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Abstract 21 

Periodic bottlenecks in population sizes are common in natural (e.g., host-to-host transfer of 22 

pathogens) and laboratory populations of asexual microbes (e.g., experimental evolution) and 23 

play a major role in shaping the adaptive dynamics in such systems. Existing theory predicts that 24 

for any given bottleneck size (N0) and number of generations between bottlenecks (g), 25 

populations with similar harmonic mean size (HM=N0g) will have similar extent of adaptation 26 

(EoA). We test this widely cited claim using long-term evolution in Escherichia coli populations 27 

and computer simulations. We show that, contrary to the predictions of the extant theory, HM 28 

fails to predict and explain EoA. Although larger values of g allow populations to arrive at 29 

superior benefits by entailing increased number of individuals, they also lead to lower EoA. We 30 

also show analytically how the extant theory overestimates the effective population size relevant 31 

for adaptation. Altering the current theory using these insights, we propose and demonstrate that 32 

N0/g (and not N0g) successfully predicts EoA. Our results call for a re-evaluation of the role of 33 

population size in two decades of microbial population genetics and experimental evolution 34 

studies. These results are also helpful in predicting microbial adaptation, which has important 35 

evolutionary, epidemiological and economic implications. 36 

 37 

 38 

 39 

 40 
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Introduction 42 

Population size is a key demographic parameter that affects several ecological and evolutionary 43 

processes including the rate of adaptation (Gerrish and Lenski, 1998; Lanfear et al., 2014; Wilke, 44 

2004; Desai et al., 2007; Samani and Bell, 2010), efficiency of selection (Petit and Barbadilla, 45 

2009), organismal complexity (LaBar and Adami, 2016), fitness decline (Katju et al., 2015), 46 

repeatability of evolution (Lachapelle et al., 2015; Szendro et al., 2013), etc. Interestingly 47 

though, what constitutes a proper measure of population size often depends on the 48 

ecological/evolutionary question being addressed (Charlesworth, 2009). For example, for an 49 

ecologist studying population-dynamics, the total number of individuals is often the appropriate 50 

metric (Dey and Joshi, 2006). On the other hand, for a conservation biologist studying the loss of 51 

heterozygosity (Ellstrand and Elam, 1993), or an evolutionary biologist who wishes to predict 52 

how much a population would adapt over a given time relative to the ancestral state (i.e., extent 53 

of adaptation or EoA) (Samani and Bell, 2010), the effective population size (Ne) might be a 54 

more suitable measure (Campos and Wahl, 2009; Charlesworth, 2009; Desai et al., 2007; Wahl 55 

and Gerrish, 2001). Consequently, it is crucial to use the relevant measure of population size 56 

while constructing or empirically validating any evolutionary theory.  57 

Experimental evolution using asexual microbes has been one of the key tools in validating 58 

several tenets of evolutionary theory (reviewed in (Kawecki et al., 2012)). Most such studies 59 

deal with populations that face regular and periodic bottlenecks during their propagation 60 

(Kawecki et al., 2012). Since the absolute population size keeps changing regularly in such 61 

experiments, the harmonic mean population size (HM) is often estimated as the ‘effective 62 

population size’ in such studies (Lenski et al., 1991; Wahl and Gerrish, 2001; Campos and Wahl, 63 

2010). Specifically, if a population grows from size N0 to Nf via binary fissions within a growth 64 
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phase, and is diluted back periodically to N0 by random sampling at the end of the growth phase, 65 

then the effective population size is given by Ne ≈ N0*log2(Nf/N0) = N0g, where g refers to the 66 

number of generations between successive bottlenecks and N0g is the harmonic mean size 67 

(Lenski et al., 1991). Other measures of the adaptively relevant population size used in 68 

experimental evolution studies are conceptually similar, and are of the form Ne = N0gC, where C 69 

is a constant (Desai et al., 2007; Wahl and Gerrish, 2001; Campos and Wahl, 2009; Samani and 70 

Bell, 2010).  71 

Several experimental studies, employing a variety of asexual model organisms, have used HM 72 

for quantifying the effective population size (Desai et al., 2007; Samani and Bell, 2010; Lenski 73 

et al., 1991; Raynes et al., 2012, 2014; De Visser and Rozen, 2005; Rozen et al., 2008). 74 

However, there is no direct empirical validation of the suitability of HM as a measure of 75 

population size that can explain the EoA. More critically, recent findings have questioned the 76 

validity of HM as the evolutionarily relevant measure of population size in both asexual (Raynes 77 

et al., 2014) and sexual (Jiménez-Mena et al., 2016) organisms. Here we address this issue using 78 

a combination of agent-based simulations and long-term evolutionary experiments using 79 

Escherichia coli. We first test the suitability of HM as a predictor of EoA, and show that both 80 

real bacterial as well as simulated, populations with similar values of N0g can have markedly 81 

different adaptive trajectories. Secondly, we demonstrate that although increasing the value of g 82 

promotes adaptation through an increased supply of variation, it also impedes adaptation by 83 

restricting the spread of beneficial mutations, brought about by reduced efficiency of selection. 84 

Thus, the resultant EoA is an interplay between these two opposing aspects of g and contrary to 85 

the extant theoretical expectations (Campos and Wahl, 2009; Heffernan and Wahl, 2002), EoA 86 

has a negative relationship with g. Thirdly, we show that populations with similar HM can not 87 
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only have different fitness trajectories, but can also differ markedly in terms of how frequency-88 

distribution of fitness amongst individuals changes during adaptation. We then show that, for a 89 

given mutation rate, N0/g (we call this quantity the adaptive size, AS) is a much better predictor 90 

of EoA trajectories, i.e., populations with similar AS have similar fitness trajectories and 91 

populations with higher AS adapt faster. Finally, we demonstrate that during adaptation, 92 

populations with similar AS can converge on similar trajectories of EoA using mutations with 93 

widely different fitness effects. Our findings challenge the current notion of how population size 94 

influences adaptation.  95 

 96 

Materials and Methods 97 

Experimental evolution  98 

Selection regimens: 99 

We propagated three distinct regimens (LL, SL, and SS) of Escherichia coli MG 1655 100 

populations for more than 380 generations. 8 independently evolving replicate lines each of LL 101 

(large HM and large Nf, selection in flasks; culture volume: 100ml), SL (small HM but large Nf, selection 102 

in flasks; culture volume: 100ml), and SS (small HM and small Nf, selection in 24-well plates; culture 103 

volume: 1.5 ml) were derived from a single Escherichia coli K-12 MG1655 colony and propagated in 104 

Nutrient Broth with a fixed concentration of an antibiotic cocktail containing a mixture of three 105 

antibiotics at sub-lethal concentrations (See Supplementary Methods). The three population 106 

regimens experienced different numbers of evolutionary generations (g) between periodic 107 

bottlenecks (i.e., before they were sub-cultured). SS and SL had similar HM (i.e., N0g) albeit 108 

obtained through different combinations of N0 (SS>SL) and g (SL>SS) such that the Nf of SL 109 
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was approximately 73 times larger than that of SS. The Nf of SL was similar to that of LL, while 110 

the harmonic mean size of LL was > 16,500 times larger than that of SL and SS (Table S1). LL 111 

was bottlenecked 1/10 every 12 hours, SS was bottlenecked 1/10
4
 every 24 hours, and SL was 112 

bottlenecked 1/10
6
 every 36 hours. 1 ml cryostocks belonging to each of the twenty four independently 113 

evolving populations were stored periodically.  114 

Fitness assays: To reconstruct the evolutionary trajectories of our experimental bacterial 115 

populations, we measured bacterial growth using an automated multi-well plate reader (Synergy HT, 116 

