 81,398,771 49.2 4.7
BL6.2 155,446,345 85,632,105 55.1 55 75,566,778 48.6 4.5
BL6.3 165,687,191  99,880547 60.3 6.8 87,713,251 52.9 5.5
BL6.4 172,926,402 101,892159 58.9 6.7 89,939,416 52.0 5.5
CAST1 171,357,014 107,621,399 62.8 6.3 121,678,485 71.0 6.4
CAST2 161,768,892 90,231,861 55.8 6.1 102,071,949 63.1 6.3
CAST.3 154,973,730 86,822,723 56.0 55 98,305,382 63.4 5.7
CAST 4 188,134,260 90,420,870 48.1 6.0 102,599,995 54.5 6.2
falignment rate
beoverage of CpGs
Table 2. Number of CpGs in different strains.
Autosomes Allosomes
BL6 CAST BL6 CAST

Common CG 18,140,628 916,392

TG/CA in other strain 1,601,446 1,669,901 43,330 45,041

Lost in other strain 522,845 535,219 15,394 15,838

Unmappable 99,781 90,356 2,676 2,438

Total 20,364,700 20,436,104 977,792 979,709
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Table 3. Enrichment of strain-specific DMRs in genomic features.

p-value

Feature n log,(OR)
Refseq promoters 197 0.87
CpG Islands 61 0.31
CpG Shores 157 1.18
H3K4mel 625 3.06
H3K4me3 182 1.86
H3K27ac 268 1.97
CTCF 136 1.64
Pol2 53 0.02
Any feature above 750 3.03

<22x10716
<33 x10712
<22x10716
<22x10716
<22x10716
<22x10716
<22x10716
0.66

<22x10716

Table 4. BS-SNP results on pooled CAST samples.

BL6-unique CpGs

2,285,477

BL6-unique CpGs identified by BS-SNPer 542,642

CAST-unique CpGs

2,266,009

CAST-unique CpGs identified by BS-SNPer 1,153,611

Table 5. Filenames for ENCODE data.

Filename

wgEncodelLicrHistonelLiverH3k27acMAdult8wksC57bl16StdPk.broadPeak
wgEncodelLicrHistoneLiverH3k4melMAdult8wksC57bl6StdPk.broadPeak
wgEncodelLicrHistoneLiverH3k4me3MAdult8wksC57b16StdPk.broadPeak
wgEncodelLicrTfbsLiverCtcfMAdult8wksC57bl6StdPk.broadPeak
wgEncodelLicrTfbsLiverPol2MAdult8wksC57bl6StdPk.broadPeak
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Figure 1. Global methylation. Data from each strain was aligned to two different
reference genomes and global methylation across the autosomes (the average
methylation across all CpGs) was computed. The two strains appear to have different
levels of global methylation when both strains are aligned to the same genome, but
which strain has lowest methylation depends on which genome the samples were

aligned to.
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Figure 2. Mapping biases causes apparent large-scale methylation changes at the
megabase level. The same 2.4 Mb genomic region is depicted in the coordinate systems
of different genomes, and with different data processing. (a,b) The same samples were
mapped to either (a) the BL6 or (b) the CAST genome. (c) Samples were mapped to
strain-specific genomes, CpGs were put in a common coordinate system (BL6) and
subsequently smoothed (Methods).
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Figure 3. Mapping biases causes apparent focal methylation changes at the kilobase
level. The same 13 kb genomic region is depicted in the coordinate systems of different
genomes, and with different data processing. (a,b) The same samples were mapped to
either (a) the BL6 or (b) the CAST genome, followed by smoothing. Ticks indicate CpGs
either common to the two genomes (upward ticks) or unique to the genome used for
mapping (downward ticks). (c) Samples were mapped to strain-specific genomes, CpGs
were put in a common coordinate system (BL6) and subsequently smoothed (Methods).
Ticks indicate CpGs in BL6 (upward ticks) or CAST (downward ticks).
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Figure 4. The distributions of strain-specific CpG mutations. (a) For each 100kb bin in
the mouse genome, we computed the percentage of strain-specific CpGs relative to the
total number of CpGs in that strain. (b) Same data as in (a) but plotted across a 10 Mb
region on chromosome 4.
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Figure 5. Global methylated computed on CpGs present in both strains. Like Figure 1
but computed using only the 19 million CpGs present in both strains. There is now little
to no difference between the different strains and the different genomes used for

alignment.
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Figure 6. The effect of using personal genomes on methylation differences. (a,b) For
each of 2,865 DMRs obtained from a biased analysis where all samples were aligned to
BL6, we computed methylation differences across the region using the biased analysis as
well as alignment to personal genomes. We compare these estimates, stratified by
whether the DMR is also found using personal genomes (a) or not (b). (¢) Number of
unique CpGs in the two strain genomes inside biased DMRSs, stratified by whether the
DMR is also found using personal genomes or not. (d) Bias in methylation (defined as
difference between the mean difference obtained by the two alignment strategies) as a
function of the number of BL6 unique CpGs in the DMR.
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Figure 7. An example of alignment bias not caused by CpG mutations. A 11kb
genomic region containing no CpGs unique to either of the two mouse strains, depicted
using different alignment strategies. (a) Alignment to the BL6 genome. (b) Alignment to
the CAST genome. (c) Alignment to personal genomes. (d) Alignment to the BL6
genome, followed by discarding any CpGs which are ungiue to either of the strains.
Tickmarks indicate the position of CpGs; upwards ticks marks are CpGs with average
coverage greater than 100.
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Figure 8. The distribution of strain unique CpGs in personal DMRs. Personal DMRs

were split into two groups depending on whether they overlap shared DMRs or not.
Depicted is the distribution of strain unique CpGs in a DMR, in the two groups.
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