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Abstract 

Perceptual experience results from a complex interplay of bottom-up input and prior knowledge 

about the world, yet the extent to which knowledge affects perception, the neural mechanisms 

underlying these effects, and the stages of processing at which these two sources of information 

converge, are still unclear. In several experiments we show that language, in the form of verbal 

cues, both aids recognition of ambiguous “Mooney” images and improves objective visual 

discrimination performance in a match/non-match task. We then used electroencephalography 

(EEG) to better understand the mechanisms of this effect. The improved discrimination of 

images previously labeled was accompanied by a larger occipital-parietal P1 evoked response to 

the meaningful versus meaningless target stimuli. Time-frequency analysis of the interval 

between the cue and the target stimulus revealed increases in the power of posterior alpha-band 

(8-14 Hz) oscillations when the meaning of the stimuli to be compared was trained. The 

magnitude of the pre-target alpha difference and the P1 amplitude difference were positively 

correlated across individuals. These results suggest that prior knowledge prepares the brain for 

upcoming perception via the modulation of alpha-band oscillations, and that this preparatory 

state influences early (~120 ms) stages of visual processing. 
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Introduction 

A chief function of visual perception is to “provide a description that is useful to the viewer”1, 

that is, to construct meaning2,3. Canonical models of visual perception explain this ability as a 

feed-forward process, whereby low-level sensory signals are progressively combined into more 

complex descriptions that are the basis for recognition and categorization4,5. There is now 

considerable evidence, however, suggesting that prior knowledge impacts relatively early stages 

of perception6–15. A dramatic demonstration of how prior knowledge can create meaning from 

apparently meaningless inputs occurs with two-tone “Mooney” images16, which can become 

recognizable following the presentation of perceptual hints17,18. 

 

Although there is general acceptance that knowledge can shape perception, there are 

fundamental unanswered questions concerning the type of knowledge that can exert such effects. 

Previous demonstrations of Mooney recognition by prior knowledge have used perceptual hints, 

such as pointing out where the meaningful image is located or showing people the completed 

version of the image17,19. Our first question is whether category information cued linguistically—

in the absence of any perceptual hints—can have similar effects. Second, it remains unclear 

whether such effects of knowledge reflect modulation of low-level perception and if so, when 

during visual processing such modulation occurs. Some have argued that benefits of knowledge 

on perception reflects late, post-perceptual processes occurring only after processes that could be 

reasonably called perceptual20. In contrast, recent fMRI experiments have observed knowledge-

based modulation of stimulus-evoked activity in sensory regions, suggesting an early locus of 

top-down effects21–24. However, the sluggish nature of the BOLD signal makes it difficult to 

distinguish between knowledge affecting bottom-up processing from later feedback signals to the 

same regions. 

 

One way that prior knowledge may influence perception is by biasing baseline activity in 

perceptual circuits, pushing the interpretation of sensory evidence towards that which is 

expected25. Biasing of prestimulus activity according to expectations has been observed both in 

decision- and motor-related prefrontal and parietal regions 26–28 as well as in sensory regions 
21,29,30. In visual regions, alpha-band oscillations are thought to play an important role in 

modulating prestimulus activity according to expectations. For example, prior knowledge of the 
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location of an upcoming stimulus changes preparatory alpha activity in visual cortex31–35. 

Likewise, expectations about when a visual stimulus will appear are reflected in alpha dynamics 
36–38. Recently, Mayer and colleagues demonstrated that when the identity of a target letter could 

be predicted, pre-target alpha power increased over left-lateralized posterior sensors39. These 

findings suggest that alpha-band dynamics are involved in establishing perceptual predictions in 

anticipation of perception. 

 

Here, we examined whether verbal cues that offered no direct perceptual hints can improve 

visual recognition of indeterminate two-tone Mooney images (Experiment 1). We then measured 

whether such verbally ascribed meaning affected an objective visual discrimination task 

(Experiments 2-3). Finally, we recorded electroencephalography (EEG) during the visual 

discrimination task (Experiment 4) to better understand the locus at which knowledge influenced 

perception. Our findings suggest that using language to ascribe meaning to ambiguous images 

impacts early visual processing by biasing pre-target neural activity in the alpha-band. 

	

Materials and Method 

Experiment 1 

Materials. We constructed 71 Mooney images by superimposing familiar images of easily 

nameable and common artefacts and animals onto patterned background. These superimposed 

images were then blurred (Gaussian Blur) and then thresholded to a black-and-white bitmap. 

Materials are available at https://osf.io/stvgy/. 

 

Participants. All participants for Experiments 1A-1C were recruited from Amazon Mechanical 

Turk and were paid $1 (Experiments 1A and 1B), or $0.50 (Experiment 1C) for participating. 

Demographic information was not collected. All studies were approved by the University of 

Wisconsin-Madison Institutional Review Board and were conducted in accordance with their 

policies.  

 

Procedure.  

Experiment 1A. Free Naming. We recruited 94 participants (four excluded for non-compliance). 

Each participant was randomly assigned to view one of 4 subsets of the 71 Mooney images, and 
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to name at the basic-level what they saw in each image. Each image was seen by approximately 

24 people. Average accuracies for the 71 images ranged from 0% to 95%.  

 

Experiment 1B. Basic Level Cues. From the 71 images used in Experiment 1A we selected the 

images with accuracy at or below 33% (30 images). We then presented these images to an 

additional 42 participants (2 excluded for non-compliance. Each participant was shown one of 

two subsets of the 30 images (15 trials) and asked to choose among 15 basic-level names (e.g., 

“trumpet”, “leopard”, “table”), which object they thought was present in the image (i.e., a 15-

alternative forced choice). Each image received approximately 21 responses. 

 

Experiment 1C. Superordinate Cues. Out of the 30 images used in Experiment 1B we selected 15 

that had a clear superordinate label (see Fig. 1). Twenty additional participants were presented 

with each image along with its corresponding superordinate label and were asked to name, at the 

basic level, the object they saw in their picture by typing their response. For example, given the 

superordinate cue “musical instrument”, participants were expected to respond with “trumpet” 

given a Mooney image of a trumpet.  

