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Summary 

Alternative splicing changes are frequently observed in cancer and are starting to be recognized 

as important signatures for tumor progression and therapy. However, their functional impact and 

relevance to tumorigenesis remains mostly unknown. We carried out a systematic analysis to 

characterize the potential functional consequences of alternative splicing changes in thousands 

of tumor samples. This analysis reveals that a subset of alternative splicing changes affect 

protein domain families that are frequently mutated in tumors, potentially disrupt protein–protein 

interactions in cancer-related pathways, and are mutually exclusive with mutations in multiple 

cancer drivers. Moreover, there is a negative correlation between the number of these 

alternative splicing changes in a sample and the number of somatic mutations in drivers. We 

propose that a subset of the alternative splicing changes observed in tumors represents 

independent oncogenic processes and could potentially be considered alternative splicing 

drivers (AS-drivers).  

Introduction 
Alternative splicing provides the potential to generate diversity at RNA and protein levels from 

an apparently limited protein coding part of the genome (Yang et al., 2016). Besides being a 

critical mechanism during development, cell differentiation, and regulation of cell-type-specific 

functions (Norris and Calarco, 2012), it is also involved in multiple pathologies, including cancer 
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(Chabot and Shkreta, 2016). Many alternative splicing changes can essentially recapitulate 

cancer-associated phenotypes, for instance, by promoting angiogenesis (Vorlova et al, 2011), 

inducing cell proliferation (Yanagisawa et al., 2008), or avoiding apoptosis (Karni et al., 2007). 

Alternative splicing in tumors can appear as a consequence of somatic mutations that disrupt 

splicing regulatory motifs in exons and introns (Jung et al., 2015; Ward and Cooper, 2010), as 

well as through mutations or expression changes in core and auxiliary splicing factors, which 

impact the splicing of cancer-related genes (Alsafadi et al., 2016; Bechara et al., 2013; Madan 

et al., 2015; Sebestyén et al., 2016; Zong et al., 2014).  

 

Alterations in alternative splicing are also emerging as relevant targets of therapy. This is the 

case with an exon-skipping event in MET observed in a number of lung cancer patients, 

resulting in a deletion of the protein region that inhibits its kinase catalytic activity (Kong-Beltran 

et al., 2006; Ma et al., 2003). Tumors that show an exon skipping in the proto-oncogene MET 

respond to MET-targeted therapies despite not having any other activating alteration in this 

gene (Frampton et al., 2015; Paik et al., 2015). Furthermore, alternative splicing is important in 

drug resistance. For instance, although an effective targeted treatment exists for patients with 

BRAF mutations in the kinase domain (Davies et al., 2002), a considerable number of non-

responders express a BRAF isoform lacking exons 4–8, which encompass the RAS binding 

domain (Poulikakos et al., 2011). Small-molecule modulators of pre-mRNA splicing are capable 

of restoring the original BRAF splicing and reduce growth of therapy-resistant cells (Salton et al, 

2015). Similarly, alternative splicing also impacts immunotherapy in cancer in relation to the 

aberrant activity of the splicing factor SRSF3 (Sotillo et al., 2015). Thus, specific alterations in 

pre-mRNA splicing may provide a selective advantage in tumors and could potentially be direct 

targets of therapy. This also raises the question of whether splicing changes may act as cancer 

driver events.  

 

Multiple studies have shown frequent splicing changes in tumors compared with normal tissues 

or during tumor progression and metastasis (Danan-Gotthold et al., 2015; Lu et al., 2015; 

Sebestyén et al., 2015; Trincado et al., 2016). However, the functional impact of these splicing 

changes and their possible role as drivers of cancer is not known yet. Alternative splicing 

changes can have diverse effects on the structure of the resulting protein and hence confer 

radical functional changes (Wang et al., 2005), remodel the network of protein–protein 
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interactions in a tissue-specific manner (Buljan et al., 2012; Ellis et al., 2012), and expand the 

protein interaction capabilities of genes (Yang et al., 2016). We hypothesized that a subset of 

splicing changes in tumors may trigger oncogenic mechanisms through the disruption of specific 

protein domains and protein–protein interactions. 

 

Here we describe a systematic evaluation of the potential functional impact of recurrent 

alternative splicing changes observed in cancer samples. We describe splicing changes in 

terms of isoform switches in each tumor sample and determine the protein features and protein–

protein interactions affected by them, and their relation to cancer drivers. Our analysis reveals a 

set of splicing isoform switches that affect protein domains from families frequently mutated in 

tumors, remodel the protein interaction network of cancer drivers, and occur in patients with no 

mutations in known cancer drivers. We propose that these isoform switches with driver-like 

properties, AS-drivers, play an important role in the neoplastic process independently of or in 

conjunction with existing mutations in cancer drivers.  

