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Abstract

The electroencephalograph (EEG) signal is the one of the monitoring tech-
niques to observe brain functionality. EEG is most preferable technology not
just because of its non-invasive and cost effective quality, but also it can de-
tect the cognitive activity of human. Brain Computer Interface (BCI), a direct
pathway between the human brain and computer, is one of the most pragmatic
applications of EEG signal. Mental Task Classification (MTC) is a demanding
BCI as it does not involve any muscular activity. Empirical Mode Decompo-
sition (EMD) is a filter based heuristic technique to analyze non-linear and
non-stationary signal like EEG. There are several variants of EMD algorithms
which have their own merits and demerits. In this paper, we have explored
three different EMD algorithms on EEG data for MTC-based BCI named as
Empirical Mode Decomposition (EMD),Ensemble Empirical Mode Decompo-
sition (EEMD) and Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN). Features are extracted from EEG signal in two
phases; in the first phase, the signal is decomposed into different oscillatory
functions with the help of different EMD algorithm and in the second phase,
eight different parameters (features) are calculated for the each function for
compact representation. In this paper a new feature known as Hurst Exponent
along with other feature have been investigated for mental task classification.
These features are fed up into Support Vector Machine (SVM) classifier to
classify the different mental tasks. We have formulated two different typs of
MTC, the first one is binary and second one is multi-MTC. The proposed work
outperforms the existing work for both binary and multi mental tasks classifi-
cation.
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Index terms— Brain Computer Interface, Mental Tasks Classification, Feature
Extraction.

1 Introduction

Human brain has the capability to distinguish two or more different tasks without
much effort. In literature, most of the research works have been suggested to dis-
tinguish between two different tasks at a given instant of time; a few research works
deal with multitask classification (Donoghue, 2002; Li et al., 2014; Palaniappan et al.,
2002; Wang et al., 2012; Zhang et al., 2010) . There is a need of a multiple men-
tal task classification system that can distinguish more than two mental tasks at a
given instance of time. Such a BCI system is known as the multi-class mental task
classification system.

As the number of chosen classes grows, it becomes more difficult to classify a test
sample correctly. The computational complexity of the multi-class problem is much
higher in comparison to a binary class problem with comparable amount of data. The
amplitude of the captured EEG signals is low. Hence, the signal in its raw form is
not helpful to distinguish multiple mental tasks at a given time. Given these facts,
classification of multiple mental tasks is considered to be a challenging problem.
However, limited BCI models (Li et al., 2014; Palaniappan et al., 2002; Zhang et al.,
2010) have been proposed to distinguish more than two tasks at a given instance of
time. Therefore in this study, we have formulated problem for the multi mental task
as well as binary mental task classification. One versus rest approach based support
vector machine (SVM) is used as a multi mental class classifier to build the decision
model. The overall flow chart of proposed model has been shown in Figure 1.

Rest of the paper is organized as follows: In section 2, the state of art of feature
extraction for BCI as well as multi-class BCI is given. Section 3 contains the brief
description of feature extraction. Support Vector Machine is discussed in section 4.
Experimental data and the related discussion are given in section 5, and finally section
6 draws the conclusion.

2 Related Works

Various feature extraction techniques have been studied and suggested for BCI. These
feature extraction techniques can be grouped into three major categories: (i) Tempo-
ral methods (ii) Frequency domain methods and (iii) hybrid of temporal and frequency
domain methods. The temporal methods are predominantly adaptive to describe neu-
rophysiological signals with an accurate and specific time information. The temporal
variations of the signal are characterized by the features in temporal method. In
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Figure 1: Schematic flow chart of the proposed model for Mental Task Classification

time domain, amplitude of the signal or statistics measures like absolute mean, stan-
dard deviation and kurtosis of the signal are used to characterize EEG signal. But
these statistics do not consider correlation between two samples (Motamedi-Fakhr
et al., 2014). On the basis of temporal dynamics of EEG signal, a collection of three
measures (Activity, Mobility and Complexity) known as Hjorth parameters (Hjorth,
1970) have been used to extract features from EEG signal (Bostanov, 2004; Vidaurre
et al., 2009). Another temporal property of EEG signal is Detrended Fluctuation
Analysis (DFA), which is used to measure long range correlation in EEG time series
signal (Peng et al., 1994; Shen et al., 2003).