 

Data Coding and Analysis 

For free-responses (Experiments 1A, 1C) we considered a response to be correct if it (1) matched 

the designated image name, e.g., for “lantern”, participants entered “lantern.” (2) was misspelled 

but identifiable (e.g., “lanturn”), (3) if it was synonymous, e.g., “camping light”, (4) if it 

contained the target word inside a carrier phrase, e.g., both “socks” and “a pair of socks” was 

coded as correct. We also coded as correct any “errors” in plurality (e.g., lantern/lanterns) though 

these were very rare. The responses were first independently coded by three research assistants 

and any disagreements were discussed until consensus was reached. The effect of condition on 

accuracy was modeled using logistic regression with a subject and item (Mooney-image 

category) as random intercepts. The model also included an item-by-condition random slope. 

 

Experiment 2 

Materials. From the set of 15 categories used in Experiment 1C, we chose the 10 that had the 

highest accuracy in the basic-level cue condition (Experiment 1B) and were most benefited by 
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the cues (boot, cake, cheese, desk, guitar, leopard, socks, train, trumpet, turtle). The images 

subtended approximately 7o×7o of visual angle. Each category (e.g., guitar) was instantiated by 

four variants: two different image backgrounds and two different positions of the images. These 

additional images were introduced to tease apart potential detection effects be driven by low-

level processing alone.  

 

Participants. We recruited 35 college undergraduates to participate in exchange for course credit. 

Two were eliminated for low accuracy (less than 77%), resulting in 14 participants in the 

meaning trained condition (8 female), and 19 in the meaning untrained condition (11 female). 

All participants provided written informed consent.  

 
Fig. 1. Recognition accuracy from naïve observers (Experiment 1). (A) Mean accuracy in the 
free naming, basic, and superordinate label cue conditions by image. Error bars depict ±1 SEM. 
(B) Violin plot of accuracies averaged over the 15 images used in the three conditions of 
Experiment 1. Superordinate and basic labels improved recognition accuracy over free naming, 
and basic labels improved accuracy over superordinate labels. * Denotes p<.05; ** denotes 
p<10-4 
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Familiarization Procedure. Participants were randomly assigned to a meaning trained 

or meaning untrained condition. The two conditions differed only in how participants were 

familiarized with the images. In the meaning trained condition, participants first viewed each 

Mooney image accompanied by an instruction, e.g., “Please look for CAKE”, twice for each 

Mooney image (Trials 1-20). Participants then saw all the images again and were asked to type 

in what they saw in each image, guessing in the case that they could not see anything (Trials 21-

30). Finally, participants were shown each image again, asked to type in the label once more and 

asked to rate on a 1-5 how certain they were that the image portrayed the object they typed. In 

the meaning untrained condition, participants were familiarized with the images while 

performing a one-back task, being asked to press the spacebar anytime an image was repeated 

back-to-back. Repetitions occurred on 20-25% of the trials. In total, participants in the meaning 

trained and untrained conditions saw each image 4 and 5 times respectively. 

 

Same/Different Task. Following familiarization, participants were tested in their ability to 

visually discriminate pairs of Mooney images. Their task was to indicate whether the two images 

were physically identical or different in any way (Fig. 2A). Each trial began with a central 

fixation cross (500 ms), followed by the presentation of one of the Mooney images (the “cue”) 

approximately 8o of visual angle above, below, to the left or to the right of fixation. After 1500 

ms the second image (the “target”) appeared in one of the remaining cardinal positions. The two 

images remained visible until the participant responded “same” or “different” using the keyboard 

(hand-response mapping was counterbalanced across participants). Accuracy feedback (a buzz or 

bleep) sounded following the response, followed by a randomly determined inter-trial interval 

(blank screen) between 250 and 450 ms. Image pairs were equally divided into three trial-types 

(Fig 2C): (1) a pair of identical images, (2) a pair of images containing the same object, but in 

different locations, (3) a pair of images containing different objects at different locations. The 

backgrounds of the two images on a given trial were always the same. On a given trial, both cue 

and target objects were either trained or untrained. Participants completed 6 practice trials 

followed by 360 testing trials and were asked to respond as quickly as possible without 

compromising accuracy. 
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Fig. 2. Schematic of the procedure for Experiments 2-4. (A) In Experiment 2, participants 
determined whether two Mooney images were physically identical. (B) To increase task 
difficulty, Experiments 3 and 4 used sequential masked presentation. (C) To test for the 
selectivity of meaning effects, ‘different’ image pairs could differ in object location or object 
identity. In Experiments 2 and 3, knowledge of the objects was manipulated between 
participants. In Experiment 4, each participant was exposed to the meanings of a random half of 
the objects (see Familiarization Procedure). 

 

Behavioral Data Analysis. Accuracy was modeled using logistic mixed effects regression with 

trial-type and meaning-training as fixed effects, subject and item-category random effects with 

trial-type random slopes. RTs were modeled in the same way, but using linear mixed effects 

regression. RT analyses excluded responses longer than 5s and those exceeding 3SDs of the 

subject’s mean.  

 

Experiment 3 

Participants. We recruited 32 college undergraduates to participate in exchange for course credit. 

16 were assigned to the meaning trained condition (13 female), and the other 16 to the meaning 

untrained condition (12 female). 

 

Familiarization Procedure and Task. The familiarization procedure, task, and materials were 

identical to Experiment 2 except that the first and second images (approximately 6o×6o of visual 

angle) were presented briefly and sequentially at the point of fixation, in order to increase 

difficulty and better test for effects of meaning on task accuracy (see Fig. 2B). On each trial, the 

initial cue image was presented for 300 ms for the initial 6 practice trials and 150 ms for the 360 
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subsequent trials. The image was then replaced by a pattern mask for 167 ms followed by a 700 

ms blank screen, followed by the target image. Participants’ task, as before, was to indicate 

whether the cue and target images were identical. The pattern masks were black-and-white 

bitmaps consisting of randomly intermixed ovals and rectangles (https://osf.io/stvgy/). 