Results 

Isoform switches in cancer tend to reduce the protein coding potential 

With the aim of defining potential alternative splicing drivers (AS-drivers) of cancer, we analyzed 

the expression of human transcript isoforms in 4,542 samples from 11 cancer types from TCGA 

to identify splicing alterations in each tumor sample. We used transcript isoforms, as they 

represent the endpoint of transcription and splicing and they ultimately determine the functional 

capacity of cells. For each gene and each patient sample we determined whether there was a 

switch between the most abundant transcript isoform in the normal samples and a different 

isoform that is the most abundant in that tumor sample, such that the change of relative 

abundance is higher than expected by the variability in normal samples and the gene shows no 

differential expression between tumor and normal samples. Additionally, we did not consider 

switches with a significant association with stromal or immune cell content, as we cannot be 

sure whether they are actually present in tumor cells (see Experimental Procedures for details). 
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We found a total of 8,979 different isoform switches in 6,978 genes that describe consistent 

changes in the transcriptome of the tumor samples and that would not be observable by simply 

measuring gene expression (Figure 1A and Table S1). Interestingly, tumor protein isoforms tend 

to be shorter than protein isoforms in normal tissues (Figure S1A). Moreover, while in most 

switches — 7,656 (85.27%) — both transcript isoforms code for protein, in the rest there is a 

significantly higher proportion of switches where only the normal transcript isoform is protein-

coding (9.05% vs. 2.92%, binomial test p-value < 2.2e-16), suggesting that isoform switches in 

tumors are associated with the loss of protein coding capacity. 

Isoform switches in cancer are frequently associated with protein feature 

losses 

To determine the potential functional impact of the calculated isoform switches, we determined 

the protein features they affect (Experimental Procedures). Out of the 7,656 switches where 

both transcript isoforms code for proteins, 5,612 (73.30%) involve a change in at least one of the 

following functional features: Pfam domains, Prosite patterns, general disordered regions, 

disordered regions with potential to mediate protein–protein interactions, and protein loops 

(Figure 1B). We compared the switches that affect protein features with 100 sets of simulated 

switches, controlling for normal and tumor isoform expression. Remarkably, isoform switches in 

tumors have more protein feature losses than expected by chance (Fisher’s exact test p-value < 

2.84e-05, odds-ratio > 1.19), despite the fact that simulated switches also tend to have longer 

normal protein isoforms (Figure S1B). This indicates that isoform switches in cancer are strongly 

associated with the loss of protein function capabilities.  

We focus on isoform switches that show a gain or loss in at least one protein feature, which we 

call functional switches, as they are likely to impact gene activity. There are 6,682 functional 

switches (Table S1), including 1070 for which only one of the isoforms codes for protein. 

Interestingly, functional switches are enriched in cancer drivers in some tumor types (Figure 

S1C). Among the top cancer driver genes with switches we identified a recurrent switch in 

RAC1 (Figure 1C), which was linked before to metastasis (Zhou et al., 2012) and which we 

predict to gain an extra Ras family domain. We also found a recurrent switch in TP53 that 

changes to a non-coding isoform and a switch in ERBB2 that removes one of the receptor 

domains and does not coincide with those previously described (Jackson et al., 2013).  
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To characterize how functional switches may affect protein function, we calculated the 

enrichment of gain or loss for each domain families (Experimental Procedures). To ensure that 

this is attributed to a switch and not to the co-occurrence with another domain, we imposed a 

minimum of two distinct switches affecting each domain family. We detected 225 and 47 domain 

families exclusively lost or gained, respectively, and 16 that were both gained and lost, more 

frequently than expected by chance and in at least two different switches (Table S2). Functional 

categories of domain families with significant losses in switches include the regulation of protein 

activity and apoptosis (Figure 1D), suggesting effects on protein-protein interactions and cancer 

related pathways. To further characterize these functional switches, we calculated the 

proportions of cancer drivers annotated as oncogenes or tumor suppressors that contain 

domain families enriched in gains or losses using the reference proteome. Interestingly, domain 

families significantly gained in switches occur more frequently in oncogenes than in tumor 

suppressors (Wilcoxon test p-value = 9.55e-05), suggesting a similarity between isoform 

switches and oncogenic mechanisms in cancer.  