It is known that EEG signals consist of a set of explicit oscillations, which are
known as rhythms. Corresponding to the different mental tasks, rhythms associated
with these signals are different. There is a need to utilize frequency information em-
bedded in the signal to represent the signal more accurately. Power spectral analysis
(density) has been used in literature to extract accurate frequency content features
and produce high frequency resolution.

Power spectral density (PSD) method broadly falls into three categories: (i) Non-
Parametric method, (ii) Parametric method and (iii) Sub-Space method. In non-
parametric method of PSD, there is no assumption of the nature of the data, i.e.,
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how the data are generated (Proakis, 1995). The popular techniques in this cate-
gory are Bertlett, Blackman and Tukky, and Welch (Welch, 1967). These methods
are simple to compute. However, non-parametric methods require long data record
in order to achieve high frequency resolution. The popular feature extraction meth-
ods used to extract spectral features in parametric method in the BCI systems are
Auto-Regressive (AR) techniques (Anderson et al., 1998; Palaniappan et al., 2002)
and its two popular variants, Adaptive Auto-Regressive (AAR) (Penny et al., 2000;
Pfurtscheller et al., 1998) and Auto-Regressive with exogenous output (ARX) tech-
nique (Palaniappan et al., 2002). However, the primary issue with AR modelling
is that the accuracy of the spectral estimate is highly dependent on the selected
model order. An insufficient model order tends to blur the spectrum, whereas an
overly large order may create artificial peaks in the spectrum. These methods also
assume linearity, Gaussian behaviour and minimum-phase within EEG (Anderson
et al., 1998; Basseville and Benveniste, 1983; Freeman, 1999; Graimann et al., 2003;
Pfurtscheller et al., 1998). The research work (Diez, Torres, Avila, Laciar and Mut,
2009) has used parametric and non-parametric methods for math-imagine and motor
imagery data. The research work (Anderson et al., 1998) and (Palaniappan et al.,
2002) have employed parametric approach for estimating PSD values on Keirn &
Aunon dataset for mental task classification. Sub-space methods are often used when
signal to noise ratio (SNR) is low. In this method, the PSD values are obtained in
terms of Eigenvalue-decomposition of autocorrelation matrix. Sub-space methods are
well suited for line spectra or spectra having sinusoidal signals and also effective in
the recognition of sinusoidal mixed in noise. However, the sub-space method suffers
from the following drawbacks, such as, it may not yield true PSD estimates; it does
not preserve power required for processing between the time and frequency domains,
and fails in recovering the autocorrelation series by calculating inverse Fourier trans-
form of the frequency estimate. The sub-space method has been applied on epilepsy
dataset for estimating PSDs (Übeyli, 2008).

However, the neurophysiological signal used in BCI have generally specific prop-
erties in both the temporal and frequential domain. Also, the frequency spectrum of
the EEG signal is observed to vary over time, indicating that the EEG signal is a
non-stationary signal. Hence, a feature extraction method should be used to model
the non-stationary nature of the signal for better representation. Hence, short-time
Fourier transform or wavelet transform are suggested methods extract both frequency
and time information based features from the signal. The main benefit of these time-
frequency representation of the signal is that they can determine sudden temporal
variations in the EEG signal, while still keeping frequency information. The Wavelet
Transform (WT) (Daubechies, 1990; Mallat, 1989) is an effective technique that can
be used, which allows analysis of both time and frequency contents of the signal
simultaneously. EEG signals have been analyzed with the WT in the fields of mo-
tor imagery and epileptic seizures, (Bostanov, 2004; Cvetkovic et al., 2008; Hsu and
Sun, 2009; Ocak, 2009), brain disorders, (Hazarika et al., 1997), classification of hu-
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man emotions (Murugappan et al., 2010), and non-motor imagery (Cabrera et al.,
2010).However, WT uses some fixed basis independent of the processed signal, which
makes it non-adaptive. Another successful heuristic method for feature extraction is
Empirical Mode Decomposition (EMD)(Huang et al., 1998),which is a data driven
approach. This method does not use a fixed set of basis functions but the method
is self-adaptive according to the signal to be processed. It decomposes a signal into
finite, well defined, low frequency and high frequency components known as Intrinsic
Mode Functions (IMFs) or modes. The EMD method has been used to extract rep-
resentative data for BCI (Diez, Mut, Laciar, Torres and Avila, 2009; Kaleem et al.,
2010) to classify mental task.