 

Behavioral Data Analysis. Exclusion criteria and analysis were the same as in Experiment 2. 

 

Experiment 4 

Participants. Nineteen college undergraduates were recruited to participate in exchange for 

monetary compensation. 3 were excluded from any analysis due to poor EEG recoding quality, 

resulting in 16 participants (9 female) with usable data. All participants reported normal or 

corrected visual acuity and color vision and no history of neurological disorders.  

 

Familiarization Procedure and Task. The familiarization procedure, task, and materials were 

nearly identical to that used for Experiment 3, but modified to accommodate a within-subject 

design. For each participant, 5 of the 10 images were assigned to the meaning trained condition 

and the remaining to the meaning untrained condition, counterbalanced between subjects. 

Participants first viewed the 5 Mooney images in the meaning condition together with their 

names (trials 1-10), with each image seen twice. Participants then viewed the same images again 

and asked to type in what they saw in each image (trials 11-15). For trials 16-20 participants 

were again asked to enter labels for the images and prompted after each trial to indicate on a 1-5 

scale how certain they were that the image portrayed the object they named. During trials 21-43 

participants completed a 1-back task identical to that used in Experiments 2-3 as a way of 

becoming familiarized with the images assigned to the meaning untrained condition. Participants 

then completed 360 trials of the same/different task described in Experiment 3. 

 

EEG Recording and Preprocessing. EEG was recorded from 60 Ag/AgCl electrodes with 

electrode positions conforming to the extended 10–20 system. Recordings were made using a 

forehead reference electrode and an Eximia 60-channel amplifier (Nextim; Helsinki, Finland) 

with a sampling rate of 1450 Hz. Preprocessing and analysis was conducted in MATLAB 

(R2014b, The Mathworks, Natick, MA) using custom scripts and the EEGLAB toolbox 40. Data 
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were downsampled to 500 Hz offline and were divided into epochs spanning −1500 ms prior to 

cue onset to +1500 ms after target onset. Epochs with activity exceeding ±75 µV at any electrode 

were automatically discarded, resulting in an average of 352 (range: 331-360) useable trials per 

subjects. Independent components responsible for vertical and horizontal eye artifacts were 

identified from an independent component analysis (using the infomax algorithm with 3 second 

epochs of 1500 samples each implemented in the EEGLAB function runica.m) and subsequently 

removed. Visually identified channels with poor contact were spherically interpolated (range 

across subjects: 1-7). After these preprocessing steps, we applied a Laplacian transform to the 

data using spherical splines 41. The Laplacian is a spatial filter (also known as current scalp 

density) that aids in topographical localization and converts the data into a reference-independent 

scheme, allowing researchers to more easily compare results across labs; the resulting units are 

in µV/cm2. For recent discussion on the benefits of the surface Laplacian for scalp EEG see 42,43. 

 

Event-related Potential Analysis. Cleaned epochs were filtered between 0.05 and 25 Hz using a 

first-order Butterworth filter (MATLAB function butter.m). Data were time-locked to target 

onset, baselined using a subtraction of a 200 ms pre-target window, and sorted according to 

target meaning condition (trained or untrained). To quantify the effect of meaning on early visual 

responses, we focused on the amplitude of the visual P1 component. Following prior work in our 

lab that found larger left-lateralized P1 amplitudes to images preceded by linguistic cues 44, we 

derived separate left and right regions of interest by averaging the signal from occipito-parietal 

electrodes PO3/4, P3/4, P7/8, P9/10, and O1/2. P1 amplitude was defined as the average of a 30 

ms window, centered on the P1 peak as identified from the grand average ERP (see Fig. 4A). 

This same procedure was used to analyze P1 amplitudes in response to the cue stimulus, with the 

exception that baseline subtraction was performed using the 200 ms prior to cue onset. Lastly, in 

order to relate P1 amplitude and latencies to behavior, we used a single-trial analysis. As in prior 

work 44, single-trial peaks were determined from each electrode cluster (left and right regions of 

interest) by extracting the largest local voltage maxima between 70 to 150 ms post-stimulus 

(using the MATLAB function findpeaks). Any trial without a detectable local maximum (on 

average ~1%) was excluded from analysis. 
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Time-Frequency Analysis. Time-frequency decomposition was performed by convolving single 

trial unfiltered data with a family of Morelet wavelets, spanning 3–50 Hz, in 1.6-Hz steps, with 

wavelet cycles increasing linearly between 3 and 10 cycles as a function of frequency. Power 

was extracted from the resulting complex time series by squaring the absolute value of the time 

series. To adjust for power-law scaling, time-frequency power was converted into percent signal 

change relative to a common condition pre-cue baseline of −400 to −100 ms. To identify time-

frequency-electrode features of interest for later analysis in a data-driven way while avoiding 

circular inference, we first averaged together all data from all conditions and all electrodes. This 

revealed a prominent (~65% signal change from baseline) task-related increase in alpha-band 

power (8-14 Hz) during the 500 ms preceding target onset, with a clear posterior scalp 

distribution (see Fig. 5A), in-line with the topography of alpha observed in many other 

experiments 45,46. Based on this, we focused subsequent analysis on 8-14 Hz power across the 

pre-target window -500 to 0 ms using the same left/right posterior electrode clusters as in the 

ERP analysis.  

 

Statistical Analysis. We conducted two analyses of pre-target alpha power. To examine the effect 

of meaning training on the time course of pre-target alpha power (see Fig. 5B), we analyzed left 

and right electrode groups separately with a non-parametric permutation test and cluster 

correction to deal with multiple comparisons across time points 47. This was accomplished by 

randomly shuffling the association between condition labels (meaning trained or untrained) and 

alpha power 10,000 times. On every iteration, a t-statistic comparing alpha power between 

meaning trained and meaning untrained conditions was computed for each time sample. The 

largest number of contiguous significant samples was saved, forming a distribution of t-statistics 

under the null hypothesis that meaning training had no effect, as well as a distribution of cluster 

sizes expected under the null. The t-statistic associated with the true data mapping was 

compared, at each time point, against this null distribution and only cluster sizes exceeding the 

95% percentile of the null cluster distribution was considered statistically different. α was set at 

0.05 for all comparisons. In the second analysis which additionally tested for an interaction 

between hemispheres, we averaged alpha power across the pre-target window -500 to 0 ms and 

fit a linear mixed-effects model using meaning condition (trained vs. untrained), electrode cluster 

(left vs. right hemisphere), and their interaction to predict alpha power, with random slopes for 
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meaning condition and hemisphere by subject (this model is equivalent to a 2-by-2 repeated-

measures ANOVA).  