Isoform switches and somatic mutations affect similar domain families 

Isoform switches and somatic mutations are part of an intertwined continuum of alterations in 

cells that may be connected by a multitude of relationships. We conducted various comparisons 

using switches and cis-occurring mutations from whole exome and genome sequencing data, 

but could not find an association between them (Figures S2A-S2C) (see Supplemental 

Experimental Procedures). However, we observed that tumor samples with few genes with 

protein-affecting mutations (PAMs) tend to have many genes with functional switches, and vice 

versa, tumor samples with a low number of functional switches tend to have many genes with 

PAMs (Figure 2A). This suggests a complementarity between a domain change caused by a 

switch and protein affecting mutations. To investigate this, we calculated domain families 

enriched in protein affecting mutations (PAMs) (Experimental Procedures). We found that 76 

domain families across 11 tumor types are enriched in mutations (Table S2). These domains 

enriched in mutations occur more frequently in cancer drivers compared to non-drivers 

(Wilcoxon test p-value < 2.2e-16), in agreement with recent analyses (Miller et al., 2015; Yang 

et al., 2015). When we compared the domain families enriched in somatic mutations with those 

enriched in gains or losses through switches, we found an overlap of 15 domain families, which 

is higher than expected by chance given the 5,307 domain families observed in a reference 
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proteome (Fisher’s test p-value = 1.03e-05, odds ratio = 4.45). From the domain families 

enriched in mutations, 7 show only enrichment in losses, 6 show only enrichment in gains, and 

2 show enrichment in both (Figure 2B) (Tables S2). Among the gains we find Cadherin domains 

related to switches in CHD8, CDH26, FAT1, FAT2 and FAT3. Among the losses, we find the 

Calcium-binding EGF domain, which is affected by various switches, including one in NOTCH4. 

A notable case involves the loss of the TP53 DNA-binding domain and the TP53 tetramerization 

motif. Although it only occurs in a single switch in TP53, its recurrence highlights the relevance 

of the alternative splicing of TP53 (Bourdon, 2007). 

To further explore the similarity between the changes in functionality introduced by mutations 

and switches, we performed a GO-term enrichment analysis on the mutated and the switched 

domains separately using DcGO (Fang and Gough, 2013), and calculated the overlap between 

both set and compared it to the overlap obtained by randomly sampling the reference proteome. 

Notably, the observed overlap is higher than expected across the different ontologies and GO 

slim levels (Figure 2C). In particular, among the shared molecular functional categories, several 

are related to receptor activity and protein binding. This result supports the notion that switches 

and mutations affecting protein domains may impact similar functions in tumors. This also 

suggests switches that affect domains that are frequently mutated in tumors could be 

considered to have a relevant impact in cell function. A total of 855 functional switches in 701 

genes (57 of them in 43 cancer drivers) affect domains that are enriched in mutations (Table 

S1) and represent potential AS-drivers.  

Functional switches show mutual exclusion with driver mutations in cancer 

pathways 

Another unmistakable sign that an alteration provides a selective advantage to the tumor is the 

mutual exclusion with other recurrent alterations in genes within the same pathway (Babur et al., 

2015). We identified 254 functional switches that are mutually exclusive with somatic PAMs in 

three or more cancer drivers (Table S3). In fact, some switches tend to occur in patients that do 

not harbor mutations in known cancer drivers, i.e., pan-negative tumors (Saito et al., 2015). For 

instance, a switch in PRX shows mutual exclusion with PAMs in BRAF, NRAS, and HRAS in 

thyroid cancer and characterizes 14 (11,1%) of the pan-negative cases (Figure S2D). Moreover, 

22 of these switches share a functional pathway with at least one cancer driver (Figure 2D). 
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These 22 switches include one in PRDM1, which shows mutual exclusion with mutations in 

PTEN in lung squamous cell carcinoma (LUSC) and TP53 in lung adenocarcinoma (LUAD). 

These 22 functional switches that show mutual exclusion with drivers and share a functional 

pathway with one or more drivers may be indicative of alternative oncogenic processes and thus 

represent potential AS-drivers.  

Isoform switches affect protein interactions with cancer drivers  

Many of the frequently lost and gained domain families in functional switches are involved in 

protein binding activities, indicating a potential impact on protein–protein interactions (PPIs) in 

cancer. To analyze how our switches may affect the PPIs, we built a consensus PPI network 

with 8,142 nodes, each node representing a gene, using data from five different sources 

(Experimental Procedures) (Figure S3). To determine the effect of switches on the PPI network, 

we mapped PPIs to domain–domain interactions (DDIs) using a reference protein interaction 

network (Figure S4). From the 8,142 genes in the PPI network, 3,243 have at least one isoform 

switch, and for 1,896 isoform switches (in 1,488 genes) we were able to map at least one of 

their PPIs to a specific DDI. A total of 186 of these switches are located in 137 cancer drivers, 

with the remaining 1,710 in non-driver genes.  

For each isoform switch, using the DDI information, we evaluated whether it would affect a PPI 

from the consensus network by matching the domains affected by the switch to the domains 

mediating the interaction, controlling for the expression of the isoforms predicted to be 

interaction partners. We found that 553 switches (29%) in 488 different genes affect domains 

that mediate protein interactions and likely affect such interactions. Most of these interaction-

altering switches (n = 473, 85.5%) cause the loss of the domain that mediates the interaction, 

while a minority (n = 79, 14.3%) leads to a gain of the interacting domain. There is only one 

switch that leads to gain and loss of interactions with different partners. This is in TAF9, which 

loses a TIFIID domain and gains an AAA domain (Table S4).  