BIOTEK ® Winooski, VT, USA). Bacterial growth was measured in the same environment that the 117 

populations experienced during evolution using OD at 600 nm as a proxy for population density. Bacteria 118 

from the cryostocks belonging to each of the 24 populations were grown in 96 well plates. Each 119 

cryostock-derived population was assayed in three measurement-replicate wells in a 96 well plate. Each 120 

well contained 180 μl growth medium containing 1:10
4
 diluted cryostock. The plate was incubated at 121 

37ᴼC, and shaken continuously by the plate-reader throughout the growth assay. OD readings taken every 122 

20 minutes during this incubation resulted in sigmoidal growth curves. Fitness measurements were done 123 

using cryostocks belonging to multiple time-points in order to reconstruct evolutionary trajectories. While 124 

making trajectories, it was made sure that every 96 well-plate contained populations belonging to similar 125 

time-points (in terms of number of generations). We used the carrying capacity (K) and maximum 126 

population-wide growth rate (R) as the measure of fitness (Novak et al., 2006). K of a population 127 

was defined as the maximum OD value attained over a period of twenty four hours (the highest 128 

value in the sigmoidal growth curve) while R was estimated as the maximum slope of the growth 129 

curve over a running window of four OD readings (each window spanning one hour) (Karve et 130 

al., 2015; Ketola et al., 2013; Vogwill et al., 2016; Lachapelle et al., 2015). Fitness measurements 131 

were done using cryostocks belonging to multiple time-points in order to reconstruct evolutionary 132 
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trajectories. While making trajectories, it was made sure that every 96 well-plate contained populations 133 

belonging to similar time-points (in terms of number of generations).  134 

Statistics: Bacterial fitness was analyzed for each of the two growth parameters (K and R) using a nested-135 

design ANOVA with population regimen-type (SS, SL or LL) as a fixed factor and replicate-line (1-8, 136 

nested in population-type) as a random factor. We corrected for the error derived from multiple tests 137 

using Holm-Šidàk correction (Abdi, 2010). Since we observed adaptive trait trajectories with curves 138 

of diminishing returns throughout our study, we used extent of adaptation (EoA) at any given 139 

time to compare the three regimens. Throughout this study, EoA refers to the amount of fitness 140 

gained with respect to the ancestor. 141 

 142 

Simulations of microbial evolution 143 

We simulated fission-based asexual population growth under resource limited conditions to 144 

further investigate the issue and generalize our results. In our model, an individual bacterium was 145 

characterized by three principal parameters: efficiency, threshold, and body-mass. The 146 

simulation began with a fixed amount of resources available in the environment, utilized by the 147 

bacteria for growth. A typical individual was represented by an array (coded in the C 148 

programming language) that specified three principal parameters: (1) Bodymass, (2) Efficiency, 149 

and (3) Threshold. Bacteria consumed resources in an iterative and density-dependent manner. 150 

The parameter Bodymassi of a typical individual (say individual i) represented how big the 151 

particular individual is during a given iteration. Its efficiency (K_effi) specified how much food it 152 

assimilated per iteration. If population size/ K_effi < 1, 10*(1 - (population size/ K_effi)) units 153 

were added to Bodymassi. Otherwise, Bodymassi remained unchanged. Bodymassi increased with 154 

cumulative assimilation. The moment Bodymassi becomes greater than or equal to thresi (its 155 
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threshold parameter), the individual i underwent binary fission and divided into two equally 156 

sized daughter individuals. Each fission event had a fixed probability of giving rise to mutations 157 

based on a mutation rate that remained constant for all individuals in the population. K_effi and 158 

thresi mutate independently, and were the only two parameters that could undergo mutation. The 159 

mutated value was drawn from a static normal distribution with the frequency of deleterious 160 

mutations being much higher than that of beneficial mutations, which is in line with 161 

experimental observations (Kassen and Bataillon, 2006; Eyre-Walker and Keightley, 2007). The 162 

distribution of mutational effects remained fixed throughout the simulation (Kassen and 163 

Bataillon, 2006) due to which, EoA was expected to eventually approach a plateau. When the 164 

population ran out of resources (once the amount of body-mass accumulated per unit time by the 165 

population went below a pre-decided threshold so that the sigmoidal curve reached a plateau), it 166 

was sampled according to the sampling ratio being studied. The above process was repeated for 167 

400 generations, where each generation represented two-fold growth in population size (see 168 

Supplementary Methods for a detailed description of the model).  169 

 170 

Results 171 

HM failed to predict and explain the EoA trajectories of experimental populations. 172 

HM failed to explain the EoA trajectories of experimental populations. In spite of having similar 173 

values of N0g, the SL and SS regimens had markedly different adaptive (EoA) trajectories for K 174 

(Fig. 1a; See Table S3 for the p-values) as well as R (Fig. 1b; Table S4). This observation is 175 

consistent with recent empirical findings that question the validity of harmonic mean as the 176 

effective population size (Raynes et al., 2014). Surprisingly, SS had a larger overall EoA than SL 177 
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despite having lower Nf. This suggests that bottleneck intensities might have a greater effect on 178 

EoA trajectories than absolute population sizes. We grew LL as a control regimen in order to 179 

address whether Nf itself could predict EoA trajectories. Despite having Nf similar to SL, LL 180 

typically had much larger EoA than SL.  181 

 182 

Fig. 1. Experimental EoA trajectories in terms of carrying capacity and maximum growth 183 

rate. (a) EoA of carrying capacity (K). (b) EoA of maximum growth rate (R). Data points show 184 

mean ± SEM for 8 replicates. * refers to cases when all three regimens are significantly different 185 

from each other (Tukey post hoc p < 0.05). # refers to significant difference across LL-SL and 186 

LL-SS, but not SL-SS (See Tables S3 and S4). SS and SL have markedly different adaptive 187 

trajectories despite having similar harmonic mean population sizes.   188 

 189 

Simulations also revealed that HM fails to explain and predict adaptive trajectories. 190 

To obtain greater and generalizable insights into the various determinants of EoA trajectories, we 191 

used an Individual Based Model (IBM) with different values of N0 and g, such that the product 192 

(N0g) remained similar. If N0g were a good predictor of how much a population is expected to 193 

adapt, then these three treatments were expected to show similar EoA (Campos and Wahl, 2009; 194 

Wahl and Gerrish, 2001). This was not found to be the case for both K (Fig. 2a) and R (Fig. 2b), 195 

which was consistent with our experimental observations of EoA trends in SL and SS (Fig. 1). 196 
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XX’, SS’, and SL’ were also found to be remarkably different in terms of the adaptive increase 197 

in average efficiency of individuals (Fig. S4a). We also found that populations with similar 198 

harmonic mean sizes could differ remarkably in terms of the frequency distributions of the 199 

efficiency parameters amongst their constituent individuals (Fig. S5). In order to elucidate why 200 