For multi-class BCI, most of the research works have been suggested for two
categories: sensory motor activity (Donoghue, 2002; Wang et al., 2012)and response
to the mental task (Li et al., 2014; Palaniappan et al., 2002; Zhang et al., 2010). One of
the most efficient method for the recognition of sensory motor rhythms is the method
of common spatial patterns (CSPs) suggested by Müller-Gerking et al. (1999). CSP
has been extended to multi-class CSP, which is based on pairwise classification and
voting (Ramoser et al., 2000). Donoghue (2002) has also suggested two new methods
based on CSP method for multi-class classification, which improved the classification
accuracy. In the category of response to mental task, Palaniappan et al. (2002)
has used three type of power of spectral density methods namely Wiener-Khinchine
(WK) with Parzen smoothing window, WK with Tuky window smoothing and 6th

order auto-regressive model to extract features for 3-class mental task classification.
They have used Fuzzy ARTMAP classifier for three class mental task classification.
The Welch periodogram algorithm to estimate the power spectrum of the EEG signal
and asymmetric ratio was adjusted for calculation of different number of frequency
band powers of multi-class data in Zhang et al. (2010). Fisher Discriminant Analysis
(FDA) and Mahalanobis distance based classifier was used in their work. Li et al.
(2014) extracted features using two methods: wavelet packet entropy and Granger
causality. The extracted features were used to build learning model using multiple
kernels support vector machine.

This work explore the usefulness of variants of EMD for binary as well as multi
mental tasks classification. A new parameter associated with data i.e. Hurst Ex-
ponent is incorporated which produced the good classification model along with the
other parameter. A comparative study of variant of EMD has been done. A non-
parametric statistical test is also carried out to validate the experimental findings.

3 Feature Extraction

Features are extracted from the EEG signal in two steps: In the first phase, EEG
signal is decomposed by various forms of Empirical Mode Decomposition (EMDs)
and in the second phase statistical and uncertainty parameters are calculated from

5

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 21, 2016. ; https://doi.org/10.1101/076646doi: bioRxiv preprint 

https://doi.org/10.1101/076646


each decomposed signal to represent the signal more compactly. Brief description of
EMDs, and the parameters are discussed below.

3.1 Empirical Mode Decomposition (EMD)

EMD is a mathematical tool that analyses a non-stationary and non-linear signal with
the help of dynamic basis. Under the assumption that any signal contains a series
of different intrinsic oscillation modes, the EMD is used to decompose an incoming
signal into its different Intrinsic Mode Functions (IMF). An IMF is a continuous
function that satisfies the following conditions (Huang et al., 1998):

1. The number of extrema and the number of zero crossings are either equal, or
differ at most by one.

2. The mean value of the envelope defined by the local maxima and the envelop;
defined by local minima is zero.

The first condition implies that there is need of a narrow band requirement for a signal
to be a stationary Guassian process (Huang et al., 1998). The second condition is
needed for abstaining instantaneous frequency from unwanted fluctuations induced
by asymmetric waveforms (Huang et al., 1998). The basic steps of EMD are given in
algorithm 1.