Notably, switches in driver genes tend to alter PPIs more frequently than those in other genes, 

and they more frequently lose interactions (Figure 3A). From the 186 switches in drivers, 51 

(27%) of them alter at least one interaction, either causing loss (42 switches) or gain (9 

switches); with similar proportions in non-driver genes: 502 (29%) of them alter at least one 

interaction either by loss (431), gain (70) or both (1) (Figure S5A). Interestingly, switches that 
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affect domains from families enriched in mutations (Chi-square test p-value < 2.2e-16) or that 

show frequent mutual exclusion with cancer drivers  (Chi-square test p-value = 1.42e-07, affect 

PPIs more frequently than other functional switches (Figure S5B). Notably, functional switches 

in genes annotated as direct interactors of drivers affect PPIs more frequently than the rest of 

functional switches (Fisher’s exact test p-value<6.7e-16 OR>4.68 for all tests) (Figure 3B). 

Additionally, all functional pathways found enriched in PPI-affecting switches (Fisher’s exact test 

corrected p-value < 0.05 and odds-ratio > 2) are related to cancer: TP53 signaling, WNT, RB1 

and MYC pathways and the extrinsic pathway for apoptosis (Table S5), reinforcing the potential 

impact of isoform switches in cancer. We thus considered these 553 PPI-affecting switches as 

candidate AS-drivers. 

Isoform switches remodel protein interaction networks in cancer 

To further characterize the role of switches in remodeling the protein interaction network in 

cancer, we calculated modules in the PPI network (Blondel et al., 2008) using only interaction 

edges affected by switches (Experimental Procedures). This produced 197 modules involving 

1584 genes (Table S6). Interestingly, one module is enriched in splicing factors (SFs) and RNA 

binding protein (RBP) genes (Module 9 in Table S6) and includes the cancer drivers SF3B1, 

FUS, SYNCRIP, NUP98, EEF1A1 and YBX1 (Figure 3C). The module contains a switch in 

RBMX that involves the skipping of two exons and the elimination of an RNA recognition motif 

(RRM) that would impact interactions with SF3B1, EEF1A1 and multiple RBP genes (Figure 

3C); and a switch in TRA2B that yields a non-coding transcript and would eliminate an 

interaction with SF3B1 and multiple SFs. There is also a switch in HNRNPC that affects 

interactions with SRSF12; a switch in TRA2A linked to the gain of interactions with CLK3 and 

SRSF5; and switches in NXF1 and RBMS2 that lose interactions with various SR protein coding 

genes and drivers NUP98 and SYNCRIP. Consistent with a potential impact of switches in the 

regulation of RNA processing, the PPI-affecting switches show mutual exclusion with the cancer 

drivers (Figure 3D). Interestingly, this module also contains switches in the Importin genes 

IPO11 and IPO13, which would affect interactions with the ubiquitin conjugating enzymes 

UBE2E1, UBE2E3 and UBE2I (Figure 3C), and that show mutual exclusion across different 

tumor types (Figure 3D). These results indicate that the activity of RNA-processing factors may 

be altered through the disruption of their PPIs by alternative splicing.  
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We also found a module including multiple regulators of translation (module 43 in Table S6), 

with switches in EIF4B, EIF3B and EIF4E that affect interactions with the drivers EIF4G1, 

EIF4A2 and PABPC1 (Figure 3E). The switch in EIF4B causes the skipping of one exon, which 

we predict to eliminate an RRM domain and lose interactions with EIF4G1 and PABPC1. The 

switch in EIF3B yields a non-coding transcript that loses multiple interactions. Although we did 

not predict any PPI change for the EIF4E, this switch loses eight predicted ANCHOR regions, 

suggesting a possible effect on other interactions. Besides frequent PAMs, PABPC1 also 

present a functional switch that affects 2 disordered regions but does not affect any of the 

RRMs. In this case we did not predict any change in PPI and the possible functional impact 

remains to be discovered. These results, and the observed mutual exclusion between PAMs in 

EIF4G1 and PABPC1 and the identified PPI-affecting switches (Figure 3F), suggest that 

alternative splicing switches may impact translational regulation in tumors through the alteration 

of protein–protein interactions.  

Isoform switches as drivers of cancer  

Our results provide evidence that a subset of the alternative splicing switches, which we define 

as alternative splicing drivers, or AS-drivers, may be relevant for tumorigenesis. We define an 

AS-driver as a functional isoform switch that either (I) induces a gain or a loss of a protein 

domain from a family frequently mutated in cancer, (II) affects one or more PPIs, (III) displays 

mutual exclusion with drivers, or (IV) displays recurrence in cancer genomes beyond what is 

expected by chance. This definition yields 1875 potential AS-drivers (Figure 4A) (Table S1), with 

a large fraction of those affecting mutated domain families and/or PPIs (cases I and II from the 

list above, see Figure 4B).  