 

To predict trial-averaged P1 amplitudes we used a linear mixed-effects model predicting P1 

amplitude from meaning (trained vs. untrained), electrode cluster (left vs. right hemisphere), and 

their interaction, with random slopes for meaning condition and hemisphere by subject. Simple 

effects were then tested using paired t-tests to compare P1 amplitudes and pre-target alpha power 

between meaning conditions separately for each electrode group. We examined simple effects on 

the basis of two recent reports examining the influence of linguistic 44 and perceptual cues 39 on 

P1 amplitudes. Both of these experiments found left-lateralized P1 enhancements to cued 

images. We therefore anticipated significant differences over left, but not right sensors, and 

report simple effects in addition to main effects and interactions. Regarding the single-trial P1 

analysis (see Event-related Potential Analysis above), we used linear mixed-effects models with 

subject and item random effects to examine the relationship between single-trial P1 peak 

amplitudes and latencies to the accuracy and latency of behavioral responses. See 

https://osf.io/stvgy/ for full model syntax. Where correlations are reported, we used Spearman 

rank coefficients to test for monotonic relationships while mitigating the influence of potential 

outliers. We additionally conducted a non-parametric bootstrap analysis (20000 bootstrap 

samples) to form 95% confidence intervals around across-subject correlation coefficients and to 

verify the significance of any correlation using an additional non-parametric statistic.  

 

Results 

 

Experiment 1 

Mean accuracy for the 15 images used in all versions of Experiment 1 is displayed in Fig. 1A; 

the means for the three naming conditions (Experiments 1A, 1B, and 1C, respectively) are shown 

in Fig. 1B. (For accuracy results of the remaining Mooney images, see https://osf.io/stvgy/). 

Baseline recognition performance (free-naming; Experiment 1A) was 24.4% for the full set of 71 

images and 11% (95% CI=[.08, .15]) for the set of 15 used in all three versions of Experiment 1. 

Providing participants with a list of 15 possibilities (Experiment 1B) increased recognition from 

11% to 52% (95% CI=[.47, .58]). A logistic regression analysis revealed this to be a highly 
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significant difference (b=2.74, 95% CI=[1.94, 3.54], z=6.7, p<10-4). Part of this increase in 

Experiment 1b is likely due to the difference in the response formats between Experiments 1A 

(free response) and 1B (multiple choice with 15 simultaneously presented options). Experiment 

1C used the free-response format of Experiment 1A, but provided participants a non-perceptual 

hint in the form of a superordinate label (e.g., “animal”, “musical instrument”). This simple hint 

yielded recognition performance of 40% (95% CI=[.34, .46]), a nearly 4-fold increase compared 

to baseline free-response (b=1.92, 95% CI=[1.22, 2.61], z=5.39, p<10-4). For example, knowing 

that there is a piece of furniture in the image produced a 16-fold increase in accuracy in 

recognizing it as a desk (an impressive result even allowing for guessing). Providing basic-level 

alternatives (Experiment 1B) yielded significantly greater performance than providing 

superordinate-hints (b=.73, 95% CI=[.13, 1.32], z=2.40, p=.02), although this difference is 

difficult to interpret owing to a difference in the response format between the two tasks. The 

main conclusion from Experiment 1 is that recognition of two-tone images can be drastically 

improved by verbal hints that provide no spatial or other perceptual information regarding the 

identity of the image. 

 

Experiment 2 

Results are shown in Fig. 3. Overall accuracy was high—93.3% (93.8% on trials showing two 

different images and 92.2% on trials showing identical image pairs). The accuracy for the 

meaning-trained participants (M=92.6%) was not significantly different from the participants not 

trained on meanings (M=93.4%; b=-.18, 95% CI=[-.75, .40], z=-0.62, p=.54). Given the ease of 

the perceptual discrimination task and participants had unlimited time to inspect the two images, 

an absence of an accuracy effect is not surprising. Participants in the meaning-trained condition, 

however, had significantly shorter RTs than those who were not exposed to image meanings: 

RTmeaning trained=822 ms; RTmeaning untrained=1017ms (b=-194, 95% CI=[-326, -61], t=-2.86, p<.01; 

see Fig. 3). There was a marginal trial-type by meaning interaction (b=71, 95% CI=[-1, 144], 

t=1.93, p=.06). Meaning was most beneficial in detecting that two images were exactly identical, 

(b=-262, 95% CI=[-445, -79], t=-2.80, p<.01). There remained a significant benefit of meaning 

in detecting difference in images with the same object in a different location, (b=-201, 95% 

CI=[-353, -49], t=2.60, p=.01) and a smaller difference when two images had different objects 

and object locations, (b=-121, 95% CI=[-219, -23], t=-2.41, p=.02).  
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Fig. 3. Response time (left panel) and accuracy (right panel) for Experiments 2 and 3. Meaning 
training significantly decreased response time in Experiment 2 (when both images were 
presented simultaneously and remained visible until response), and significantly improved 
accuracy in Experiment 3 (when images were presented briefly and sequentially). Error bars 
show ±1 SEM; asterisks indicated two-tailed significance at p<.05. 
 

Experiment 3 

The brief presentation of the cue-image in Experiment 3 (Fig. 2B) had an expected detrimental 

effect on accuracy, which was now 87.2% (90.0% on different trials and 81.7% on same trials), 

significantly lower than accuracy of Experiment 2 (b=-.75, 95% CI=[-1.12, -0.38], z=-3.91, 

p<10-4). Participants’ responses were significantly faster (M=664 ms) than in Experiment 2 (b=-

.264, 95% CI=[-349, -179], t=-6.1, p<10-4). This may seem odd given the greater difficulty of the 

procedure, but unlike Experiment 2 in which participants could improve their accuracy by 

spending additional time examining the two images, in the present study performance was 

limited by how well participants could extract and retain information about the brief cue image.  