Algorithm 1: Algorithm for EMD

1 Input: Signal x(m);
2 For a given signal, x(m), identify all local maxima and minima;
3 Calculate the upper envelope by connecting all the local maxima points of the

signal using a cubic spline;
4 Repeat the same for the local minima points of the signal to find the lower

envelope;
5 Calculate the mean value of both envelopes, say m1;
6 Update the signal, x(m) = x(m)−m1;
7 Continue the steps 1 to 5, and consider x(m) as the input signal, until it can

be considered as an IMF as per the definition stated above;
8 The residue r1 is obtained by subtracting the first IMF (IMF1) from x(m) i.e.
r1 = x(m)− IMF1. The residual of this step becomes the signal x(m) for the
next iteration;

9 Iterate steps 2 to 8 on the residual rj; j = 1, 2, 3, . . . ,m in order to find all the
IMFs of the signal;

The procedure terminates when the residual rj is either a constant value or a
function with a single optima value.

6

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 21, 2016. ; https://doi.org/10.1101/076646doi: bioRxiv preprint 

https://doi.org/10.1101/076646


Thus, a signal x(m), can be represented as:

x(m) =
m∑
j=1

IMFj + rm (1)

According to Huang et al. (1998), there is one stopping criteria in T steps to further
produce IMFs based on standard deviation, can be defined as

SDi =
T∑
t=0

|IMFi+1(t)− IMFi(t)|2

IMFi(t)2
(2)

The decomposition process stops when the value of SD is smaller than predefined
value.

3.2 Ensemble Empirical Mode Decomposition (EEMD)

One of the major problems with EMD method is that frequent mode mixing, which
can be defined as single IMF, contains signal of widely different scale or a signal of
same scale that is obtained from different IMFs (Wu and Huang, 2009). To allevi-
ate the problem of scale separation, Wu and Huang (2009) have proposed a noise-
assisted data analysis (NADA) method, called Ensemble Empirical Mode Decomposi-
tion (EEMD). EEMD define true IMF components as the mean of an ensemble of the
trails which consists of signal plus white noise with finite amplitude (Wu and Huang,
2009). Thus the signal x(m) in ith trial can be represented as

xi(m) = x(m) + a0w
i(n), for i = 1, . . . l (3)

where wi(n) is the white noise in ith trial with unit variance and a0 amplitude. The
average kth ¯IMF k can be defined as

¯IMF k =
1

l

l∑
i=1

IMF i
k (4)

The pragmatic concepts of EEMD are as follows:

1. The added collection of white noise cancels each other with the help of ensemble
mean, thus only signal can be one ingredient of the mixture of the signal and
white noise.

2. To search all possible solution, it is necessary to ensemble white noise of finite
amplitude with signal.
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3. To obtain true and physically meaning full answer of the EMD, it is necessary
to add noise to the signal.

3.3 Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN)

The problem of mode mixing in original EMD algorithm is successfully addressed by
EEMD by adding white noise into the signal, but this also leads to a problem that
noise is not fully segregated from the signal and the resultant different IMFs may
contain mixture of noise and signal. To resolve this problem, Yeh et al. (2010), have
proposed complementary ensemble EMD (CEEMD) algorithm in which positive and
negative white noise are added to the signal, so that these positive and negative noises
become complementary to each other and IMFs become free from noise.
The first residue can be calculated as:

r1(m) = x(m)− ¯IMF1, (5)

where ¯IMF1 is the first average IMF obtained by EEMD. The second average IMF
can be found as:

¯IMF =
1

l

l∑
i=1

E1

(
r1(m) + a0E1

(
wi(m)

))
. (6)

After finding kth residue, for k = 2, . . . , K, the k+ 1 average IMF can be defined as:

¯IMF k+1 =
1

l

l∑
i=1

E1

(
rk(m) + akEk

(
wi(m)

))
, (7)

where Ek(.) is an operator to extract kth IMF from given signal by EMD algorithm.

3.4 Statistical Parametric Feature Vector Formulation

For the compact representation of the EEG signal, the following statistical measures
or parameters were used to represent the IMF. Some of these parameters represent
linear characteristics of the EEG signal and other represent non-linear properties of
EEG (Diez, Torres, Avila, Laciar and Mut, 2009; Gupta and Agrawal, 2012; Gupta
et al., 2015). These features are chosen in this work empirically as every signal or
data has the distinguishable property in terms of a certain set of statistical parameters
associated with the signal or data as shown in Figure 2. The brief description of
these parameters (features) are given below.

