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Abstract 

Perceptual experience results from a complex interplay of bottom-up input and prior knowledge 

about the world, yet the extent to which knowledge affects perception, the neural mechanisms 

underlying these effects, and the stages of processing at which these two sources of information 

converge, are still unclear. In a series of experiments we show that language, in the form of 

verbal cues, both aids recognition of ambiguous “Mooney” images and improves objective visual 

discrimination performance. We then used electroencephalography (EEG) to better understand 

the mechanisms of this effect. The improved discrimination of images previously labeled was 

accompanied by a larger occipital-parietal P1 evoked response to the meaningful versus 

meaningless target stimuli. Time-frequency analysis of the interval between the two stimuli (just 

prior to the target stimulus) revealed increases in the power of posterior alpha-band (8-14 Hz) 

oscillations when the meaning of the stimuli to be compared was trained. The magnitude of the 

prestimulus alpha difference and the P1 amplitude difference was positively correlated across 

individuals. These results suggest that prior knowledge prepares the brain for upcoming 

perception via the modulation of prestimulus alpha-band oscillations, and that this preparatory 

state influences early (~120 ms) stages of visual processing. 

 

Introduction 

A chief function of visual perception is to “provide a description that is useful to the viewer” 1, 

that is, to construct meaning2,3. Canonical models of visual perception explain this ability as a 

feed-forward process, whereby low-level sensory signals are progressively combine into more 

complex descriptions that are the basis for recognition and categorization 4,5. There is now 

considerable evidence, however, suggesting that prior knowledge impacts relatively early stages 

of perception 6–15. A dramatic demonstration of how prior knowledge can create meaning from 

apparently meaningless inputs occurs with two-tone “Mooney” images 16, which can become 

recognizable following the presentation of perceptual hints 17,18. 

 

Although there is general acceptance that knowledge can shape perception, there are 

fundamental unanswered questions concerning the type of knowledge that can exert such effects. 

Previous demonstrations of recognition of Mooney images by knowledge have used perceptual 

hints such as pointing out where the meaningful image is located or showing people the 
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completed version of the image. Our first question is whether category information cued 

linguistically—in the absence of any perceptual hints cf. 17,19—can have similar effects. Second, it 

remains unclear whether such effects of knowledge reflect modulation of low-level perception 

and if so, when during visual processing such modulation occurs. Some have argued that benefits 

of knowledge on perception reflects late, post-perceptual processes occurring only after 

processes that could be reasonably called perceptual 20. In contrast, recent fMRI experiments 

have observed knowledge-based modulation of stimulus-evoked activity in sensory regions, 

suggesting an early locus of top-down effects 21–24. However, the sluggish nature of the BOLD 

signal makes it difficult to distinguish between knowledge affecting bottom-up processing from 

later feedback signals to the same regions. 

 

One way that prior knowledge may influence perception is by biasing baseline activity in 

perceptual circuits, pushing the interpretation of sensory evidence towards that which is expected 
25. Biasing of prestimulus activity according to expectations has been observed both in decision- 

and motor-related prefrontal and parietal regions 26–28 as well as in sensory regions 21,29,30. In 

visual regions, alpha-band oscillations are thought to play an important role in modulating 

prestimulus activity according to expectations. For example, prior knowledge of the location of 

an upcoming stimulus changes preparatory alpha activity in retinotopic cortex 31–34. Likewise, 

expectations about when a visual stimulus will appear are reflected in prestimulus alpha 

dynamics 35–37. Recently, Mayer and colleagues demonstrated that when the identity of a target 

letter could be predicted, prestimulus alpha power increased over left-lateralized posterior 

sensors38. These findings suggest that alpha-band dynamics are involved in establishing 

perceptual predictions in anticipation of perception. 

 

Here, we examined whether verbal cues that offered no direct perceptual hints can improve 

visual recognition of indeterminate two-tone “Mooney” images (Experiment 1). We then 

measured whether such verbally ascribed meaning affected an objective visual discrimination 

task (Experiments 2-3). Finally, we recorded electroencephalography (EEG) during the visual 

discrimination task (Experiment 4) to better understand the locus at which knowledge influenced 

perception. Our findings suggest that using language to ascribe meaning to ambiguous images 

impacts early visual processing by biasing prestimulus neural activity in the alpha-band. 
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Materials and Method 

Experiment 1 

Materials. We constructed 71 Mooney images by superimposing familiar images of easily 

nameable and common artefacts and animals onto patterned background. These superimposed 

images were then blurred (Gaussian Blur) and then thresholded to a black-and-white bitmap. 

Materials are available at https://osf.io/stvgy/. 

 

Procedure.  

Experiment 1A. Free Naming. We recruited 94 participants from Amazon Mechanical Turk. 