 

Exposing participants to the image meanings significantly improved accuracy: Mmeaning 

trained=91.3%; Mmeaning untrained=83.1% (b=.71, 95% CI=[.26, 1.17], z=3.06, p<.01; Fig. 3). The 

meaning advantage interacted significantly with trial type (b=.33, 95% CI = [.10, .55], z=2.87, 

p<.01). The increase in accuracy following meaning training was again largest for the identical-

image trials (b=1.12, 95% CI=[.60, 1.64], z=4.22, p<10-4). It was smaller when the two images 

showed the same object in different locations (b=.57, 95% CI=[.08, 1.07] z=2.30, p=.02), and 
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marginally so when the two images showed different objects in different locations (b=.70, 95% 

CI=[-.09, 1.49], z=1.73, p=.08).  

 

Meaningfulness did not significantly affect RTs, which were slightly longer for meaning-trained 

participants (M=685 ms) than meaning-untrained participants (M=648 ms). Although this was 

far from reliable, b=36, 95% CI =[-328, 61], t=.80, p=.43, we sought to check that the accuracy 

advantage reported above still obtained when RTs were taken into account. We therefore 

included RT (on both correct and incorrect trials) as an additional fixed predictor in the logistic 

regression. RT was strongly related to accuracy: faster responses corresponded to greater 

accuracy, b=-.0010, 95% CI=[ -0.0012, -0.0009], z=-13.3, p<10-4, i.e., there was no evidence of a 

speed-accuracy tradeoff. Meaning-training remained a significant predictor of accuracy when 

RTs were included in the logistic regression as a fixed effect, b=.77, 95% CI=[.28, 1.26], z=3.08, 

p<.01. 

 

Experiment 4 

 

Behavior. Overall accuracy was 89.0% (92.8% on different trials and 81.3% on same trials). 

Participants were marginally more accurate when discriminating images previously made 

meaningful compared to images whose meaning was untrained: Mmeaning-trained=89.8%; Mmeaning-

untrained=88.2% (b=.21, 95% CI=[-0.0001, .42], z=1.96, p=.05; Fig. 4A). The meaning-by-trial-

type interaction for accuracy was not significant, p>.8. Overall RT was, at 641 ms— comparable 

to Experiment 3—and was marginally shorter when discriminating images that were previously 

rendered meaningful: Mmeanin-trained=656 ms; Mmeaning-untrained=665 ms, (b=-9.7, 95% CI=[-21, 1.1], 

t=-1.76, p=.08; Fig. 4A). The meaning-by-trial-type interaction for RTs was not significant, 

p>.90. As evident from Fig 4A, the effect of meaning-training was split between accuracy and 

RTs. We therefore repeated the accuracy analysis including RT (for both correct and incorrect 

trials) as an added predictor. As in Experiment 3, RTs were negatively correlated with accuracy, 

b=-.0012, 95% CI=[-.0016, -.0010], t=-9.17, p<.10-4. With RTs included in the model, meaning-

training was associated with greater accuracy, b=.22, 95% CI=[.012, .43], t=2.08, p=.04. 
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Fig. 4. Behavior and electrophysiology results from Experiment 4. (A) Response time (left 
panel), accuracy (right panel) showed trending improvements for images previously made 
meaningful. Note that a model including both accuracy and RTs revealed a significant effect of 
meaning training on accuracy (see Results). (B) Analysis of the P1 event-related potential 
revealed a significant main effect, indicating larger amplitude responses to meaning trained 
targets. This main effect was largely driven by significant differences at left posterior electrodes 
(upper panel; signal averaged over electrodes denoted with black dots), but not right (lower 
panel), although the interaction did not reach significance. (C) Topography of the P1 for both 
conditions and their difference. Error bars and shaded bands represent ±1 within-subjects SEM 
84; asterisks indicated two-tailed significance at p<.05; daggers represent two-tailed trends at 
p<.08. 
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Combining experiments 3 and 4 revealed a significant effect of meaning-training on accuracy 

b=.57, 95% CI=[ 0.24,  0.90], t=3.35, p<10-3, and a significant meaning-training by experiment 

interaction b=-.64, 95% CI=[-1.20, -.08], t=-2.21, p=.03, suggesting that the effect of meaning-

training on accuracy was larger in experiment 3 compared to experiment 4. Including RT in the 

model did not appreciably change these results. We speculate that the reduced effect in the 

present experiment is due to the within-subject manipulation of meaningfulness. 

 

P1 amplitude analysis. As shown in Fig. 4B, trial-averaged P1 amplitude was significantly larger 

when viewing targets whose meaning was trained, as compared to those whose meaning was 

untrained (b=-1.7, 95% CI=[-3.29, -0.13], t=-2.16, p=.037). Although there was no significant 

interaction with hemisphere (p=.22), analysis of simple effects using paired t-tests revealed that 

meaning increased P1 amplitudes at the left hemisphere electrode cluster (t(15)=2.59, 95% 

CI=[0.30, 3.12], p=.02), but not at right (t(15)=.35, 95% CI=[-1.68, 2.36], p=.72). These same 

analyses were repeated for cue-evoked P1 amplitudes. No main effect or interaction was 

observed (both p-values>.70), suggesting that the effect of meaning on P1 amplitudes was 

specific to the target-evoked response.  