8

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 21, 2016. ; https://doi.org/10.1101/076646doi: bioRxiv preprint 

https://doi.org/10.1101/076646


Figure 2: Eight features obtained corresponding to all five mental tasks for channel
1 from IMF 1 using EEMD method for Subject 1.

Mean

This is one of the central tendency measures, also known as first order moment. If
there are n observations (x1, x2 . . . , xn) then mean is given by:

x̄ =
1

n

n∑
i=1

xi. (8)

Root Mean Square (RMS)

This is a statistical measure of the magnitude of variable, useful when variable has
more positive and negative peaks, i.e. follows sinusoidal nature. The value of RMS
is considered most significant because it depicts power of the signal. It is given by:

rms (x1, x2, . . . xn) =

√
1

n
(x21 + x22 + . . .+ x2n). (9)

Variance

This is the second order moment and measures spread or variability of the data around
mean value. The variance of the data is given by:

var(x1, x2, . . . , xn) =
1

n

n∑
i=1

(xi − x̄)2. (10)
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The square root of variance is known as standard deviation which is given by:

σ =
√
var(x1, x2, . . . xn). (11)

Skewness

This is the third order moment. The value of skewness depicts degree of asymmetry
of distribution around mean value of the signal. The mean and the variance are the
dimensional quantities where skewness is a pure number which depicts bending nature
of the signal around mean value of the signal on either side. It is defined as:

skew(x1, x2, . . . , xn) =
1

n

n∑
i=1

(
x− x̄
σ

)3

. (12)

Kurtosis

This is fourth order moment and is a non-dimensional quantity. The value of kurtosis
describes relative spikeness or flatness of signal with respect to the signal which follows
normal distribution. It can be calculated as

Kur (x1, x2, . . . , xn) =
1

n

n∑
i=1

(
x− x̄
σ

)4

. (13)

Hurst Exponent

The long term memory of given time series is calculated by Hurst Exponent, denoted
by H, given by Edwin Hurst (Hurst, 1951). Auto-correlation of the time series can be
calculated with the help of Hurst Exponent and decreases as lag of the the time series
increases. It is also referred as index of independence or long range of independence.
The Hurst Exponent H, can be defined as:

E

[
R(n)

S(n)

]
= CnH as n→∞, (14)

where E denotes statistical expected value of given quantity, R(n) and S(n) are the
range and standard deviation of the given n observation of time series respectively,
C is the constant.

Central and Maximum frequency

These values depict how much frequency content is centralized over the signal and the
maximum frequency present in the signal. The frequency content can be calculated
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by discrete Fourier transform of the signal, and is given as

X (f) =
∞∑

n=−∞

x [n] e−j2πfn. (15)

Shannon Entropy

It measures how much uncertainty is possessed by the signal, i.e. randomness of
signal. Higher entropy means more randomness is present in the signal. If pi is
the probability associated with variable xi in a set of n observations then entropy is
defined as:

H (x) = −
∑
i

pi log2 (pi) . (16)

4 Experimental Setup and Result

4.1 Dataset

For our experiment, we have used publicly available data for mental task classification
(Keirn and Aunon, 1990). The original EEG dataset consists of recordings from
seven subjects; we have utilized data of all subjects except Subject 4, due to its some
missing and incomplete information. Similar kind of observation has been made by
Faradji et al. (2009). Each subject has performed five different mental tasks as:
the Baseline task (relax: B); the mental Letter Composing task (L); the Non
trivial Mathematical task (M); the Visualizing Counting (C) of numbers written
on a blackboard task, and the Geometric Figure Rotation (R) task. Detailed
explanation can be found in the work of Keirn and Aunon (1990) 1.

For feature construction, the data of each task of each subject is decomposed into
half-second segments, yielding 20 segments (signal) per trial for each subject.The
feature vector corresponding to a given signal is constructed in two phase. In the first
phase, four level decomposition of signal is carried out with three EMDs algorithms.
In the second phase, signal is represented in terms of eight statistical parameters,
estimated from each decomposed signal.