Each participant was randomly assigned to view one of 4 subsets of the 71 Mooney images, and 

to name at the basic-level what they saw in each image. Each image was seen by approximately 

24 people. Naming accuracies for the 71 images (see below for details on how these were 

computed) ranged from 0% to 95%.  

 

Experiment 1B. Basic Level Cues. From the 71 images used in Exp. 1A we selected the images 

with accuracy at or below 33% (29 images). We then presented these images to an additional 42 

participants recruited from Amazon Mechanical Turk. Each participant was shown one of two 

subsets of the 29 images and asked to choose among 29 basic-level names (e.g., “trumpet”, 

“leopard”, “table”), which object they thought was present in the image (i.e., a 29-alternative 

forced choice). Each image received approximately 21 responses. 

 

Experiment 1C. Superordinate Cues. Out of the 29 images used in Exp. 1B we selected 15 that 

had a clear superordinate label (see Fig. 1). Twenty additional participants recruited from 

Amazon Mechanical Turk were presented with each image along with its corresponding 

superordinate label and were asked to name, at the basic level, the object they saw in their 

picture by typing their response. For example, given the superordinate cue “musical instrument”, 

participants were expected to respond with “trumpet” given a Mooney image of a trumpet. 
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Fig. 1. Recognition accuracy from naïve observers (Experiment 1). (A) Mean accuracy in the 
free naming, basic, and superordinate label cue conditions by image. Error bars depict ±1 SEM. 
(B) Mean benefit of basic and superordinate cues. 
 

Experiment 2 

Materials. From the set of 15 categories used in Exp. 1C, we chose the 10 that had the highest 

accuracy in the basic-level cue condition (Exp. 1B) and were most benefited by the cues (boot, 

cake, cheese, desk, guitar, leopard, socks, train, trumpet, turtle). The images subtended 

approximately 7o×7o of visual angle. Each category (e.g., guitar) was instantiated by four 

variants: two different image backgrounds and two different positions of the images. These 

additional images were introduced to tease apart potential detection effects be driven by low-

level processing alone.  

 

Participants. We recruited 35 college undergraduates to participate in exchange for course credit. 

Two were eliminated for low accuracy (less than 77%), resulting in 14 participants in the 

meaning trained condition (8 female), and 19 in the meaning untrained condition (11 female). 

All participants provided written informed consent. The University of Wisconsin-Madison 

Institutional Review Board approved this and all other studies reported here. 
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Familiarization Procedure. Participants were randomly assigned to a meaning trained 

or meaning untrained condition. The two conditions differed only in how participants were 

familiarized with the images. In the meaning trained condition participants first viewed each 

Mooney image accompanied by an instruction, e.g., “Please look for CAKE”, twice for each 

Mooney image (Trials 1-20). Participants then saw all the images again and were asked to type 

in what they saw in each image, guessing in the case that they could not see anything (Trials 21-

30). Finally, participants were shown each image again, asked to type in the label once more and 

asked to rate on a 1-5 how certain they were that the image portrayed the object they typed. In 

the meaning untrained condition, participants were familiarized with the images while 

performing a one-back task, being asked to press the spacebar anytime an image was repeated 

back-to-back. Repetitions occurred on 20-25% of the trials. In total, participants in the meaning-

trained and untrained conditions saw each image 4 and 5 times respectively. 

 

Same/Different Task. Following familiarization, participants’ were tested in their ability to 

visually discriminate pairs of Mooney images. Their task was to indicate whether the two images 

were physically identical or different in any way (Fig. 2A). Each trial began with a central 

fixation cross (500 ms), followed by the presentation of one of the Mooney images (the “cue”) 

approximately 8o of visual angle above, below, to the left or to the right of fixation. After 1500 

ms the second image (the “target”) appeared in one of the remaining cardinal positions. The two 

images remained visible until the participant responded “same” or “different” using the keyboard 

(hand-response mapping was counterbalanced between participants). Accuracy feedback (a buzz 

or bleep) sounded following the response, followed by a randomly determined inter-trial interval 

(blank screen) between 250 and 450 ms. Image pairs were equally divided into three trial-types 

(Fig 2C): (1) two identical images (same trials), (2) same object, but different location, (3) 

different-objects at different locations. The backgrounds of the two images on a given trial were 

always the same and On a given trial, both cue and target objects were either trained or 

untrained. Participants completed 6 practice trials followed by 360 testing trials.  

 

Behavioral Data Analysis. Accuracy was modeled using logistic mixed effects regression with 

experiment block and trial-type random slopes and subject and item-category random intercepts. 
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RTs were modeled in the same way, but using linear mixed effects regression. RT analyses 

excluded responses longer than 5s and those exceeding 3SDs of the subject’s mean.  