 

Pre-target Alpha-band Power. The linear mixed-effects model of alpha power (averaged over 

the 500 ms prior to target onset) revealed a significant effect of meaning (b=-9.85, 95% CI=[-

18.42, -1.29], t=-2.3, p=.03), indicating greater pre-target alpha power on meaning trained trials, 

and a significant interaction between hemisphere and meaning (b=8.31, 95% CI=[	2.27, 14.36], 

t=2.75, p=.01). Paired t-tests revealed that meaning increased pre-target alpha power in the left 

(t(15)=2.21, 95% CI=[0.33, 19.38], p=.04), but not right (t(15)=0.35, 95% CI=[-7.78, 10.86], 

p=.72) hemisphere. Analysis of the time course of pre-target alpha power revealed a significant 

cluster-corrected increase in power on meaning-trained trials from approximately -480 to -250 

ms prior to target onset. Significant clusters were observed over left occipito-parietal sensors, but 

not right (see Fig. 5B). Note that this pre-target difference is unlikely to be accounted for by 

temporal smoothing of post-target differences as there were clearly no post-target differences 

(Fig. 5B). 
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Fig. 5. Time-frequency analysis of alpha-band power during the cue-target interval (Experiment 
4). (A) To identify time-frequency-electrode regions of interest while avoiding circular inference, 
we averaged time-frequency power across all electrodes and conditions. This revealed a 
prominent increase (~ 65% from baseline) in pre-target (-500 to 0 ms) power in the alpha range 
(8-14 Hz) that had a posterior topography (right panel; left and right electrode clusters of 
interest denoted with white dots) associated with simply performing the task. We then focused on 
how meaning training impacted this signal in subsequent analyses. (B) Time-frequency power 
plots showing the difference (meaning-trained – meaning-untrained) for left (left panel) and 
right (right panel) electrodes of interest (derived from panel A) reveal greater alpha power just 
prior to target onset on meaning-trained trials. The lower panels depict the time-course of the 
pre-target alpha signal for meaning-trained and untrained trials, revealing a significant 
temporal cluster of increased alpha power approximately 480 to 250 ms prior to target onset 
over left, but not right electrode clusters. Shaded regions represent ±1 within-subjects SEM 84. 
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Alpha Power and P1 Correlation. We next assessed the relationship between the meaning effect 

on pre-target alpha power and on P1 amplitudes across participants by correlating alpha 

modulations (averaged over the pre-target window) with P1 modulations, for both right and left 

electrode groups. This analysis revealed a significant positive correlation (rho=0.52, p=.04, 

bootstrap 95% CI=[0.08, 0.82]) over left electrodes, indicating that individuals who showed a 

greater increase in pre-target alpha from meaning training also had a larger effect of meaning on 

P1 amplitudes (see Fig. 6A). This relationship was not significant over right hemisphere 

electrodes (rho = -0.21, p=.42, bootstrap 95% CI=[-0.71, 0.41]; Fig. 6B). These two correlations 

were significantly different (p=.04) and the 95% CI of the difference between bootstrap 

distributions only slightly overlapped with zero (CI=[1.39, -0.04]), suggesting that these 

interactions may be specific to the left hemisphere. 

 

Single-trial P1 Analysis. Finally, we used linear mixed-effects models with subject and item 

random effects to examine the relationship between single-trial P1 peak amplitudes and latencies 

and the accuracy and latency of participants’ same/different responses. We focused on P1 peaks 

from the cluster of left electrodes because these sensors were driving the significant P1 main-

effect at the trial-averaged model (see above), as well as the significant alpha power interaction. 

A focus on left posterior electrodes was also warranted by work in our lab that found P1 

modulation by linguistic cues occurring over left occipito-parietal sensors44. 

 

Per-trial amplitudes were numerically greater for meaningful trials (M=64.43 µV/cm2) than 

meaningless trials (M=63.70 µV/cm2), but not significantly so, b=.83, 95% CI = [-.82, 2.50], 

t=1.02, p=.31. There was a significant interaction between behavioral RTs and meaningfulness in 

predicting the P1 amplitude, b=	-0.008, 95% CI=[-0.014 -0.001], t=-2.48, p=.01, such that on 

meaningful trials, larger P1s were associated with faster behavioral responses (controlling for 

accuracy), b=-0.008, 95% CI=[-.013, -.002], t=2.68, p<.01. On meaningless trials, no such 

relationship was observed, b=	0.0006, 95% CI=[-0.005, 0.006], t=.24, p>.40. There was no 

relationship between P1 peak amplitude and accuracy either for meaningful or meaningless 

trials, t’s<1. 
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Intriguingly, P1 latencies were slightly, but significantly delayed on meaningful (M=114.8 ms) 

compared to meaningless trials (M=113.4 ms), b=1.50, 95% CI=[.50, 2.50], t=2.96, p<.01. A 

later P1 seems suboptimal, yet within subjects, later P1s were associated with shorter RTs, b=-

0.003, 95% CI = [-.0054, -.0005], t=2.33, p=.02 (no interaction with meaningfulness was 

observed, t=-.32). As with P1 amplitude, P1 latencies were uncorrelated with accuracy for either 

meaningful or meaningless trials t’s<1. 

 
Fig. 6. The magnitude of the meaning training effect on pre-target alpha power predicts the 
magnitude of the meaning effect on P1 amplitude across participants. (A) A significant positive 
correlation over left hemisphere sensors indicates that individuals who showed a greater 
increase in pre-target alpha power on meaning-trained trials also showed a greater increase in 
P1 amplitude. Dashed lines denote the 95% CI on the linear fit and the right panel shows 
bootstrap distributions of the correlation coefficient with 95% CI denoted with a thick black line. 
(B) Same correlation but for right hemisphere electrodes, which was non-significant and with a 
bootstrap distribution substantially overlying zero.  
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Unlike left-hemisphere electrodes, per-trial P1 amplitudes over the right electrodes were 

numerically smaller for meaningful trials (M=71.34 µV/cm2) than meaningless trials (M=71.97 

µV/cm2), but not significantly so, b=.83, 95% CI = [-.82, 2.50], t<1. There was no significant 

interaction between behavioral RTs and meaningfulness in predicting the P1 amplitude, t<1 

Similar to the left hemisphere electrodes, however, P1 latencies were longer on meaningful trials 

(M=110.8 ms) compared to meaningless trials (109.3 ms), b=1.52, t=2.93, p=.004, 95% CI= [.50, 

2.52]. Unlike the left-hemisphere electrodes, however, these longer P1 latencies on meaningful 

trials were not significantly associated with behavioral RTs, b=.002, t=1.23, p=.22. Full analyses 

can be found at https://osf.io/stvgy/. 