N0g could not explain EoA trajectories, we determined how EoA varied with N0 and g, 201 

independently. 202 

 203 

Fig. 2. Adaption in three populations with similar harmonic mean size. Data points show 204 

mean EoA ± SEM for 8 replicates. (a) Adaptation in terms of normalized carrying capacity (K). 205 

(b) Adaptation in terms of normalized maximum growth rate (R). XX’, SS’ and SL’ had similar 206 

harmonic mean sizes and represent lenient, medium and harsh bottlenecks with N0 ≈ 3.6*10
3
, 207 

1.8*10
3

, 9*10
2 

and bottleneck ratio of 1/10; 1/10
2
,1/10

4 
respectively. Populations with similar 208 

harmonic mean size can have markedly different EoA trajectories. 209 

 210 

 211 

EoA varied positively with N0 but negatively with g. 212 

If N0g were a good measure of the adaptation effective population size (i.e., the measure of 213 

population size which has a positive relationship with EoA and can explain EoA trajectories), 214 
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then increasing either or both of N0 and g should lead to greater EoA. We tested this intuitive 215 

prediction via simulations using several combinations of N0 and g. Although EoA was found to 216 

increase with greater N0 (Fig. S6a and S6b), the relationship between EoA and g turned out to be 217 

negative (Fig. 3; Fig. S6c and S6d). The latter result implied that large values of Nf impeded 218 

adaptation in populations even when the population size during the bottleneck (N0) was held 219 

constant. The nature (sign) of this relationship between EoA and g was found to be robust to 220 

changes in mutation rate over a 100-fold range in our simulations (Fig. S7).   221 

 222 

 223 

Fig. 3. EoA trajectories of populations with similar bottleneck size (N0) but different 224 

bottleneck ratios. Data points show mean ± SEM; 8 replicates. All the population regimens 225 

shown here had N0 ≈ 900. Bottleneck ratios: BN1: 1/10; BN2: 1/10
2
; BN4:1/10

4
. Starting N0 ≈ 226 

900.  Larger values of g lead to reduced EoA for a given number of generations. 227 

 228 

A negative relationship between EoA and g is particularly surprising because, in populations with 229 

similar N0, increase in g is expected to lead to an increase in the available variation. This is 230 

because a larger value of g automatically means an increase in Nf with a concomitant increase in 231 

the number of fissions per evolutionary generation (and hence chances of mutation). All else 232 
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being equal, this should have led to greater EoA. Since that was not the case, we went on to 233 

check if these slowly adapting populations (with similar N0 but higher g values) were limited by 234 

the availability of variation, both qualitatively and quantitatively.  235 

 236 

The availability of beneficial traits could not explain why EoA varied negatively with g. 237 

Consider SM1 and SM4, treatment regimens which had similar starting population size (N0) after 238 

the first bottleneck but had g values of 3.32 and 13.28 respectively (SM refers to sampling ratio, 239 

expressed in terms of log(10) (see Fig. 4 and 5). SM1 grew to a final size of 10N0 in one growth 240 

phase (i.e., before bottleneck), while SM4 grew to 10
4
N0. In other words, SM1 faced a periodic 241 

bottleneck of 1/10 whereas SM4 was sampled 1/10
4
 periodically. Since SM4 experienced 242 

approximately 279 times more fission events than SM1 per evolutionary generation, the former 243 

was expected to undergo more mutations and consequently show more variation. Moreover, SM4 244 

was also expected to arrive at very large-effect benefits that were so rare that the probability of 245 

SM1 stumbling upon them was vanishingly low due to its lower mutational supply. As expected, 246 

SM4 was not found to be limited by the supply of variation as it had a consistently higher within-247 

population coefficient of variation in terms of efficiency values than SM1 (Fig. 4). SM4 also had 248 

a continual access to highly fit genotypes (Fig. 5a) that were inaccessible to SM1 throughout the 249 

simulations. On the basis of these observations, EoA can be expected to vary positively with g 250 

and thus SM4 was expected to be fitter than SM1 at a given point of time in general. However, 251 

counterintuitively, SM4 had a consistently lower EoA than SM1 (Fig. 4). Evidently, harsher 252 

periodic sampling impeded adaptation despite resulting in increased substrate for selection. We 253 

also found that although higher census size allowed SM4 to arrive at extremely rare mutations 254 

with very large benefits, these mutations failed to survive the harsh periodic bottlenecks by rising 255 
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to large enough frequencies (Fig. S8). This explains why arriving at these rare mutations with 256 

very large benefits did not make SM4 adapt more than SM1 in a sustained manner. However, 257 

this does not explain why the EoA in SM4 was consistently lower than that of SM1.  258 

 259 

Fig. 4. Trajectories of efficiency in terms of across-population mean and within-population 260 
coefficient of variation. The within-populations coefficient of variation (CV) was computed for 261 
each replicate population across its constituent individuals using discrete frequency distributions. 262 
The error bars represent SEM (8 replicates). Both SM1 and SM4 had similar bottleneck size (N0 263 
≈ 900). SM1 experienced a periodic bottleneck of 1/10 whereas SM4 experienced a periodic 264 
bottleneck of 1/10

4
. SM4 had a consistently lower EoA than SM1 despite having consistently 265 

more variation. 266 

 267 

The negative relationship between EoA and g can be explained in terms of efficiency of 268 

selection. 269 

EoA depends on an interplay between two factors: (I) generation of beneficial variation and (II) 270 

an increase in the frequency of beneficial variants as an interaction between selection and drift. 271 

The first depends upon the supply rate of beneficial mutations (Sniegowski and Gerrish, 2010), 272 

and, as shown above, the relative availability of beneficial mutations across SM1 and SM4 does 273 

not explain why SM4 was adaptively inferior to SM1. An increase in the frequency of beneficial 274 
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variants is aided by the efficiency of selection (in eliminating deleterious mutations and 275 

spreading beneficial ones), which is reflected by how quickly the modal phenotype of a 276 

population approaches its best phenotype. Since all our simulations were started with a 277 

symmetric (uniform) distribution of efficiency and threshold amongst individuals, directional 278 

selection was expected to give rise to a negatively skewed distribution of efficiency. In such 279 

negatively skewed distributions, the smaller the difference between the mode and the mean, the 280 

higher would be the efficiency of selection. Selection operated more efficiently in SM1 than in 281 

SM4 as the modal phenotypic class converged with the best available phenotypic class in most 282 

SM1 populations (as reflected by the string of zeros in SM1 (Fig. 5b)), but failed to do so in all 283 

SM4 populations. Moreover, the distance between the location of the modal class and the mean 284 

class was much smaller in SM1 as compared to SM4 (Fig. 5c).  285 
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 286 