 

Experiment 3 

Participants. We recruited 32 college undergraduates to participate in exchange for course credit. 

16 were assigned to the meaning trained condition (13 female), and the other 16 to the meaning 

untrained condition (12 female). 

 

Familiarization Procedure and Task. The familiarization procedure, task, and materials were 

identical to Experiment 2 except that the first and second images (approximately 6o×6o of visual 

angle) were presented briefly and sequentially at the point of fixation, in order to increase 

difficulty and better test for effects of meaning on task accuracy (see Fig. 2B). On each trial, the 

initial cue image was presented for 300 ms for the initial 6 practice trials and 150 ms for the 360 

subsequent trials. The image was then replaced by a pattern mask for 167 ms followed by a 700 

ms blank screen, followed by the second target image. Participants’ task, as before, was to 

indicate whether the cue and target images were identical. The pattern masks were black-and-

white bitmaps consisting of randomly intermixed ovals and rectangles (https://osf.io/stvgy/). 

 

Behavioral Data Analysis. Exclusion criteria and analysis were the same as in Experiment 2. 

 

Experiment 4 

Participants. Nineteen college undergraduates were recruited to participate in exchange for 

monetary compensation. 3 were excluded from any analysis due to poor EEG recoding quality, 

resulting in 16 participants (9 female) with usable data. All participants reported normal or 

corrected visual acuity and color vision and no history of neurological disorders.  

 

Familiarization Procedure and Task. The familiarization procedure, task, and materials were 

nearly identical to that used for Experiment 3, but modified to accommodate a within-subject 

design. For each participant, 5 of the 10 images were assigned to the meaning trained condition 

and the remaining to the meaning untrained condition, counterbalanced between subjects. 

Participants first viewed the 5 Mooney images in the meaning condition together with their 
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names (trials 1-10), with each image seen twice. Participants then viewed the same images again 

and asked to type in what they saw in each image (trials 11-15). For trials 16-20 participants 

were again asked to enter labels for the images and prompted after each trial to indicate on a 1-5 

scale how certain they were that the image portrayed the object they named. During trials 21-43 

participants completed a 1-back task identical to that used in Experiments 2-3 as a way of 

becoming familiarized with the images assigned to the meaning untrained condition. Participants 

then completed 360 trials of the same/different task described in Experiment 3. 
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Fig. 2. Schematic of the procedure for Experiments 2-4. (A) In Experiment 2, participants 
determined whether two Mooney images were physically identical. (B) To increase task 
difficulty, Experiments 3 and 4 used sequential masked presentation. (C) To test for the 
selectivity of meaning effects, ‘different’ image pairs could differ in object location or object 
identity. In Experiments 2 and 3, knowledge of the objects was manipulated between 
participants. In Experiment 4, each participant was exposed to the meanings of a random half of 
the objects (see Familiarization Procedure). 
 

EEG Recording and Preprocessing. EEG was recorded from 60 Ag/AgCl electrodes with 

electrode positions conforming to the extended 10–20 system. Recordings were made using a 

forehead reference electrode and an Eximia 60-channel amplifier (Nextim; Helsinki, Finland) 

with a sampling rate of 1450 Hz. Preprocessing and analysis was conducted in MATLAB 

(R2014b, Natick, MA) using custom scripts and the EEGLAB toolbox 39. Data were 

downsampled to 500 Hz offline and were divided into epochs spanning −1500 ms prior to cue 

onset to +1500 ms after target onset. Epochs with activity exceeding ±75 µV at any electrode site 

were automatically discarded. Independent components responsible for vertical and horizontal 

eye artifacts were identified from an independent component analysis (using the runica 
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algorithm implemented in EEGLAB) and subsequently removed. Visually identified channels 

with poor contact were spherically interpolated. After these preprocessing steps, we applied a 

Laplacian transform to the data using spherical splines 40. The Laplacian is a spatial filter (also 

known as current scalp density) that aids in topographical localization and converts the data into 

a reference-independent scheme, allowing researchers to more easily compare results across labs; 

the resulting units are in µV/cm2. For recent discussion on the benefits of the surface Laplacian 

for scalp EEG see 41,42. 

 

Event-related Potential Analysis. Cleaned epochs were filtered between 0.5 and 25 Hz using a 

first-order Butterworth filter (MATLAB function butter.m). Data were time-locked to target 

onset, baselined using a subtraction of a 200 ms prestimulus window, and sorted according to 

target meaning condition (trained or untrained). To quantify the effect of meaning on early visual 

responses, we focused on the amplitude of the visual P1 component. Following prior work in our 

lab that found larger left-lateralized P1 amplitudes to images preceded by linguistic cues 43, we 

derived separate left and right regions of interest by averaging the signal from occipito-parietal 

electrodes PO3/4, P3/4, P7/8, P9/10, and O1/2. P1 amplitude was defined as the average of a 30 

ms window, centered on the P1 peak as identified from the grand average ERP (see Fig. 4A). 