The possible relevance of these AS-drivers varies across samples and tumor types. 

Considering tumor specific mutational drivers (Mut-drivers) and our set of AS-drivers, we 

labeled each patient as AS-driver–enriched or Mut-driver–enriched according to whether the 

proportion of switched AS-drivers or mutated Mut-drivers was higher, respectively. This partition 

of the samples indicates that, although Mut-drivers are predominant in patients for most tumors 

types, AS-drivers seem relevant for a considerable number of patients across most tumor types, 

and particularly for kidney and prostate tumors (Figure 4C). Additionally, regardless of the tumor 

type, patients with many mutations in Mut-drivers tend to show a low number of switched AS-
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drivers, and vice versa (Figure 4D), bearing resemblance with the proposed cancer genome 

hyperbola between mutations and copy number variants (Ciriello et al., 2013). This supports the 

notion that AS-drivers represent alternative, yet-unexplored oncogenic mechanisms that could 

provide a complementary route to induce similar effects as genetic mutations.  

Discussion 

We have identified consistent and recurrent alternative splicing switches in tumors, which we 

call AS-drivers, that impact the function of affected proteins by adding or removing protein 

domains that are frequently mutated in cancer or by disrupting protein–protein interactions with 

cancer drivers or in cancer related pathways. Moreover, we observe that patients with AS-

drivers tend not to harbor mutations in cancer drivers. We propose a model by which pathways 

often altered in cancer through somatic mutations may be affected in a similar way by AS-

drivers in some patients, and in particular, in pan-negative patients. Recently, an alternative 

splicing change in NFE2L2 has been described to lead to the loss of a protein domain and the 

interaction with its negative regulator KEAP1, thereby providing an alternative mechanism for 

the activation of an oncogenic pathway (Goldstein et al., 2016). This example provides further 

support for a role of AS-drivers similar to mutations, expression or epigenetic changes in cancer 

drivers. Importantly, AS-drivers occur without gene expression changes in the host gene and 

thus provide an independent set of functional alterations not considered previously. 

Furthermore, our estimates of the number of potential AS-drivers have been very conservative; 

hence it is possible that many more remain to be described.  

Functional domains and interactions might not always be entirely lost through a switch, as 

normal isoforms generally retain some expression in tumors. This could be partly due to the 

uncertainty in the estimate of transcript abundance from RNA sequencing or to the 

heterogeneity in the transcriptomes of tumor cells. Still, a relatively small change in transcript 

abundance could be enough to trigger an oncogenic effect (Bechara et al., 2013; Sebestyén et 

al., 2016). Additionally, a number of the AS-drivers define a switch from a protein-coding 

transcript to a non-coding one, possibly undergoing non-sense mediated decay. These can be 

considered a form of alternative splicing mediated gene expression regulation (Hansen et al., 

2009), and will alter function in a similar way. The predicted impact on domains and interactions 
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could therefore be indicative of alterations on the regulatory networks with variable functional 

effects.   

Our description in terms of isoform switches allows a better analysis of the protein features 

potentially gained or lost through splicing changes. However, this may have some limitation, as 

accurate determination of differential transcript usage in genes with many isoforms requires high 

coverage and sufficient samples per condition (Sebestyén et al., 2015). Another limitation of our 

approach is that we only recovered a small fraction of the entire set of protein-protein 

interactions taking place in the cell. For instance, we did not characterize those interactions 

possibly mediated through low complexity regions (Buljan et al., 2012; Ellis et al., 2012), hence 

we expect that many more interactions will be affected in tumors.  

The origin of the observed splicing changes remains to be discovered. We did not find a general 

association with somatic mutations in cis. However, genetic alterations affecting splicing may 

involve small indels that are still hard to detect with the sequencing coverage available for these 

samples. Alternatively, it is possible that switches mostly occur through trans-acting alterations, 

such as the expression change in splicing factors (Sebestyén et al., 2016), which may be 

controlled by pathways often altered in tumors (Fu and Ares, 2014). On the other hand, multiple 

different alterations may trigger the same or similar splicing changes. For instance, mutations in 

RBM10 or downregulation of QKI lead to the same splicing change in NUMB that promotes cell 

proliferation (Bechara et al., 2013; Zong et al., 2014). A faction of the somatic mutations in 

tumors are subclonal (Sottoriva et al., 2015), providing enough intra-tumor heterogeneity to 

allow AS-drivers to be present in a fraction of the cell population, which may allow their 

persistance in a fraction of the dividing tumor cells. Additionally, tumor cells display non-genetic 

variability, defining multiple stable states (Brock et al., 2009), which have been proposed to 

determine the fitness of cells and the progression of tumors independently of somatic mutations. 