4.2 Result

The performance of the EMD and its variant has been evaluated in terms of classifica-
tion accuracy achieved with SVM classifier with one versus all approach by Gaussian
Kernel. Grid search is used to find optimal choice of regularization constant C and
gamma. The average classification accuracy of 10 runs of 10 cross-validations is

1http://www.cs.colostate.edu/eeg/main/data/1989_Keirn_and_Aunon
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quoted. To check the efficacy of the proposed method, we have formulated three type
of multi-mental task classification problems viz. three class, four class and five class
as well as binary mental task classification.
Binary Class Problem We have used binary combination of these tasks as BC, BL,
BM, BR, CL, CM, CR, LM, LR and MR in this work.
Three Class Problem In this problem, we have formed three-class mental tasks
problems by choosing three different mental tasks at a time from given five mental
tasks. There are ten different triplet mental task combinations for forming three class
problem given as: BCL, BCM, BCR, BLM, BLR, BMR,CLM, CLR, CMR and LMR.
Four Class Problem Construction of four mental task classification problems has
been done by choosing four tasks at a time from the given five tasks. There are five
different four class problems namely BCLM, BCLR, BCMR, BLMR and CLMR.
Five Class Problem For the formation of the five mental task classification problem
we have taken all five mental tasks at a time. Thus, we have the five-class mental
tasks classification problem as: BCLMR.

Table 1: Classification accuracy of EMD for binary mental task classification.

Task-Combination Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average
BC 92.33 77.74 72.35 63.18 86.80 84.47 79.48
BL 84.35 65.85 77.50 61.47 67.33 77.00 72.25

BM 92.93 87.40 76.45 70.85 89.25 92.10 84.83
BR 96.78 98.35 66.05 75.92 88.60 99.05 87.46
CL 68.45 77.79 84.15 67.02 78.03 92.16 77.93

CM 96.50 83.05 66.85 77.50 98.78 93.26 85.99
CR 74.65 90.21 58.35 80.38 87.18 99.32 81.68
LM 98.25 92.15 81.58 74.32 87.25 98.95 88.75
LR 86.98 97.65 75.60 75.27 81.13 99.45 86.01

MR 97.75 88.35 67.50 79.40 84.55 82.25 83.30
Average 88.90 85.85 72.64 72.53 84.89 91.80 82.77
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Table 2: Classification accuracy of EEMD for binary mental task classification.

Task-Combination Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average
BC 93.75 90.85 72.33 94.42 89.85 91.65 88.81
BL 86.48 71.55 79.53 82.65 71.03 82.70 78.99

BM 93.23 88.95 80.33 97.15 94.23 96.80 91.78
BR 96.83 98.20 68.70 96.70 93.98 98.80 92.20
CL 71.30 88.50 85.03 69.92 82.45 91.90 81.52

CM 96.63 86.90 65.63 76.35 99.43 96.40 86.89
CR 76.60 95.35 60.60 81.35 92.00 98.55 84.08
LM 98.25 94.30 82.88 73.52 91.75 98.30 89.83
LR 87.00 98.95 77.50 76.13 89.03 100.00 88.10

MR 97.73 90.15 62.58 80.37 87.73 87.50 84.34
Average 89.78 90.37 73.51 82.86 89.15 94.26 86.65

Table 3: Classification accuracy of CEEMDAN for binary mental task classification.

Task-Combination Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average
BC 93.13 90.05 72.73 66.08 90.63 88.30 83.48
BL 86.20 71.30 78.93 62.85 73.10 81.00 75.56

BM 92.25 90.50 80.63 73.83 94.35 91.90 87.24
BR 97.60 99.20 67.73 78.40 94.08 98.25 89.21
CL 72.53 83.80 85.23 71.03 85.03 91.40 81.50

CM 97.03 87.20 67.63 75.47 99.68 95.30 87.05
CR 78.10 95.15 61.70 81.20 90.58 98.50 84.20
LM 97.43 93.45 81.38 73.70 92.10 98.75 89.47
LR 87.48 99.70 73.83 76.13 89.95 99.50 87.76

MR 98.18 90.60 64.50 81.38 88.80 84.30 84.63
Average 89.99 90.10 73.43 74.01 89.83 92.72 85.01
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Table 4: Classification accuracy of EMD for three class mental task classification.