Lastly, in order to relate P1 amplitude and latencies to behavior, we used a single-trial analysis. 

As in prior work 43, single-trial peaks were determined from each electrode cluster (left and right 

regions of interest) by extracting the largest local voltage maxima between 70 to 150 ms post-

stimulus (using the MATLAB function findpeaks). Any trial without a detectable local maximum 

(on average ~ 1%) was excluded from analysis. 

 

Time-Frequency Analysis. Time-frequency decomposition was performed by convolving single 

trial data with a family of Morelet wavelets, spanning 3–50 Hz, in 1.6-Hz steps, with wavelet 

cycles increasing linearly between 3 and 10 cycles as a function of frequency. Power was 

extracted from the resulting complex time series by squaring the absolute value of the time 

series. To adjust for power-law scaling, time-frequency power was converted into percent signal 

change relative to a common condition pre-cue baseline of −400 to −100 ms. To identify time-

frequency-electrode features of interest for later analysis in a data-driven way while avoiding 

circular inference, we first averaged together all data from all conditions and all electrodes. This 
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reveled a prominent (~65% signal change from baseline) task-related increase in alpha-band 

power (8-14 Hz) during the 500 ms preceding target onset, with a clear posterior scalp 

distribution (see Fig. 5A). Based on this, we focused subsequent analysis on 8-14 Hz power 

across the prestimulus window -500 to 0 ms using the same left/right posterior electrode clusters 

as in the ERP analysis.  

 

Statistical Analysis. The effect of meaning training on the time course of prestimulus alpha 

power (see Fig. 5B) was analyzed with a non-parametric permutation test, the result of which 

was cluster corrected to deal with multiple comparisons across time points 44. This was 

accomplished by randomly shuffling the association between condition labels (meaning trained 

or untrained) and alpha power 10,000 times. On every iteration, a t-statistic was computed for 

each time sample and the largest number of contiguous significant samples was saved, forming a 

distribution of t-statistics under the null hypothesis that meaning training had no effect, as well as 

a distribution of cluster sizes expected under the null. The t-statistic associated with the true data 

mapping was compared, at each time point, against this null distribution and only cluster sizes 

exceeding the 95% percentile of the null cluster distribution was considered statistically 

different. α was set at 0.05 for all comparisons. Prestimulus alpha power was additionally 

analyzed by means of a linear mixed-effects model using meaning condition (trained vs. 

untrained) and electrode cluster (left vs. right hemisphere) and their interaction to predict alpha 

power (here averaged across the prestimulus window -500 to 0 ms) with random slopes for 

meaning condition and hemisphere by subject. The same model was used to predict averaged P1 

amplitudes. Where correlations are reported, we used Spearman rank coefficients to test for 

monotonic relationships while mitigating the influence of potential outliers.  

 

Results 

Experiment 1 

Mean accuracy for the 15 images used in all versions of Experiment 1 is displayed in Fig. 1A. 

The benefit conferred by different cue-types relative to a free naming baseline shown in Fig. 1B. 

Baseline recognition performance was 11%. Providing participants with a list of 29 possibilities 

increased recognition to 52%, a 4.7-fold increase (Exp. 1B), b = .41, 95% CI [.31, .51], t = 8.07, 

p < .0005. Providing participants with superordinate labels (e.g., “animal”, “musical instrument”) 
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boosted performance to 40%, a nearly 4-fold increase compared to the 11% baseline, b = .29, 

95% CI [.19, .39], t = 5.66, p < .0005. For example, knowing that there is a piece of furniture in 

the image produced a 16-fold increase in accuracy in recognizing it as a desk (an impressive 

result even allowing for guessing). The recognition advantage that verbal cues provide is 

especially striking given that they do not provide any spatial or other perceptual information to 

the identity of the image. 

 

Experiment 2 

Results are shown in Fig. 3. Overall accuracy was high—93.1% (93.5% on different trials and 

92.2% on same trials) and not significantly affected by training with meaning training (z<1). 

This is not surprising given that participants had unlimited time to inspect the two images. 