Fig. 5. Distributions of phenotypic effects across individuals during adaptation. The 287 
individuals of each simulated population (8 replicates each of SM1 and SM4) were classified 288 
into to a discrete frequency distribution of their efficiency values (50 static classes). Higher class 289 
indices correspond to higher efficiencies. (a) The best phenotype (in terms of efficiency) 290 
explored by SM4 was consistently fitter than the best phenotype explored by SM1. The modal 291 

phenotype quickly converged to the best available phenotype in all but one SM1 populations but 292 
failed to do so in all SM4 populations (b). The mean phenotype in SM1 approached the best 293 

phenotype very closely (b and c). However, there was a consistently larger gap between the best 294 
phenotype and the modal phenotype in SM4 (c) and an even larger one between its best and 295 
mean phenotype (b and c). 296 
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N0/g is a better predictor of EoA than N0g. 297 

Since our simulations suggested that the rate of adaptation is positively related to N0 and 298 

negatively related to g, we went on to test if N0/g is a better predictor of adaptive trajectories than 299 

N0g. N0/g indeed turned out to be a better predictor of EoA trajectories not only in our 300 

simulations (Fig. 2, 6, and S9), but also for our experiments. The N0/g values of LL, SS and SL 301 

populations were approximately 3.01*10
9
, 1.13*10

4
, and 5.02*10

3
, respectively, which led to a 302 

predicted EoA trend of LL>SS>SL, which was observed for both K and R in the experiments 303 

(Fig. 1). We call the quantity N0/g the adaptive size (AS) and propose that AS should be used to 304 

make predictions about EoA in periodically bottlenecked asexual populations. We also found that 305 

populations with similar AS can have markedly different trait distributions at any given time 306 

despite having very similar trajectories of mean fitness (Fig. S10). Evidently, similar 307 

distributions of EoA-affecting traits amongst individuals imply similar mean EoA trajectories, but 308 

the converse is not true. We elaborate on this result in the discussion section.  309 

 310 

Fig. 6. EoA trajectories in terms of normalized carrying capacity. Populations with similar 311 

N0/g (LBbar and HB) match more closely in terms of mean adaptive trajectories than 312 

populations with similar N0g (LB and HB). LB: N0 ≈ 3600, bottleneck ratio: 1/10; HB: N0 ≈ 900, 313 

bottleneck ratio: 1/10
4
; LBbar: N0 ≈ 225, bottleneck ratio: 1/10.  314 

 315 
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 316 

Discussion 317 

Periodic bottlenecks lead to increased variation but reduced adaptation. 318 

The growth of many natural asexual populations is punctuated by episodic bottlenecks caused 319 

by, for example, abrupt dissociation from hosts or spread of infections across hosts (reviewed in  320 

(Abel et al., 2015)), etc. Moreover, periodic sampling during sub-culturing is a common feature 321 

of most asexual populations propagated during experimental evolution studies (Kawecki et al., 322 

2012; Lenski et al., 1991). Therefore it is important to appreciate the complex role played by 323 

periodic bottlenecks in such populations. Most experimental evolution studies with asexual 324 

microbes are started with either genetically uniform/clonal replicate populations or a relatively 325 

small inoculum. Thus, the generation and survival of de novo beneficial variation is the principal 326 

basis of adaptation in such populations (Kawecki et al., 2012; Barrick et al., 2009). Populations 327 

that experience more binary fissions per generation are expected to generate more de novo 328 

beneficial variation and thus, to have a higher extent of adaptation. The number of binary 329 

fissions per generation is given by N0*(2
g
-1)/g (see below), which varies positively with g (Fig. 330 

S11). Therefore, if EoA depends solely upon the amount of variation generated by mutations, 331 

then all else being equal, EoA is expected to vary positively with N0 and g, which is consistent 332 

with the expectation that HM (≈N0g) should be a good measure of the adaptive effective 333 

population size. However, this line of reasoning disregards the loss of variation during periodic 334 

bottlenecks, which increases in intensity with increasing g due to decrease in the fraction of the 335 

population being sampled. It has been predicted that the probability that a beneficial mutation of 336 

a given size survives a bottleneck varies negatively with the harshness of sampling (i.e., 337 

increasing g) (Wahl et al., 2002). However, since the overall rate of adaptation depends upon the 338 
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product of beneficial mutational supply rate and survival probability, it has also been suggested 339 

that bottlenecked populations may adapt faster than populations of constant size (Wahl et al., 340 

2002). Heffernan and Wahl have proposed that exponential growth is a more potent evolutionary 341 

force than abrupt periodic bottlenecks, and increasing g increases the probability of fixation of a 342 

beneficial mutation (Heffernan and Wahl, 2002). The sign of the relationship between EoA and g 343 

has not been put to empirical test yet, but, as shown above, the extant formula (HM) for the 344 

adaptive effective size implies a positive relationship (Campos and Wahl, 2009; Wahl and 345 

Gerrish, 2001). Our experiments (Fig. 1) and simulations (Fig. 2) did not support this prediction 346 

and EoA was found to have a negative relationship with g (Fig. 3).  347 

In order to explain this discrepancy, we simulated populations with similar values of N0 (i.e., 348 

bottleneck size) but different degrees of harshness of the bottlenecks, namely SM1 (lenient 349 

bottleneck, g =3.32) and SM4 (harsh bottleneck, g = 13.28) (Fig. 4 and Fig. 5). The high fitness 350 

phenotypes had a higher probability of getting lost due to the harsh sampling in SM4 (1 in10
4
) 351 

than in SM1 (1 in 10
1
) as reflected in Fig. S8. Moreover, asexual reproduction prevents multiple 352 

alternative beneficial mutations from coming together in any given individual. Therefore, 353 

alternative beneficial mutations compete with each other for fixation. This competition, also 354 

known as clonal interference (CI), impedes the speed of increase in average population-wide 355 

fitness (Gerrish and Lenski, 1998; Wilke, 2004; Park and Krug, 2007; Sniegowski and Gerrish, 356 

2010). This is because increasing the availability of beneficial mutations beyond a particular 357 

level does not result in a concomitant increase in adaptation rate, thus leading to a relationship of 358 

diminishing returns between adaptation-rate and beneficial mutational supply (Gerrish and 359 

Lenski, 1998). Since the intensity of CI varies positively with the number of such competing 360 

mutations (Gerrish and Lenski, 1998), the effects of CI would be much more pronounced in SM4 361 
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populations which have ~279-times greater number of mutations per generation compared to the 362 

SM1 populations.  363 

 364 

N0/g determines the amount of variation that ends up surviving the bottleneck. 365 

If binary fission is the basis of exponential growth from N0 to Nf (one growth phase), the number 366 

of fissions is given by Nf - N0. The number of rounds of fissions that take place during this 367 

growth phase is log2(Nf /N0), which is equal to g. Therefore, the number of new mutations that 368 

occur during this growth phase (from N0 to Nf) is given by µ*N0*(2
g
 – 1) where µ is the mutation 369 

rate. At the end of the growth phase, the population is bottlenecked by random sampling of N0 370 

individuals. Ignoring the arrival times and fitness differences across mutations and plugging in 371 

Nf/N0=2
g
, the number of new mutations that would putatively end up surviving this sampling 372 

from Nf individuals to N0 individuals would then be given by (N0/Nf)*µ*N0*(2
g
 – 1) = (2