 

Control Analyses. To determine whether participants’ improved performance for the meaning 

trained images could be explained by learning where the object was located and looking to those 

locations we analyzed electrooculograms (EOGs, prior to ocular correction from ICA) recorded 

from bipolar electrodes placed on the lateral canthus and lower eyelid of each participant’s right 

eye during the EEG recording. If participants more frequently engaged in eye movement during 

the cue-target interval of meaning-trained trials we would expect, on average, larger amplitude 

EOG signals following the cue. However, EOG amplitudes, time-locked to the onset of the cue, 

did not reliably distinguish between meaning-trained and meaning-untrained trials in the way 

that alpha power during this same interval did (all p-values>.65, time-cluster corrected). EOG 

amplitudes on meaning-trained trials also did not reliably differ when trials were sorted by the 

location of the object in the cue image: whether it was on the left or right side, on the top or 

bottom, or lateral or vertical relative to center (all p-values>.43, time-cluster corrected). Across 

the whole cue-target interval, no contrast survived the same cluster correction procedure applied 

to the alpha time-course analysis, suggesting that eye movements are unlikely to explain our 

EEG findings.  

 

To investigate the possibility that participants covertly attended to the location of the object in 

the cue image, we tested for well-known effects of spatial attention on alpha lateralization. 

Numerous studies have demonstrated alpha power desynchronization at posterior electrodes 

contralateral to the attended location 31,32,34. Thus, if subjects were maintaining covert attention, 

for example, to the left side of the image following a cue with a left object, then alpha power 
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may decrease over right sensors relative to when a cue has an object on the right, and vice versa. 

Contrary to this prediction, we observed no modulation of alpha power at either left (all p-

values>.94, time-cluster corrected) or right electrode clusters (all p-values>.35, time-cluster 

corrected) by the object location within the Mooney image. This suggests that spatial attention is 

not the source of the effects of meaning training. 

 

To ensure that the P1 effect and the across-subject correlation between alpha power and P1 were 

not dependent on filter choices applied during preprocessing, we re-conducted both analyses 

using unfiltered data. Regarding the P1, we again observed a main effect of meaning training on 

P1 amplitudes (b=-1.8, 95% CI=[-3.42, -0.20], t=-2.25, p=.030), indicating larger P1’s following 

meaning-trained targets and no main effect of hemisphere, or interaction (t’s<0.9). Paired t-tests 

confirmed that P1 amplitudes were larger for meaning-trained targets at left hemisphere 

electrodes (t(15)=2.51, 95% CI=[0.27, 3.35], p=.02), but not at right (t(15)=.76, 95% CI=[-1.26, 

2.68], p=.45). Regarding the correlation between pre-target alpha power and P1 modulations, we 

again found a significant across-subject correlation at left hemisphere electrodes (rho=0.61, 

p=0.01, bootstrap 95% CI=[0.21, 0.85]), but not at right (rho=-0.26, p=.32, bootstrap 95% CI=[-

0.74, 0.37]). These correlations were significantly different from one another as the 95% CI of 

the difference between left and right electrode bootstrap distributions did not contain zero 

(CI=[1.43, 0.051]).  

 

Discussion 

To better understand when and how prior knowledge influences perception we first examined 

how non-perceptual cues influence recognition of initially meaningless Mooney images. These 

verbal cues resulted in substantial recognition improvements. For example, being told that an 

image contained a piece of furniture produced a 16-fold increase in recognizing a desk (Fig.1). 

We next examined whether ascribing meaning to the ambiguous images improved not just 

people’s ability to recognize the denoted object, but to perform a basic perceptual task: 

distinguishing whether two images were physically identical. Indeed, ascribing meaning to the 

images through verbal cues improved people’s ability to determine whether two simultaneously 

or sequentially presented images were the same or not (Fig. 3 and 4). The behavioral advantage 

might still be thought to reflect an effect of meaningfulness on some relatively late process were 
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it not for the electrophysiological results showing that ascribing meaning led to increase in the 

amplitude of P1 responses to the target (Fig. 4B)cf. 48. The P1 enhancement was preceded by an 

increase in alpha amplitude during the cue-target interval when the cue was meaningful (Fig. 5). 

The effect of meaning training on pre-target alpha power and target-evoked P1 amplitude were 

positively correlated across participants, such that individuals who showed larger increases in 

pre-target alpha power as a result of meaning training, also showed larger increases in P1 

amplitude (Fig. 6). Combined, our results contradict claims that knowledge affects perception 

only at a very late stage 49,20,50 and provide general support for predictive processing accounts of 

perception, positing that knowledge may feedback to modulate lower levels of perceptual 

processing 3,25,51.  

 

In Experiment 2, when meaning training was manipulated between subjects and participants 

could compare both images with unlimited time we observed effects of meaning on RTs but not 

accuracy. When the visual discrimination was made difficult via masking and brief presentation 

times (Experiments 3 and 4), effects on accuracy were more pronounced. This was true for both 

between-and within-subject versions of the manipulation (Experiments 3 and 4, respectively). 

However, there were notable differences between behavioral performance in Experiments 3 and 

4. The meaning effect on accuracy in Experiment 4 was reduced compared to Experiment 3 and 

a trending response time effect emerged in Experiment 4. Additionally, there was an interaction 

with trial type and meaning predicting accuracy in Experiment 3, but not Experiment 4. These 

differences are possibly due, in part, to the change from between-subjects to within-subjects in 

Experiment 4 which could have resulted in some of the meaning untrained images being 

recognized due to exposure to both conditions. That is, the effectiveness of the meaning 

manipulation may have been reduced as a result of all the subjects in this experiment knowing 

that the stimuli contained meaningful objects. 

 

These behavior results are novel in two respects. First, it marks the first demonstrations, to our 

knowledge, of cuing recognition of Mooney-style images using solely linguistic cues, as opposed 

to the more common method of simply revealing the original image 17,18,52. Second, the results of 

our same/different discrimination task reveal that linguistic cues enhance not only the ability to 
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recognize the images, as in prior work, but also putatively lower-level processes subserving 

visual discrimination.  