Participants exposed to the meaning of the images, however, had significantly shorter RTs than 

those who were not exposed to image meanings: RTmeaning=824 ms; RTno-meaning=1018ms (b=192, 

95% CI = [59, 327], t=2.82, p=.008; see Fig. 3). There was a marginal trial-type by meaning 

interaction (b=73, t=1.98, p=.06). Meaning was most beneficial in detecting that two images 

were exactly identical, (b=260, t=2.77, p=.009). There remained a significant benefit of meaning 

in detecting difference in images with the same object in a different location, (b=203, t=2.63, 

p=.01) and a smaller but still reliable difference when two images had different objects and 

object locations, (b=117, t=2.33, p=.03).  

 

Experiment 3 

The brief, masked presentation of the first image had an expected detrimental effect on accuracy, 

which was now 86.9% (89.9% on different trials and 81.1% on same trials). Exposing 

participants to the image meanings significantly improved accuracy: Mmeaning=90.9%; Mno-

meaning=82.9% (b=.67, 95% CI = [.22, 1.12], z=2.93, p=.003; Fig. 3). The meaning advantage 

interacted significantly with trial type (b=.30, 95% CI = [.08, .52], z=2.65, p=.008). The 

advantage of being exposed to meaning was again largest for the identical-image trials (b=1.10, 

z=4.25, p<.0001). It was slightly smaller when the two images showed the same object in 

different locations (b=.53, z=2.13, p=.03), and when the two images showed different objects in 

different locations (b=.67, z=1.76, p=.08).  
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Experiment 4 

Behavior. Overall accuracy was 89.0% (92.8% on different trials and 81.3% on same trials). 

Participants were marginally more accurate when judging images previously rendered 

meaningful compared to images whose meaning was untrained (b=.22, 95% CI = [-.02, .46], 

z=1.82, p=.07; Fig. 4A). The meaning-by-trial-type interaction was not significant. Participants 

became more accurate over time for both meaning trained and meaning untrained images (b=.34, 

z=4.47, p<.0001). The meaning-by-block interactions were not significant, t<1. Overall RT was 

641 ms, and was marginally shorter when discriminating images that were previously rendered 

meaningful, (b=-9.4, 95% CI=[-19.8, 1.0], t=1.77, p=.08). The meaning-by-trial-type and 

meaning-by-block interactions for RTs were not significant, t<1. We can combine accuracy and 

RTs into a single by-subject inverse efficiency score 45 by dividing each subject’s meaningful and 

meaningless trial RTs by their respective accuracies. Efficiency was significantly better on 

meaningful trials, M=734 than meaningless trials, M=756 (b=22.1, t=2.73, p=.02). 

 

Electrophysiology. As shown in Fig. 4B, trial-averaged P1 amplitude was significantly larger 

when viewing targets previously made meaningful (b=-1.7, t=-2.16, p=.037). Although there was 

no significant interaction with hemisphere, follow-up t-tests revealed P1 amplitude modulation 

by meaning at the left hemisphere electrode cluster (t(1,15)=2.59, p=.020), but not at right 

(t(1,15)=.35, p=.725). This same analysis was repeated for cue-evoked P1 amplitudes. 

Interestingly, no main effect or interaction was observed (ps>0.7), suggesting that the effect of 

Fig. 3. Response time (left 
panel) and accuracy (right 
panel) for Experiments 2 and 3. 
Meaning training significantly 
decreased response time in 
Experiment 2 (when both 
images were presented 
simultaneously and remained 
visible until response), and 
significantly improved accuracy 
in Experiment 3 (when images 
were presented briefly and 
sequentially). Error bars show 
±1 SEM; asterisks indicated 
two-tailed significance at 
p<0.05. 
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meaning on P1 amplitudes was specific to the target-evoked response. Analysis of the time 

course of prestimulus alpha power revealed a temporal cluster of significantly greater power on 

meaning-trained trials from approximately -480 to -250 ms prior to target onset. Like the P1 

effect, this difference was observed over left occipito-parietal sensors, but not right (see Fig. 5B). 

The linear mixed-effects model of alpha power (averaged over the 500 ms prior to target onset) 

revealed a significant effect of meaning (b=-9.85, t=-2.3, p=.03), indicating greater prestimulus 

alpha power on meaning trained trials, and a significant interaction between hemisphere and 

meaning (b=8.31, t=2.75, p=.014). Paired t-tests revealed that meaning affected prestimulus 

alpha power in the left (t(1,15)=2.21, p=.043), but not right (t(1,15)=0.35, p=.729) hemisphere. 
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Fig. 4. Behavior and electrophysiology 
results from Experiment 4. (A) 
Response time (left panel), accuracy 
(middle panel), and the inverse 
efficiency score (right panel) showed 
trending or significant improvements 
for images previously made 
meaningful. (B) Analysis of the P1 
event-related potential revealed larger 
amplitude responses to meaning 
trained targets over left posterior 
electrodes (upper panel; electrode 
clusters denoted with black dots), but 
not right (lower panel). The modulation 
of responses ~ 120 ms post-target 
suggests that prior knowledge impacts 
early stages of visual processing. Error 
bars and shaded bands represent ±1 
within-subjects SEM 85; asterisks 
indicated two-tailed significance at 
p<0.05; daggers represent two-tailed 
trends at p<0.08. 
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We next assessed the relationship between the meaning effect on prestimulus alpha power and 

the meaning effect on P1 amplitudes across participants by correlating alpha modulations 