-g
)* 373 

µ*N0*(2
g
 – 1). If 2

g
 >> 1 (i.e., if g is large), then 2

g
 – 1 ≈ 2

g
 and (N0/Nf)*µ*N0*(2

g
 – 1) ≈ µ*N0. 374 

Populations that face different bottleneck ratios undergo different number of bottlenecks (and 375 

growth phases) in a given number of generations. For example, a population that faces a periodic 376 

bottleneck of 1/10
4
 undergoes 30 growth phases in 400 generations whereas a population that 377 

faces a periodic bottleneck of 1/10 undergoes 120 growth phases in the same number of 378 

generations. Therefore, in order to compare different populations, at a given point of time, in 379 

terms of the amount of variation that survives sampling, we need to calibrate this quantity with g, 380 

the number of generations per growth phase. Since the growth phase from N0 to Nf spans g 381 

evolutionary generations, the number of new mutations created per generation that would end up 382 

surviving the bottleneck would be given by µ*N0/g. We acknowledge that this is a simplification 383 
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and in reality, both arrival times and mutational competition are significant factors that shape 384 

evolutionary trajectories (Sniegowski and Gerrish, 2010) (see below for further discussion).  385 

 386 

Populations with remarkably different beneficial mutations can show similar EoA. 387 

We emphasize that N0/g can be a good predictor of mean adaptive trajectories (Fig. 6) but not 388 

necessarily of the trait-distributions (Fig. S10). In other words, populations with markedly 389 

different absolute sizes but similar N0/g can use beneficial mutations of different effect sizes to 390 

arrive at similar mean EoA values in a given amount of time (Fig. S10). This explains how 391 

populations that are different in terms of absolute sizes can show similar EoA trajectories. Since 392 

fixation probabilities associated with individual mutations determine how trait distributions 393 

change over time during adaptation (Heffernan and Wahl, 2002; Patwa and Wahl, 2008), the 394 

above results also suggest that knowing the fixation probabilities may not enable one to predict 395 

EoA trajectories. 396 

 397 

Conventional measures have overestimated the effective population size for adaptation. 398 

Our findings have major implications for comparing results across experimental evolution 399 

studies. Adaptive dynamics in asexuals are highly influenced by the beneficial mutation supply 400 

rate in the population (UbNe), where Ub is the rate of spontaneous occurrence of beneficial 401 

mutations per individual per generation and Ne is the effective population size (reviewed in 402 

(Sniegowski and Gerrish, 2010)). In the context of a given environment, it can be assumed that 403 

Ub is a constant fraction (k) of µ, such that Ub = kµ. As shown above, µN0/g is an approximate 404 

measure of the number of new variants created per generation that are expected to survive 405 
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bottlenecking (if the arrival times of mutations and competition across mutations are ignored). 406 

Therefore it is expected that the quantity kµN0/g would reflect the beneficial mutational supply 407 

per generation. Therefore, by definition, kµ(N0/g) ≈ UbNe, which implies that Ne ≈ N0/g (since Ub 408 

= kµ). Unfortunately, N0/g is an overestimate of Ne because µN0/g overestimates the number of 409 

new variants created per unit time by ignoring the arrival times of mutations and mutational 410 

competition. However, since N0 g is g
2
 times larger than N0/g, and g typically varies between 3 411 

and 20 in most experimental evolution studies (Kawecki et al., 2012), it is clear that the 412 

traditional formula for HM can overestimate the adaptive effective population size by 1 to 2 413 

orders of magnitude. Moreover, since the number of competing beneficial mutations per 414 

generation (a measure of the intensity of clonal interference) varies positively with Ne 415 

(Sniegowski and Gerrish, 2010), our study highlights that the conventional formula also 416 

overestimates the extent of clonal interference in periodically bottlenecked populations which 417 

can potentially complicate the interpretation of empirical studies on this topic (Desai et al., 418 

2007). Furthermore, our results can be used to explain some of the previously observed 419 

discrepancies in terms of adaptive effective population sizes in experimental evolution studies. 420 

For example, a recent study found that three experimental asexual populations with similar 421 

values of N0g could show significantly different evolutionary dynamics (Raynes et al., 2014). 422 

Our study suggests that the observed differences in the evolutionary outcomes might be 423 

explained by the fact that these populations differed remarkably from each other in terms of N0/g. 424 

We also propose that AS (=N0/g) should be used to compare different studies in terms of the 425 

reported average speed or extent of adaptation in meta-analyses of laboratory evolution of 426 

asexual populations. We resolve the adaptively relevant size of such populations into two 427 

components (N0 and g) based on their effects on EoA. Since our study demonstrates how the 428 
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relationship of EoA with N0 is opposite to its relationship with g, these results should be useful in 429 

predicting how much adaptive change can be expected from different experimental designs. For 430 

example, decisions on culture volumes (well-plates versus flasks) and dilution ratios in 431 

laboratory evolution can be made on the basis of the above results to best suit the demands of the 432 

experiment.  433 

 434 

Evolution of carrying capacity can feedback into adaptive trajectories. 435 

Finally, we point out that both our experiments and simulations demonstrate that carrying 436 

capacity (K) can evolve during adaptation in asexual microbes (Fig. 1a and 2a). Most models of 437 

microbial adaptation do not take into account such adaptive changes in carrying capacity 438 

(Gerrish and Lenski, 1998; Desai et al., 2007; Wahl and Gerrish, 2001; Campos and Wahl, 2010) 439 

despite there being clear empirical evidence that carrying capacity can change during adaptation 440 

(Novak et al., 2006). Moreover, if the carrying capacity itself changes during the experiment, the 441 

constancy of bottleneck ratio (unchanging value of g) ensures that N0 also changes concomitantly 442 

as the population evolves. This means that the periodicity of bottlenecks introduces a positive 443 

feedback during evolution if K increases adaptively – larger value of N0 would make a 444 

population evolve higher K, which in turn would increase the next N0, and so on. We think that 445 

this aspect of fitness should not be omitted from theoretical models of how microbes evolve, 446 

particularly under resource limited conditions, which are a common feature of experimental 447 

evolution protocols (Kawecki et al., 2012; Lenski et al., 1991).   448 
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Supplementary information 542 

Supplementary methods  543 

Culture environment for experimental evolution: 544 

24 independent bacterial populations Escherichia coli K-12 MG1655 were grown in nutrient 545 
broth with a fixed concentration of an antibiotic cocktail containing a mixture of three antibiotics 546 
at sub-lethal concentrations: 547 

1. Norfloxacin (0.015 mg/ml)  548 
2. Rifampicin (0.1 μg/ml) 549 

3. Streptomycin (6 μg/ml) 550 

The following table summarizes the numerical properties of the three population regimes used in 551 
our study: 552 

Regime 

type 

Starter 

population 

size 

Final 

population 

size 

Dilution 

during 

bottleneck 

No. of 

generations 

per dilution 

Harmonic 

mean size 

Culture 

volume 

SS 1.5x 15000x 1: 10
4
 ≈13.28 ~20x 1.5ml 

SL x 10
6
x 1:10

6
 ≈19.93 ~20x 100ml 

LL 10
5
x 10

6
x 1:10 ≈3.32 ~3.32*10

5
x 100ml 

 553 

Table S1. A summary of the experimental populations. x ≈ 10
5
 in our experiments. 554 