 

The P1 ERP component is associated with relatively early regions in the visual hierarchy (most 

likely ventral peri-striate regions within Brodmann’s Area 18 53–56) but is has been shown to be 

sensitive to top-down manipulations such as spatial cueing 57,58, object based attention 59, object 

recognition 60,61, and recently, trial-by-trial linguistic cueing 44. Our finding that averaged P1 

amplitudes were increased following meaning training is thus most parsimoniously explained as 

prior knowledge having an early locus in its effects on visual discrimination (although the failure 

to find this effect in the single-trial EEG suggests some caution in its interpretation). This result 

is consistent with prior fMRI findings implicating sectors of early visual cortex in the recognition 

of Mooney images 17,52 but extends these results by demonstrating that the timing of Mooney 

recognition is consistent with the modulation of early, feedforward visual processing. 

Interestingly, the effect of meaning on P1 amplitude was present only in response to the target 

stimulus, and not the cue. This suggests that, in our task, prior knowledge impacted early visual 

responses in a dynamic manner, such that experience with the verbal cues facilitated the ability 

to form expectations for a subsequent “target” image. We speculate that this early target-related 

enhancement may be accomplished by the temporary activation of the cued perceptual features 

(reflected in sustained alpha power) rather than by an immediate interaction with long-term 

memory representations of the meaning-trained features, which would be expected to lead to 

enhancements of both cue and target P1. Another possibility is that long-term memory 

representations are brought to bear on the meaning-trained “cue” images, but these affect later 

perceptual and post-perceptual processes.  

 

Our findings are also in line with two recent magnetoencephalography (MEG) studies reporting 

early effects of prior experience on subjective visibility ratings 39,62. In those studies, however, 

prior experience is difficult to disentangle from perceptual repetition. For example, Aru and 

colleagues 62 compared MEG responses to images that had previously been studied against 

images that were completely novel, leaving open mere exposure as a potential source of 

differences. In our task, by contrast, participants were familiarized with both meaning trained 

and meaning untrained images but only the identity of the Mooney image was revealed in the 
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meaning training condition, thereby isolating effects of recognition. Our design further rules out 

the possibility that stimulus factors (e.g., salience) could explain our effects, since the choice of 

which stimuli were trained was randomized across subjects. One possible alternative by which 

meaning training may have had its effect is through spatial attention. For example, it is 

conceivable that on learning that a given image has a boot on the left side, participants 

subsequently were more effective in attending to the more informative side of the image. If true, 

such an explanation would not detract from the behavioral benefit we observed, but would mean 

that the effects of knowledge were limited to spatial attentional gain. Subsequent analyses 

suggest this is not the case (see Control Analyses). 

 

It is noteworthy that, as in the present results, the two MEG studies mentioned above, as well as 

related work from our lab employing linguistic cues44, have all found early effects over left-

lateralized occipito-parietal sensors, suggesting that the effects of linguistically aided perception 

may be more pronounced in the left hemisphere, perhaps owing to the predominantly left 

lateralization of lexical processing63. 

 

Mounting neurophysiological evidence has linked low-frequency oscillations in the alpha and 

beta bands to top-down processing 64–67. Recent work has demonstrated that perceptual 

expectations modulate alpha-band activity prior to the onset of a target stimulus, biasing baseline 

activity towards the interpretation of the expected stimulus 28,39. We provide further support for 

this hypothesis by showing that posterior alpha power increases when participants have prior 

knowledge of the meaning of the cue image, which was to be used as a comparison template for 

the subsequent target. Further, pre-target alpha modulation was found to predict the effect of 

prior knowledge on target-evoked P1 responses, suggesting that representations from prior 

knowledge activated by the cue interacted with target processing. Notably, the positive direction 

of this effect—increased pre-target alpha power predicted larger P1 amplitudes (Fig. 6)—directly 

contrasts with previous findings of a negative relationship between these variables 68–70, which is 

typically interpreted as reflecting the inhibitory nature of alpha rhythms 71,72. Indeed, our 

observation directly contrasts with the notion of alpha as a purely inhibitory or “idling” rhythm. 

We suggest that, in our task, increased pre-target alpha-band power may reflect the pre-

activation of neurons representing prior knowledge about object identity, thereby facilitating 
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subsequent perceptual same/different judgments. This account is supported by the recent finding 

from invasive recordings in the Macaque that in inferior temporal cortex, stimulus-evoked 

gamma and multiunit activity are positively correlated with prestimulus alpha power, in contrast 

with the negative correlation observed in V2 and V4 73.On the basis of this we speculate that the 

alpha modulation we observed in concert with P1 enhancement may have its origin in regions 

where alpha is not playing an inhibitory role. 

 

Although our results are supportive of a general tenant of predictive processing accounts 8,11,25—

that predictions, formed through prior knowledge, can influence sensory representations—our 

results also depart in an important way from certain proposals made by predictive coding 

theorists 8,74,75. With respect to the neural implementation of predictive coding, it is suggested 

that feedforward responses reflect the difference between the predicted information and the 

actual input. Predicted inputs should therefore result in a reduced feedforward response. 

Experimental evidence for this proposal, however, is controversial. Several fMRI experiments 

have observed reduced visual cortical responses to expected stimuli 76–78, whereas visual 

neurophysiology studies describe most feedback connections as excitatory input onto excitatory 

neurons in lower-level regions 79–81, which may underlie the reports of enhanced fMRI and 

electrophysiological responses to expected stimuli 22,39,82. A recent behavioral experiment 

designed to tease apart these alternatives found that predictive feedback increased perceived 

contrast—which is known to be monotonically related to activity in primary visual cortex—

suggesting that prediction enhances sensory responses 83. Our finding that prior knowledge 

increased P1 amplitude also supports the notion that feedback processes enhance early evoked 

responses, although teasing apart the scenarios under which responses are enhanced or reduced 

by predictions remains an important challenge for future research. 
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