(averaged over the prestimulus window) with P1 modulations. This analysis revealed a 

significant positive correlation (rho=0.52, p=.037) indicating that individuals who showed a 

greater increase in prestimulus alpha by meaning training also had a larger magnitude effect of 

meaning on P1 amplitudes (see Fig. 6). This relationship was not significant over right 

hemisphere electrodes (rho = -0.21), and the two correlations were significantly different 

(p=.042), suggesting that these interactions may be specific to the left hemisphere. Together, 

these results demonstrate that prior knowledge of the meaning of an ambiguous stimulus 

increases preparatory alpha power, enhances early visual responses, and suggests that these two 

processes are related. The general finding that effects of meaning are stronger over the left 

hemisphere than the right may indicate the linguistic source of the meaning 46: participants, after 

all, were verbally instructed as to the meaning of the images, or relatedly, the more categorical 

representations induced by language 43,47,48. 

 

Finally, we used linear mixed effects models with subject and item random effects to examine 

the relationship between per-trial P1 peak amplitudes and latencies to the accuracy and latency 

of behavioral responses. See https://osf.io/stvgy/ for full model syntax. We focused on P1 peaks 

from the cluster of left electrodes because these sensors were driving the significant P1 main-

effect at the trial-averaged model (see above), and the significant alpha power interaction (see 

above), and because a similar experiment in our lab also found P1 modulation by linguistic cues 

only over left occipito-parietal sensors43. Per-trial amplitudes were numerically greater for 

meaningful trials (M=64.42 µV) than meaningless trials (M=63.70 µV), but not significantly so, 

b=.86, 95%CI = [-.78, 2.51], t=1.03, p=.31. There was a significant interaction between 

behavioral RT and meaningfulness such that on meaningful trials, larger P1s were associated 

with faster behavioral responses (controlling for accuracy), b=-0.008, 95%CI =[-0.013, -0.002], 

t=2.68, p=.007. On meaningless trials, no such relationship was observed, b=0.00065, t<1.  

 

Intriguingly, P1 latencies were slightly, but significantly delayed on meaningful (M=114.8 ms) 

compared to meaningless trials (M=113.4), b=1.50, 95%CI = [.50, 2.50], t=2.96, p=.003. A later 
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P1 seems suboptimal, yet within subjects, later P1s were associated with shorter RTs, b=-0.003, 

95%CI = [-.0054, -.0005], t=2.33, p=.02 (no interaction with meaningfulness was observed). 

 

Fig. 5. Time-frequency 
analysis of alpha-band 
power during the cue-
target interval 
(Experiment 4). (A) To 
identify time-frequency-
electrode regions of 
interest while avoiding 
circular inference, we 
averaged time-frequency 
power across all 
electrodes and 
conditions. This revealed 
a prominent increase (~ 
65% from baseline) in 
pre-target (-500 to 0 ms) 
power in the alpha range 
(8-14 Hz) that had a 
posterior topography 
(right panel; left and 
right electrode clusters of 
interest denoted with 
white dots) associated 
with simply performing 
the task. We then focused 
on how meaning training 
impacted this signal in 
subsequent analyses. (B) 
Time-frequency power 
plots showing the 
difference (meaning 
trained – meaning untrained) for left (left panel) and right (right panel) electrodes of interest 
(derived from panel A) reveal greater alpha power just prior to target onset on meaning trained 
trials. The lower panels depicts the time-course of the pre-target alpha signal for meaning 
trained and untrained trials, revealing a significant temporal cluster of increased alpha power 
approximately 480 to 250 ms prior to target onset over left, but not right electrode clusters. 
Shaded regions represent ±1 within-subjects SEM 85. 
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Control Analyses. To determine whether participants’ improved performance for the verbally 

cued images could be explained by learning where the object was located and looking to those 

locations we analyzed electrooculograms (EOGs, prior to ocular correction from ICA) recorded 

from bipolar electrodes placed on the lateral canthus and lower eyelid of each participant’s right 

eye during the EEG recording. If participants more frequently engaged in eye movement during 

the cue-target interval of meaning-trained trials we would expect, on average, larger amplitude 