Our study design had eight biological replicates belonging to each one of the three population 555 
regimens (24 independently evolving populations). Each population was assayed in triplicates for 556 
measuring fitness using growth curves. This corresponded to 72 growth curves at a given point 557 
during the selection timeline. We performed a mixed-model ANOVA at distinct time-points 558 

(shown in Fig. 1 of Main-text) with population regimen as the fixed factor and replicate index 559 
within a regimen as the random factor nested in the fixed factor. Since we didn’t wish to 560 
compare data points corresponding to the same population at different times, we did not use 561 
repeated measures ANOVA in our study. The statistical analysis was corrected for multiple tests 562 
using Holm-Šidàk correction (Abdi, 2010). 563 

 564 

 565 

Algorithm for the individual based model used in this study: 566 

Our model simulates the growth of individual bacteria in density-dependent resource-limited 567 

conditions. Each bacterium is represented by an array which has the following components: 568 

1. Determinant of efficiency (K_eff): determines how much food can be assimilated per unit 569 
time 570 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 22, 2016. ; https://doi.org/10.1101/076760doi: bioRxiv preprint 

https://doi.org/10.1101/076760


28 
 

2. Determinant for threshold (thres): how much food needs to be assimilated in order to 571 
divide 572 

3. Bodymass: how big is the bacterium (where is it along its cell cycle) at any given time 573 

 574 

At the beginning of the simulation, two global scaling quantities, Food_Proxy and Body_Proxy 575 
are declared for the whole population. As the names suggest, Food_Proxy acts as a proxy for the 576 
amount of available resources initially, while Body_Proxy (=250) is a proxy for bodymass of the 577 
ancestor. Each simulation run is started with 100 individuals and each individual is allotted 578 
K_effi value given as Effi * Food_Proxy. Here, Effi is a random number picked from a uniform 579 
distribution U(0.95-1.05) and K_effi determines how much food would be consumed in a 580 

density–dependent manner and when its food consumption would stop (as per the conditions 581 
given below). Similarly, the parameter for threshold is assigned as a random number picked from 582 
a uniform distribution between 0.95*(Body_Proxy) and 1.05*(Body_Proxy). 583 

Each bacterium has the same initial biomass (an arbitrarily small quantity, 10 units in this case). 584 

Time is implicitly defined in our code and each iteration signifies one unit of time. 585 

In each iteration, each bacterium “grows and divides” according to the following rules: 586 

If for bacterium i, (population size/ K_effi) ≥ 1, it doesn’t eat anything: its bodymass 587 
remains the same as the earlier iteration. 588 

If for bacterium i (population size/ K_effi) < 1, it eats 10*(1 - (population size/ K_effi)) 589 
units of food in this iteration: its bodymass increases by 1- (population size/ K_effi) units. 590 

If at the end of this iteration, bodymassi > thresi, bacterium i divides into two equal parts. 591 
A small thermodynamic cost (constant for all individuals) is deducted so that the sum of the 592 
bodymass of the daughter cells is exactly 1 unit less than the bodymass of the mother cell at the 593 
time of division. 594 

If the bacterium divides, there is a 1 in 100 chance for each of the daughter cells that it 595 
mutates. If a mutation occurs, the new parameter for efficiency is drawn from an already defined 596 
normal distribution that is used throughout the simulation. The same applies to threshold. 597 

(Threshold and efficiency mutate independently in each bacterium.) 598 

The total size of the population is saved at the end of every iteration. The total amount of 599 

food consumed during each iteration is also computed. 600 

The above description (italics) represents all the processes that happen within an iteration.  601 

The process is repeated (and the population grows) until the following conditions are fulfilled:   602 

1. The number of iterations is greater than 2000. 603 
2. The amount of food consumed during each iteration < 0.08* Food_Proxy 604 

If the above conditions are met simultaneously, food consumption is stopped, a defined fraction 605 

of individuals are sampled randomly and the whole process is started with this sample population 606 
(this represents bottlenecking). The above process is continued for q bottlenecks. The bottleneck 607 
ratio and the number q are predefined, depending upon the type of population being studied. This 608 

gives rise to q sigmoidal growth curves. Two quantities are extracted from each sigmoidal curve: 609 
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1. Carrying capacity (K, the maximum size of the population in each growth phase) 610 
2. Maximum linear growth rate (R, the maximum slope of population growth over 100 611 

iterations). Straight lines were fit on overlapping moving windows of 100 iterations on 612 
the entire time-series of population size values within each growth-phase. The maximum 613 
value of the slope observed within the entire time-series of population size values 614 

(sigmoidal curve) was taken to be the maximum growth rate (R). 615 

Time series of carrying capacities and maximum growth rates are computed using the series of q 616 
sigmoidal curves. 617 

In each simulation used in this study, the carrying capacity of the first growth phase was ≈ 618 

1.8*Food_Proxy. The value of Food_Proxy was adjusted in such a way that it gave rise to the 619 
desired value of the carrying capacity of the first growth phase in a simulation. The carrying 620 
capacities corresponding to the subsequent growth phases was an emergent result of Darwinian 621 
evolution in the simulations. 622 

 623 

The following simulation settings were used in our study: 624 

Population type Food_proxy Bottleneck ratio Number of bottlenecks 

(400 generations) 

XX’ 2*10
4
 1/10 120 

SS’ 10
5
 1/10

2
 60 

SL’ 5*10
6
 1/10

4
 30 

BN1 5*10
3
 1/10 120 

BN2 5*10
4
 1/10

2
 60 

BN3 5*10
5
 1/10

3
 40 

BN4 5*10
6
 1/10

4
 30 

SM1 5*10
3
 1/10 120 

SM4 5*10
6
 1/10

4
 30 

HB 5*10
6
 1/10

4
 30 

LB 2*10
4
 1/10 120 

LBbar 1.25*10
3
 1/10 120 

MBbar 2.5*10
4
 1/100 60 

 625 

 626 

We checked if our simulations met several other theoretical expectations from the extant 627 
literature. As expected, despite following the same distribution for mutations, large populations 628 
showed curves of diminishing returns while adapting whereas very small populations showed 629 
stepwise increase in fitness with long periods of stasis (Fig. S2). This happens because very 630 
small populations (but not large ones) need to wait for beneficial mutations to arise (Sniegowski 631 

and Gerrish, 2010). Moreover, the extent of adaptation showed a positive but saturating 632 

relationship with an unambiguous measure of absolute population size in our simulations (Fig. 633 

S6a and S6b). The simulations also revealed a non-monotonous relationship between fitness and 634 
mutation rate (Orr, 2000) (Fig. S7). 635 

 636 
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Table S2. Distributions for parameters used in simulations: 637 

 638 

Distribution used for Distribution for efficiency 

parameter 

Distribution for threshold 

parameter 

Starting the simulation Uniform random(0.95,1.05) Uniform random(237.5,262.5) 

Mutation Normal random (0.9,0.22) Normal random (1.1,0.22) 

 639 

 640 

  641 
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Supplementary Data: 642 

Statistical analysis of empirical results 643 

 644 

Generation 
ANOVA 

F 

ANOVA 

p 

Holm-Šidàk 

corrected p 

Tukey p 

LL-SL 

Tukey p 

LL-SS 

Tukey p 

SL-SS 

40 36.75 1.4E-7 1E-6 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

80 13.319 0.0002 0.0011 

 