Since natural selection acts on the phenotype rather than on the genotype, an interesting 

possibility is that AS-drivers define specific tumor phenotypes that might be closely related to 

those determined by the somatic mutations in drivers, thereby defining an advantageous 

phenotype such that the selective pressure to develop equivalent adaptations is relaxed. 

Accordingly, AS-drivers may play an important role in the neoplastic process independently of or 

in conjunction with the already characterized genetic alterations.  
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Experimental Procedures 

Software and laboratory notebook 

The pipeline developed to perform the analyses of isoform switches and the calculation of AS-

drivers is freely available at https://bitbucket.org/regulatorygenomicsupf/smartas. The datasets 

used and the software to reproduce the analyses described in this work are available at 

https://github.com/hclimente/smartas.  

Data 

Estimated read counts for isoforms were obtained from the TCGA data portal  

(https://gdc.nci.nih.gov/). Only transcripts with TPM > 0.1 were considered expressed. Details 

on the mutation data collected is given in the Supplemental Experimental Procedures. We 

collected cancer drivers based from Intogen (Gundem et al., 2010) and from the TCGA papers 

for kidney renal papillary carcinoma (KIRP) and kidney chromophobe (KICH) (Davis et al., 2014; 

The Cancer Genome Atlas Research Network, 2016). This list included a total of 460 unique 

cancer driver genes, each one defined as a tumor-specific driver for one or more tumor types. 

The annotation of these genes as oncogenes or tumor suppressors was performed as in 

(Sebestyén et al., 2016) (see Supplemental Experimental Procedures for details).  

Calculation of significant isoform switches per patient 

We modeled splicing alterations in a gene as a switch between two transcript isoforms, one 

normal and one tumoral. For every transcript in every patient, we calculated ΔPSI = PSItumor - 

PSIref, where PSItumor is the PSI value in a tumor sample and PSIref corresponds to the paired 

normal sample when available or to the median of the PSI distribution in the normal samples, 

otherwise. We considered significant those changes with |ΔPSI| >0.05 and empirical p < 0.01 in 

the comparison between normal and tumor samples. We only kept those cases for which the 

tumor isoform abundance was higher in the tumor than compared to the normal sample and the 

median abundance of the normal isoform was higher in normal samples compared to the tumor 

sample. Moreover, we discarded genes that either had an outlier expression in the tumor 

sample compared to normal tissues (empirical p-value < 0.025 or empirical p-value > 0.975) or 
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showed differential expression between the tumor samples with the switch and the normal 

samples (Wilcoxon test p-value < 0.01).  

Candidate switches were defined per patient and for each gene. In some samples, different 

switches could appear for the same gene; hence, we discarded those switches that contradicted 

a more frequent switch in the same gene in the same tumor type. Moreover, we discarded any 

switch that affected a number of patients below the top 99% of the distribution of patient 

frequency of these contradictory switches. Thus, a switch in a patient sample is defined as a 

pair of transcripts in a gene with no expression change and with significant changes in opposite 

directions that show consistency across patients. We aggregated the calculated switches from 

the different tumor types to get the final list (Table S1). For the pan-cancer analyses, if a switch 

did not pass the frequency threshold in one tumor type but was significant in a different tumor 

type, that switch was also considered. Switches with significant association with stromal or 

immune cell content were discarded (see Supplemental Experimental Procedures).  

Recurrence 

We considered the number of different switches S and the number of patients with switches P, 

having in total N switches. We estimated the expected frequency of a switch as f = N/(S·P). For 

a given switch, we tested the significance of its recurrence across patients using a binomial test 

with the observed patient count and the expected frequency f. Switches were considered 

significantly recurrent for adjusted binomial test p-value < 0.05. 

Simulated switches 

We simulated switches between normal and tumor tissues by using genes with more than one 

expressed isoform. For each gene, we selected the isoform with the highest median expression 

across patients as the normal isoform and an arbitrary different transcript expressed in the 

tumor samples as the tumor isoform. For each gene, we generated a maximum of five such 

simulated switches.  

Functional switches 

A switch was defined as functional if both isoforms overlap in genomic extent and there is a 

change in the encoded protein, including cases where only one of the isoforms has a CDS, and 
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moreover there is a gain or loss of a protein feature: Pfam domains mapped with InterProScan 

(Jones et al., 2014), ProSite patterns (Gattiker et al., 2002); disordered regions from IUPred 

(Dosztanyi et al., 2005); disordered regions potentially involved in protein–protein interactions 

from ANCHOR (Dosztanyi et al., 2009); and protein loops (Bonet et al., 2014).  

Domain families enriched in switches or mutations 

To determine which protein domain families were significantly affected by switches, we first 

estimated their expected frequency of occurrence in switches. For this we calculated a 

reference proteome using the isoform with the highest median expression in the normal 

samples and with at least 0.1 TPM, for each expressed gene in each tumor type. For the 

enrichment analysis we used only genes with evidence of alternative splicing. We aggregated 

the representative proteomes from all tumor types to form a pan-cancer reference proteome. 