Task-Combination Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average
BCL 61.67 59.34 66.72 51.50 64.35 70.24 62.30

BCM 87.38 72.41 56.80 56.83 82.02 83.41 73.14
BCR 76.82 74.21 51.05 57.93 76.30 83.48 69.96
BLM 81.22 66.87 66.87 54.50 66.72 78.63 69.13
BLR 74.67 71.17 61.98 58.62 66.28 82.53 69.21

BMR 92.53 82.90 56.07 64.66 76.32 80.97 75.57
CLM 75.00 74.03 62.60 61.64 75.00 86.00 72.38
CLR 62.25 73.83 56.62 63.90 71.02 86.83 69.07

CMR 80.07 79.45 49.07 66.76 78.67 80.93 72.49
LMR 87.92 84.07 60.15 63.83 72.12 83.83 75.32

Average 77.95 73.83 58.79 60.02 72.88 81.69 70.86

Table 5: Classification accuracy of EEMD for three class mental task classification.

Task-Combination Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average
BCL 65.15 68.57 69.17 76.24 69.20 78.50 71.14

BCM 87.75 82.30 57.98 79.78 87.88 88.00 80.62
BCR 80.70 83.63 53.93 82.77 83.62 90.17 79.14
BLM 84.05 68.27 71.07 77.84 75.72 83.47 76.74
BLR 77.85 76.07 64.98 80.04 73.28 85.47 76.28

BMR 93.00 83.17 56.18 83.92 85.15 84.10 80.92
CLM 77.78 81.27 62.50 62.77 81.62 92.00 76.32
CLR 66.65 81.53 59.57 65.49 80.47 90.80 74.08

CMR 82.65 81.87 46.88 66.51 86.02 86.03 74.99
LMR 88.32 88.37 58.18 64.90 81.60 86.00 77.89

Average 80.39 79.50 60.05 74.03 80.46 86.45 76.81
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Table 6: Classification accuracy of CEEMDAN for three class mental task classifica-
tion.

Task-Combination Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average
BCL 64.58 67.77 69.38 51.84 69.30 77.50 66.73

BCM 86.63 82.87 58.27 56.71 87.22 84.93 76.10
BCR 80.90 81.20 52.65 60.24 84.35 88.53 74.65
BLM 83.42 68.67 69.95 54.79 76.30 82.93 72.68
BLR 77.63 75.00 64.45 57.57 72.83 87.43 72.49

BMR 92.60 85.97 57.18 67.00 84.53 80.33 77.94
CLM 77.62 78.73 62.13 62.84 82.30 89.37 75.50
CLR 66.42 76.30 58.85 66.56 79.57 90.63 73.05

CMR 83.32 84.90 49.27 67.38 85.75 85.43 76.01
LMR 88.32 87.70 57.52 64.70 82.88 85.23 77.73

Average 80.14 78.91 59.97 60.96 80.50 85.23 74.29

Table 7: Classification accuracy of EMD for four class mental task classification.

Task-Combination Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average
BCLM 65.03 57.28 55.18 49.81 63.00 70.92 60.20
BCLR 66.80 68.21 48.19 56.21 64.46 76.97 63.47

BCMR 74.96 65.08 53.36 53.33 60.95 72.00 63.28
BLMR 76.48 67.72 45.76 54.80 71.01 74.64 65.07
CLMR 56.50 58.59 48.64 52.48 60.90 71.13 58.04

Average 67.95 63.37 50.23 53.33 64.07 73.13 62.01

Table 8: Classification accuracy of EEMD for four class mental task classification.

Task-Combination Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average
BCLM 69.54 65.05 57.11 67.96 71.08 78.55 68.21
BCLR 71.40 75.95 46.85 57.10 75.93 83.63 68.48

BCMR 77.36 68.73 54.25 69.86 71.28 78.20 69.95
BLMR 78.60 75.80 45.16 70.50 79.00 79.70 71.46
CLMR 61.66 65.60 52.76 69.70 68.40 80.53 66.44

Average 71.71 70.23 51.23 67.02 73.14 80.12 68.91
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Table 9: Classification accuracy of CEEMDAN for four class mental task classifica-
tion.