0.0001 

 

 

0.0001 

 

 

0.7942 

 

120 14.365 0.0001 0.0008 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

160 17.282 3.7E-5 0.0003 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

200 2.894 0.0776 0.0776 
 

- 

 

- 

 

- 

240 9.359 0.0012 0.0050 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

280 12.110 0.0003 0.0016 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

320 6.769 0.0054 0.0161 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

~ 390 3.33 0.0556 0.1081 

 

- 

 

 

- 

 

 

- 

 

 645 

Table S3. A summary of statistical analysis of carrying capacity measurements in empirical 646 
populations. The values in red represent statistically significant difference (p<0.05). The p-647 

values corresponding to nine independent ANOVAs (corresponding to nine different time points) 648 
were subjected to Holm-Šidàk correction. Post-hoc (Tukey) comparisons were done only in 649 
cases where the ANOVA p-values were less than 0.05 after Holm-Šidàk correction. These post –650 
hoc comparisons were done across the three experimental regimens (LL, SL, and SS) at each 651 
time point. Holm-Šidàk correction was not done on Tukey p-values. The p-values are reported to 652 

four decimal places.  653 
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Generation 
ANOVA 

F 

ANOVA 

p 

Holm-

Šidàk 

corrected 

p 

Tukey p 

LL-SL 

Tukey p 

LL-SS 

Tukey p 

SL-SS 

40 
56.631 

 

3.5E-9 

 

3.1E-8 

 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

80 
5.996 

 

0.0087 

 

0.0344 

 

 

0.0001 

 

 

0.0001 

 

 

0.3229 

 

120 
12.027 

 

0.0003 

 

0.0023 

 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

160 
12.287 

 

0.0003 

 

0.0023 

 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

200 
3.093 

 

0.0665 

 

0.1286 

 

 

- 

 

- 

 

- 

240 
8.757 

 

0.0017 

 

0.0103 

 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

280 
7.785 

 

0.0030 

 

0.0147 

 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

320 
4.096 

 

0.0315 

 

0.0915 

 

 

- 

 

- 

 

- 

~ 390 
0.925 

 

0.4122 

 

0.4122 

 

 

- 

 

- 

 

- 

 654 

Table S4. A summary of statistical analysis of maximum growth rate measurements in 655 
empirical populations.  The values in red represent statistically significant difference (p<0.05). 656 
The values in red represent statistically significant difference (p<0.05). The p-values 657 
corresponding to nine independent ANOVAs (corresponding to nine different time points) were 658 
subjected to Holm-Šidàk correction. Post-hoc (Tukey) comparisons were done only in cases 659 

where the ANOVA p-value was less than 0.05 after Holm-Šidàk correction. These post –hoc 660 
comparisons were done across the three experimental regimens (LL, SL, and SS) at each time 661 

point. Post-hoc comparisons were never performed across time-points (generations). The p-662 
values are reported to four decimal places.  663 
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Agreement between experiments and simulations 664 

 665 

 666 

Fig. S1. Agreement between experiments and simulations in terms of adaptive dynamics 667 
over identical time-scales in numerically similar populations. (a) Carrying capacity (K) 668 
versus bottleneck number (BN) (b) Maximum growth rate (R) versus bottleneck number (BN). 669 

Data points represent mean ± SD over 8 replicates. Each data point corresponds to the respective 670 
measure of fitness (K or R) derived from the sample taken after BN bottlenecks. Range of 671 
population size: N0 ≈ 10

4.5
; Nf ≈ 10

8.5
; bottleneck ratio = 1/10

4
. Each bottleneck corresponds to 672 

approximately 13.28 generations. Carrying capacity is normalized with the ancestral value.  673 

The results of our experiments and simulations agree well in terms of the range and dynamics of 674 
adaptation over identical time-scales in numerically similar populations. This applies to both 675 
measures of population-level fitness: carrying capacity (K) and maximum growth rate (R). 676 

 677 

 678 

 679 

 680 

 681 

  682 
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Qualitative differences in EoA trajectory-shapes brought about by large differences in 683 
population size 684 

 685 

Fig. S2. Qualitative differences in adaptive trajectories corresponding to populations with a 686 
large different in their sizes. Stepwise increase in fitness (with long periods of stasis) occurred 687 
in typically small populations such as the one shown in (a) as compared to smooth curves of 688 
diminishing returns in typically large populations such as the one shown in (b) (See the ordinates 689 
for absolute ranges of Nf during adaptation). The population shown in (a) experienced a periodic 690 

bottleneck of 1/10 while he population shown in (b) was bottlenecked 1/10
4
 periodically.  691 

As expected (Sniegowski and Gerrish, 2010), very small populations showed staicase-like 692 
(stepwise) trajectories of fitness increase. 693 

 694 

 695 

 696 

  697 
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Changes in standard deviation with sample size  698 

           699 

Fig. S3. Increasing the number of replicate simulations from 8 to 20 did not result in 700 
increase in variation across replicates. (a) Increasing the number of independent replicate 701 
simulations from 8 to 20 didn’t result in qualitative changes (ranks) of three populations with 702 
similar harmonic mean size but different N0/g (mean ± SEM; N=20) (compare with Fig. 2a in the 703 
Main-text). (b) This increase in replicate number also didn’t result in major changes in the 704 
standard deviation in carrying capacity during the course of adaptation. XX’: N0 ≈ 3.6*10

3
, 705 

bottleneck ratio: 1/10; SS’: N0 ≈ 1.8*10
3
, bottleneck ratio: 1/10

2
; SL’: N0 ≈ 9*10

2
, bottleneck 706 

ratio: 1/10
4
.  707 

Since our simulations are agent-based (and consequently take a very long time to run), we 708 
decided to operate on a sample size of 8 replicates per population type throughout our study. 709 

 710 

 711 

 712 

  713 
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Adaptation in terms of efficiency and threshold: 714 

 715 

 716 

Fig. S4. Adaptation in three populations with similar HM in terms of measures of fitness at 717 
the level of individuals (a) Adaptive increase in averge individual efficiency within populations 718 
with similar harmonic mean size (mean ± SEM; 8 replicates). (b) Adaptive decrease in average 719 
individual threshold in populations with similar harmonic mean size (mean ± SEM; 8 replicates). 720 

Threshold evolved so quickly that its adaptive decrease did not refelct the differnce observed in 721 
EoA trjectories for K and R (Fig. 2 (Main text)). XX’: N0 ≈ 3.6*10

3
, bottleneck ratio: 1/10; SS’: 722 

N0 ≈ 1.8*10
3
, bottleneck ratio: 1/10

2
; SL’: N0 ≈ 9*10

2
, bottleneck ratio: 1/10

4
.  723 

Multiple measures of fitness in our study revealed that harmonic mean is not a good predictor of 724 
adaptive trajectories because populations with similar harmonic mean size can have markedly 725 
different adaptive trajectories (Fig. S4 and Fig. 2 (Main-text)). Identical trends were observed 726 
when such populations (XX’, SS’, and SL’) were compared in terms of two different measures of 727 
population level fitness (Fig. 2 (Main-text)). In terms of fitness at the level of individuals, 728 
efficiency showed the same trend as R and K (Figu. S4a). However,the adaptive trajectories 729 
corresponding to XX’, SS’, and SL’ were almost identical when expressed in terms of threshold. 730 