EOG signals following the cue. However, EOG amplitudes, time-locked to the onset of the cue, 

did not reliably distinguish between meaning-trained and meaning-untrained trials in the way 

that alpha power during this same interval did. EOG amplitudes on meaning-trained trials also 

did not reliably differ when trials were sorted by the location of the object in the cue image: 

whether it was on the left or right side, on the top or bottom, or lateral or vertical relative to 

center. Across the whole cue-target interval, no contrast survived the same cluster correction 

procedure applied to the alpha time-course analysis, suggesting that eye movements are unlikely 

to explain our EEG findings.  
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To further investigate the possibility that participants covertly attended to the location of the 

object in the cue image, we tested for well-known effects of spatial attention on alpha 

lateralization. Numerous studies, reviewed in 49, have demonstrated alpha power 

Fig. 6. The magnitude of the 
meaning training effect on 
prestimulus alpha power predicts 
the magnitude of the meaning 
effect on P1 amplitude across 
participants. This indicates that 
individuals who showed a greater 
increase in prestimulus alpha 
power on meaning trained trials 
also showed a greater increase in 
P1 amplitude. Data derived from 
the left hemisphere electrode 
cluster; the correlation using the 
right hemisphere cluster was non-
significant.  
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desynchronization at posterior electrodes contralateral to the attended location. Thus, if subjects 

were maintaining covert attention, for example, to the left side of the image following a cue with 

a left object, then alpha power should decrease over right sensors relative to when a cue has an 

object on the right, and vice versa. Contrary to this prediction, we observed no modulation of 

alpha power at either left or right electrode clusters as a function of object location within the 

Mooney image. Again, no contrasts across the cue-target interval survived cluster correction. 

This suggests that spatial attention is unlikely to be the source of the effects of meaning training. 

 

Discussion 

To better understand when and how prior knowledge influences perception we first examined 

how non-perceptual cues influence recognition of initially meaningless Mooney images. These 

verbal cues resulted in substantial recognition improvements. For example, being told that an 

image contained a piece of furniture produced a 16-fold increase in recognizing a desk. We next 

examined whether ascribing meaning to the ambiguous images improved not just people’s ability 

to recognize the denoted object, but to perform a basic perceptual task: distinguishing whether 

two images were physically identical. Indeed, ascribing meaning to the images through verbal 

cues improved people’s ability to determine whether two simultaneously or sequentially 

presented images were the same or not (Fig. 3 and 4). The behavioral advantage might still be 

thought to reflect an effect of meaningfulness on some relatively late process were it not for the 

electrophysiological results showing that ascribing meaning led to increase in the amplitude of 

P1 responses to the target (Fig. 4B)cf. 50. The P1 enhancement was preceded by an increase in 

alpha amplitude during the cue-target interval when the cue was meaningful (Fig. 5). The effect 

of meaning training on pre-target alpha power and target-evoked P1 amplitude were positively 

correlated across participants, such that individuals who showed larger increases in pre-target 

alpha power as a result of meaning training, also showed larger increases in P1 amplitude (Fig. 

6).  

 

Combined, our results contradict claims that knowledge affects perception only at a very late 

stage 51,20,52 and provide general support for predictive processing accounts of perception, 

positing that knowledge may feed back to modulate lower levels of perceptual processing 3,25,53. 

Our results are also the first to show that making ambiguous images meaningful via 
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nonperceptual linguistic cues enhances not only the ability to recognize the images, but also a 

putatively lower-level process subserving visual discrimination. 

 

The P1 ERP component is associated with relatively early regions in the visual hierarchy (most 

likely ventral peristriate regions within Brodmann’s Area 18 54–57) but is has been shown to be 

sensitive to top-down manipulations such as spatial cueing 58,59, object based attention 60, object 

recognition 61,62, and recently, trial-by-trial linguistic cuing 43. Our finding that averaged P1 

amplitudes were increased following meaning training is thus most parsimoniously explained as 

prior knowledge having an early locus in its effects on visual discrimination (although the failure 

to find this effect in the single-trial EEG suggests some caution in its interpretation). This result 

is consistent with prior fMRI findings implicating sectors of early visual cortex in the recognition 

of Mooney images 17,63 but extends these results by demonstrating that the timing of Mooney 

recognition is consistent with the modulation of early, feedforward visual processing. 

Interestingly, the effect of meaning on P1 amplitude was present only in response to the target 

stimulus, and not the cue. This suggests that, in our task, prior knowledge impacted early visual 

responses in a dynamic manner, such that experience with the verbal cues facilitated the ability 

to form expectations for a subsequently  “target” image. We speculate that this early target-

related enhancement may be accomplished by the temporary activation of the cued perceptual 

features (reflected in sustained alpha power) rather than by an immediate interaction with long-

term memory representations of the meaning-trained features, which would be expected to lead 

to enhancements of both cue and target p1. Another possibility is that long-term memory 

representations are brought to bear on the meaning-trained “cue” images, but these affect later 

perceptual and post-perceptual processes.  