The expected frequency f(a) for a feature a that appears m(a) times was then measured as the 

proportion of this feature in the pan-cancer representative proteome: 

f (a) = m(a)
m(b)

b
∑

 

We then calculated the expected probability using the binomial test: 

P(a) = n!
k!(n− k)!

f (a)k (1− f (a))n−k  

where k is the number of observations of the domain a being gained or lost and n is the total 

number of gains or losses due to switches. We selected cases with Benjamini-Hochberg  (BH) 

adjusted p-value < 0.05. However, to ensure the specificity of the enrichment for each domain 

class, we considered only domains affected by at least two switches. To calculate domain 

families enriched in mutations, we considered the reference proteome in each tumor type as 

before. The expected mutation rate in a domain family is considered to be the proportion of the 

proteome length it covers. We aggregated all observed mutations falling within each family and 

calculated the expected probability of the observed mutations using a binomial test as before. 

After correcting for multiple testing, we kept those cases with a BH adjusted p-value < 0.05.  
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Protein interaction analysis 

We created a consensus protein–protein interaction (PPI) network using data from PSICQUIC 

(del Toro et al. 2013), BIOGRID (Chatr-Aryamontri et al., 2015), HumNet (Lee et al., 2011), 

STRING (Szklarczyk et al., 2011), and a human interactome derived from the literature and 

experimental data (Rolland et al., 2014). The consensus network consisted of 8,142 nodes with 

29,991 interactions, each found in at least four of these five sources. To find PPIs likely altered 

due to splicing change, we first mapped each PPI in a gene affected by isoform switches to a 

specific domain–domain interaction (DDI) that included one domain from the isoform expressed 

in the normal sample. We used information on domain–domain interactions from iPfam (Finn et 

al., 2014), DOMINE (Raghavachari et al., 2008), and 3did (Mosca et al., 2014). We only 

considered those PPIs that could be mapped to at least one DDI in either the normal or the 

tumor isoforms. We define a PPI as lost if it is mapped to one or more DDIs in the isoform 

expressed in the normal tissue but not in the isoform expressed in the tumor sample. When 

multiple domains mediate the same interaction, it is considered lost if at least one of these 

domains is lost in the switch. On the other hand, we define a PPI as gained if it can only be 

mapped to a DDI in the tumor-expressed isoform but not in the normal isoform.  

Analysis of the interaction network affected by switches 

We considered gene sets consisting of functional and cancer-related pathways (Liberzon et al., 

2015), protein complexes (Ruepp et al., 2009) and complexes related to RNA metabolism 

(Akerman et al., 2015). The enrichment of PPI-affecting switches was performed with a Fisher’s 

exact test based on the separation of switches into being in the gene set or not, and affecting 

PPIs or not. To calculate network modules, we considered the network defined only by PPIs that 

are affected by switches, whose nodes are PPI-affecting switches and their interaction partners. 

We calculated modules using the multi-level modularity optimization algorithm for finding 

community structures (Blondel et al., 2008) implemented in the iGraph R package 

(http://igraph.org/r/doc/cluster_louvain.html). For each of the gene sets used before, we 

calculated whether it was significantly included in a module using a binomial test to estimate the 

probability of finding by chance the observed number of genes with affected PPIs in an arbitrary 

list of genes of the same size as the gene set.  

Mutation analysis 
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To identify switches significantly associated with pan-negative tumors, we considered the top 10 

drivers according to their frequency of protein-affecting mutations in each tumor type. We tested 

the mutual exclusion between the patients affected by the switch and the patients with a PAM in 

at least the top three drivers using a one-tailed Fisher’s test (Babur et al., 2015). From this set, 

we further considered functional switches that shared functional pathway with a driver. Mutual 

exclusion between PPI-affecting switches and target drivers was further measured with 

DENDRIX (Vandin et al., 2012). To test the validity of mutual-exclusion patterns observed, for 

each mutational driver we sampled the same number of PPI-affecting switches randomly from 

the same patients 100 times. None of the random combinations of switches showed significance 

in their mutual exclusion patterns with the mutational driver. 
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Figure Legends 

Figure 1. (A) Number of isoform switches (y axis) calculated in each tumor type, separated 

according to whether the switches are functional and affect cancer drivers. (B) Overlap graph of 

protein features affected in functional switches: Prosite patterns (Prosite), protein loops 

(ArchDB), Pfam domains (Pfam), disordered regions with potential to mediate protein–protein 

interactions (ANCHOR), and general disordered regions (IUPRED). The horizontal bars indicate 

the number of switches affecting each feature. The vertical bars indicate the number of switches 

in each intersection indicated by connected bullet points. (C) Top 20 functional switches in 

cancer drivers according to the total number of patients in which they occur. Tumor type is 

indicated by color: breast carcinoma (brca), colon adenocarcinoma (coad), head and neck 

squamous cell carcinoma (hnsc), kidney chromophobe (kich), kidney renal clear-cell carcinoma 