Threshold evolved (decreased) so quickly and to such a large extent in almost all population 731 
types that we simulated in this study (regardless of their HM) that most populations had similar 732 

trajectories of threshold decrease (also see Fig. S6d). Consequently, despite threshold being an 733 
important determinant of fitness, adaptive differences amongst populations were best expressed 734 
and explained in terms of trajectories of increase in efficiency and not in terms of decrease in 735 
threshold. The trends shown by adaptive trajectories of efficiency increase were identical to 736 
those shown by adaptive trajectories of K and R. Due to the above reasons, we focussed on 737 

population-wide trait distributions only in terms of efficiency. 738 

 739 

  740 
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Adaptive changes in distributions of efficiency in populations with similar HM: 741 

 742 

Fig. S5. The distributions of efficiency across constituent individuals during adaptation in 743 
populations with similar HM. The individuals of each simulated population (8 replicate 744 
populations each of XX’ and SL’) were classified into to a discrete frequency distribution of 745 

their efficiency values (50 static classes). Higher class indices correspond to higher efficiencies. 746 
The best phenotype (in terms of fitness) explored by SL’ was consistently fitter than the best 747 
phenotype explored by LB (a). The modal phenotype quickly converged with the best available 748 
phenotype in most XX’ populations but failed to do so in all SL’ populations (b). The mean 749 
phenotype in XX’ approached the best phenotype very closely (b and c). However, there was a 750 

consistently larger gap between the best phenotype and the modal phenotype in SL’ (b) and an 751 
even larger one between its best and mean phenotype (b and c).  752 
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Our simulations revealed that populations with similar harmonic mean size can differ 753 
appreciably from each other not only in terms of their adaptive trajectories but also in terms of 754 
how the distribution of fitness amongst their constituent individuals changes during adaptation. 755 

 756 

Relationship of EoA with N0 and g 757 

 758 

 759 

Fig. S6. The relationship of EoA with N0 and g. EoA exhibited a positive and saturating 760 
relationship with N0 (a and b) but a negative relationship with g (c). The data points show mean 761 
± SEM (N=8). The populations shown in a and b were bottlenecked 1/10

2
 periodically. The 762 

populations shown in C and D had N0 ≈ 900. Bottleneck ratios: BN1: 1/10; BN2: 1/10
2
; BN3: 763 

1/10
3
; BN4:1/10

4
. 764 

As predicted by the extant theory (Wahl and Gerrish, 2001; Campos and Wahl, 2009), the extent 765 
of adaptation (EoA) had a positive but saturating relationship with N0. However, we found that 766 

EoA varied negatively with g. Populations with similar N0 but different g had markedly different 767 
adaptive trajectories (Fig. S6C and Fig. 3, 4 (Main-text)).  768 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 22, 2016. ; https://doi.org/10.1101/076760doi: bioRxiv preprint 

https://doi.org/10.1101/076760


39 
 

Relationship between EoA and g at three different mutation rates: 769 

 770 

Fig. S7. The negative relationship between EoA and g was robust to changes in mutation 771 
rate. (a) Adaptive increase in normalized carrying capacity in BN1 populations at three mutation 772 
rates. (b) Adaptive increase in normalized carrying capacity in BN4 populations at three 773 
mutation rates. (c) Normalized carrying capacity in BN1 and BN4 at generation 200 at three µ 774 
values. EoA exhibited a non-monotonous relationship with µ in both BN1 and BN4 populations, 775 

which is in line with theoretical expectations (Orr, 2000). The negative dependence of EoA on g 776 
was robust to changes in mutation rate (µ) over a 100-fold range. We found that the relationship 777 
between EoA and µ can be influenced by bottleneck ratio. This is in agreement with recent 778 
empirical findings (Raynes et al., 2014). The data points show mean ± SEM (8 replicates). Both 779 
BN1 and BN4 had similar bottleneck size (N0 ≈ 900). BN1 experienced a periodic bottleneck of 780 

1/10 whereas BN4 experienced a periodic bottleneck of 1/10
4
.  781 

 782 

 783 
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Differences in the locations of the best class before and after bottleneck:  784 

 785 

 786 

Fig. S8. Differences in the locations of the best class in the distribution of the efficeincy 787 
parameter before and after bottlenck. The individuals of each simulated population (8 788 
replicate populations each of SM1 and SM4) were classified into to a discrete frequency 789 
distribution of their efficiency values (50 static classes). While the best class of SM1 could 790 
survive the bottleneck in most cases (black circles), the best class of SM4 invariably failed to 791 
survive its harsh bottleneck (grey triangles). 792 

 793 

 794 

  795 
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N0/g is a better predictor of EoA trajectories than N0g: 796 

 797 
  798 

Fig. S9. Adaptive trajectories in population with similar N0/g expressed in terms of efficiency (a) 799 
and threshold (b). The data points show mean ± SD (8 replicates). LBbar: N0 ≈ 225; bottleneck 800 
ratio = 1/10; MBbar: N0 ≈ 450; bottleneck ratio = 1/10

2
; N0 ≈ 900; bottleneck ratio = 1/10

4
.  801 

Populations with similar N0/g had remarkably similar adaptive trajectories in terms of both 802 
efficiency and threshold (Fig. S9). These populations had similar adaptive trajectories despite 803 

differing in terms of the intensity of the periodic botleneck over a 1000-fold range. While N0*g 804 
failed to predict adaptive trajectories over this bottleneck range (Fig. 2 and 6 (Main text)), N0/g 805 
could act as a much better predictor of adaptive trajectories. 806 

 807 

 808 

 809 

  810 
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Population with similar mean EoA trajectories can differ remarkably in terms of 811 
distributions of the corresponding fitness-affecting trait: 812 

 813 

Fig. S10. The distributions of phenotypic effects across constituent individuals during 814 
adaptation in populations with similar N0/g. The individuals of each simulated population (8 815 
replicate populations each of LBbar and HB) were classified into to a discrete frequency 816 
distribution of their efficiency values (50 static bins). Higher bin indices correspond to higher 817 

efficiencies. The best phenotype (in terms of fitness) explored by HB was consistently fitter than 818 
the best phenotype explored by LBbar (a). The modal phenotype quickly converged with the best 819 
available phenotype in most LBbar populations but failed to do so in all HB populations (b). The 820 

mean phenotype in LBbar approached the best phenotype very closely (b and c). However, there 821 
was a consistently larger gap between the best phenotype and the modal phenotype in HB (b) 822 
and an even larger one between its best and mean phenotype (b and c).  823 
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Poulations that have similar mean adaptive trajectories can nevertheless have remarkably 824 
different distribution of fitness amongst their constituent individuals, and can also differ in terms 825 
of how these distributions themselves change over time. LBbar and HB have markedly different 826 
distributions of fitness amongst their constituent individuals during the course of adaptation, 827 
despite having similar fitness trajectories. 828 

 829 

 830 

 831 

 832 

Fig. S11. The frequency of binary fissions per generation as a function of g. N0*(2
g
-1)/g 833 

represents the number of binary fissions per generation.  834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 

 844 

 845 

 846 
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