 

Our findings are also in line with two recent magnetoencephalography (MEG) studies reporting 

early effects of prior experience on subjective visibility ratings 38,64. In those studies, however, 

prior experience is difficult to disentangle from perceptual repetition. For example, Aru et al., 

(2016) compared MEG responses to images that had previously been studied against images that 

were completely novel, leaving open mere exposure as a potential source of differences. In our 

task, by contrast, participants were familiarized with both meaning trained and meaning 

untrained images but only the identity of the Mooney image was revealed in the meaning 
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training condition, thereby isolating effects of recognition. Our design further rules out the 

possibility that stimulus factors (e.g., salience) could explain our effects, since the choice of 

which stimuli were trained was randomized across subjects. One possible alternative by which 

meaning training may have had its effect is through spatial attention. For example, it is 

conceivable that on learning that a given image has a boot on the left side, participants 

subsequently were more effective in attending to the more informative side of the image. If true, 

such an explanation would not detract from the behavioral benefit we observed, but would mean 

that the effects of knowledge were limited to spatial attentional gain. Subsequent analyses 

suggest this is not the case (see Control Analyses). 

 

It is noteworthy that, as in the present results, the two abovementioned MEG studies, as well as 

related work from our lab employing linguistic cues43, have all found early effects over left-

lateralized occipito-parietal sensors, perhaps suggesting that the effects of linguistically aided 

perception may be more pronounced in the left hemisphere perhaps owing to the predominantly 

left lateralization of lexical processing46. 

 

Mounting neurophysiological evidence has linked low-frequency oscillations in the alpha and 

beta bands to top-down processing 65–68. Recent work has demonstrated that perceptual 

expectations modulate alpha-band activity prior to the onset of a target stimulus, biasing baseline 

activity towards the interpretation of the expected stimulus 28,38. We provide further support for 

this hypothesis by showing that posterior alpha power increases when participants have prior 

knowledge of the meaning of the cue image, which was to be used as a comparison template for 

the subsequent target. Further, pre-target alpha modulation was found to predict the effect of 

prior knowledge on target-evoked P1 responses, suggesting that representations from prior 

knowledge activated by the cue interacted with target processing. Notably, the positive direction 

of this effect—increased prestimulus alpha power predicted larger P1 amplitudes (Fig. 6)—

directly contrasts with previous findings of a negative relationship between these variables 69–71, 

which is typically interpreted as reflecting the inhibitory nature of alpha rhythms 72,73. Indeed, 

our observation directly contrasts with the notion of alpha as a purely inhibitory or “idling” 

rhythm. We suggest that, in our task, increased prestimulus alpha-band power may reflect the 

pre-activation of neurons representing prior knowledge about object identity, thereby facilitating 
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subsequent perceptual same/different judgments. This is consistent with the finding that evoked 

gamma and multiunit responses in Macaque inferotemporal cortex are positively correlated with 

prestimulus alpha power 74, suggesting that the alpha modulation we observed may have its 

origin in regions where alpha is not playing an inhibitory role. 

 

Although our results are supportive of a general tenant of predictive processing accounts 8,11,25—

that predictions, formed through prior knowledge, can influence sensory representations—our 

results also depart in an important way from certain proposals made by predictive coding 

theorists 8,75,76. With respect to the neural implementation of predictive coding, it is suggested 

that feedforward responses reflect the difference between the predicted information and the 

actual input. Predicted inputs should therefore result in a reduced feedforward response. 

Experimental evidence for this proposal, however, is controversial. Several fMRI experiments 

have observed reduced visual cortical responses to expected stimuli 77–79, whereas visual 

neurophysiology studies describe most feedback connections as excitatory input onto excitatory 

neurons in lower-level regions 80–82, which may underlie the reports of enhanced fMRI and 

electrophysiological responses to expected stimuli 22,38,83. A recent behavioral experiment 

designed to tease apart these alternatives found that predictive feedback increased perceived 

contrast—which is known to be monotonically related to activity in primary visual cortex—

suggesting that prediction enhances sensory responses 84. Our finding that prior knowledge 

increased P1 amplitude also supports the notion that feedback processes enhance early evoked 

responses, although teasing apart the scenarios under which responses are enhanced or reduced 

by predictions remains an important challenge for future research. 
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FOOTNOTES 
*These values are quite different from the peak amplitudes in the waveform traces in Fig. 4B 
because the grand means reflect the average of peaks occurring at different latencies on different 
trials and so the amplitudes are lower. 
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