(kirc), kidney papillary cell carcinoma (kirp), liver hepatocellular carcinoma (lihc), lung 

adenocarcinoma (luad), lung squamous cell carcinoma (lusc), prostate adenocarcinoma (prad), 

and thyroid carcinoma (thca). (D) Biological processes (Slim level 2) associated with protein 

domain families that are significantly lost in functional isoform switches. For each functional 

category, we give the number of isoform switches in which a protein domain family related to 

this category is lost.  

Figure 2. (A) For each patient sample, color-coded according to the tumor type, we indicate the 

proportion of all genes with protein-affecting mutations (PAMs) (y axis) and the proportion of 

genes with multiple transcript isoforms that present a functional isoform switch in the same 

sample (x axis). (B) Domain families that are significantly lost or gained in functional isoform 
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switches and that are also significantly enriched in protein-affecting mutations in tumors. For 

each domain class, we indicate the number of different switches in which they occur. We 

include here the loss of the P53 DNA-binding and P53 tetramerization domains, which only 

occur in the switch in TP53. (C) Agreement between protein-affecting mutations and functional 

switches measured (y axis) in terms of the functional categories of the protein domains they 

affect (x axis), using the three gene ontologies (GOs) and at four different GO Slim levels, from 

most specific (++++) to least specific (+). Random occurrences (plotted in light color) were 

calculated by sampling 100 times the same number of domain families affected by functional 

switches and the same number affected by protein-affecting mutations. Agreement is calculated 

as the percentage of the union of functional categories that are common to both sets. (D) Pairs 

formed by a cancer driver (in parentheses) and a functional switch that belong to the same 

pathway and show mutual exclusion between PAMs and switches across patients in at least 

one tumor type (color-coded by tumor type). The graph indicates the percentage of samples 

where the switch occurs (y axis) and the percentage of samples where the driver is mutated in 

the same tumor type (x axis).  

Figure 3. (A) Functional switches are divided according to whether they occur in tumor-specific 

drivers (yes) or not (no). For each tumor type we plot the proportion of protein-protein 

interactions (PPIs) described (y axis) that are kept intact (gray), lost (red), or gained (green). 

KIRP does not show PPI-affecting switches in drivers. (B) Functional switches are divided 

according to whether they affect a PPI (yes) or not (no). For each tumor type we plot the 

proportion of functional switches (y axis) that occur in cancer drivers (black), in driver interactors 

(dark gray), or in other genes (light gray). (C) A network module with PPIs predicted to be lost 

(red) or gained (green) by isoform switches. Cancer drivers are indicated in gray or black if they 

have a functional switch. Other genes are indicated in light blue, or dark blue if they have a 

functional switch. We do not indicate unaffected interactions. (D) Oncoprint for the samples that 

present the switches and protein-affecting mutations (PAMs) in drivers from (C). Mutations are 

indicated in black. PPI-affecting switches are indicated in red (loss) and green (gain). Other 

switches with no predicted effect on the PPI are depicted in gray. The top panel indicates the 

tumor type of each sample by color (same color code as in previous figures). The second top 

panel indicates whether the sample harbors a PAM in a tumor-specific driver (black) or not 

(gray). In white we indicate that no mutation data is available for that sample. (E) Same as in (C) 
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for the network module containing genes from the translation initiation complex. (F) Oncoprint 

for the switches and drivers from (E). Colors are as in (D).  

 

Figure 4. (A) Number of functional switches and AS-drivers detected in each tumor type (see 

text for definitions). (B) Candidate AS-drivers grouped according to their properties: disruption of 

protein–protein interactions (PPIs), significant recurrence across patients (Recurrence), gain or 

loss of a protein feature that is frequently mutated in tumors (Affects M_feature), mutual 

exclusion and sharing pathway with cancer drivers (Pan-negative). The horizontal bars indicate 

the number of switches for each property. The vertical bars indicate the number of switches in 

each of the intersections indicated by connected bullet points. (C) Classification of samples 

according to the relevance of AS-drivers or Mut-drivers in each tumor type. For each tumor type 

(x axis), the positive y axis shows the percentage of samples that have a proportion of switched 

AS-drivers higher than the proportion of mutated Mut-drivers. The negative y axis shows the 

percentage of samples in which the proportion of mutated Mut-drivers is higher than the 

proportion of switched AS-drivers. Only patients with mutation and transcriptome data are 

shown. (D) Each of the patients from (C) is represented according to the percentage of mutated 

Mut-drivers (y axis) and the percentage of switched AS-drivers (x axis).       
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