Task-Combination Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average
BCLM 67.63 63.73 55.36 49.09 70.66 74.90 63.56
BCLR 69.23 74.13 47.91 57.83 75.98 80.98 67.67

BCMR 77.48 69.70 54.48 52.44 72.05 76.53 67.11
BLMR 78.05 76.90 45.64 55.27 79.16 76.65 68.61
CLMR 60.55 64.25 53.00 50.52 67.28 79.40 62.50

Average 70.59 69.74 51.28 53.03 73.03 77.69 65.89

Table 10: Classification accuracy for all five class mental task classification of all
feature extraction method.

Task-Combination Feature Extraction methods Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average

BCLMR

EMD 59.60 56.71 44.53 53.26 57.47 66.41 56.33
EEMD 65.23 63.00 44.69 62.04 67.47 74.26 62.78

CEEMDAN 63.85 62.92 46.93 48.45 67.81 71.40 60.23

Table 1 to Table 3 show the classification accuracy for the binary mental tasks
classification problem of three different EMDs algorithms. The bold values show the
best and average classification accuracy for different subjects. From these tables, it
is clear that among three EMDs algorithms, CEEMDAN performs best for binary
MTC. Similar kind of observation can be seen for three class, four class and five class
of MTC, which have been shown from Table 4 to Table 10 respectively.
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4.3 Comparison with some recent works

In this subsection, we have discussed and compared the proposed approach with some
current works. Table 11, and 12 shows the comparison of the work of Gupta and
Kirar (2015), Gupta et al. (2015), and Zhang et al. (2010) with the proposed work
respectively. In the work of Gupta and Kirar (2015), features were extracted from
the EEG signal for binary mental task classification in the single step, i.e. with the
help of parametric approach using eight different parameters.

In our study features has been extracted, as stated earlier, in two steps, in the
first step, the signal is decomposed into different IMFs with the help of any three
EMD algorithms, and the second step consists extraction of the eight parameters
from each IMF as calculated in the work of Gupta and Kirar (2015) except we have
incorporated Hurst exponent instead of Lampel Ziv complexity as this new feature
give the good discriminative. It can be observed from Table 11 that the average
classification accuracy for the binary mental task classification is drastically increased
which shows the usefulness of the EMD methods for the classification.

In the work of Gupta et al. (2015), EMD and Wavelets methods are used to ex-
tract the features. They have used the same parameters to represent the feature
vector for further classification as Gupta and Kirar (2015). Table 11 shows the aver-
age classification accuracy of the work of Gupta et al. (2015) for binary mental tasks
classification for all the subjects. It is observed that the proposed methods outper-
formed and this shows the introduction of new parameter in our study i.e. Hurst
exponent instead of Lampel Ziv complexity is playing a significant role for creating
good discriminating feature which is good for building the classification model.

Table 11: Comparison table of the proposed approach with some recent works for
binary mental task classification.

Work Sub 1 Sub 2 Sub 3 Sub 5 Sub 6 Sub 7 Average
Gupta and Kirar (2015) 75.20 64.50 52.70 59.50 67.80 65.00 64.30
Gupta et al. (2015) EMD 61.75 61.50 53.00 54.50 57.00 62.00 58.29
Gupta et al. (2015) Wavelets 59.75 62.50 53.00 55.17 54.25 60.50 57.53
Proposed EMD approach 88.90 85.85 72.64 72.53 84.89 91.80 82.77
Proposed EEMD approach 89.78 90.37 73.51 82.86 89.15 94.26 86.65
Proposed CEEMDAD approach 89.99 90.10 73.43 74.01 89.83 92.72 85.01

In the Table 12, methods A, B and C are the schemes used by Zhang et al. (2010)
based on asymmetry ratio for calculation of different number of frequency band powers
using 75-dimensional, 90-dimensional and 42-dimensional feature vector, respectively.
From this table, it is clear that our approach outperforms for all the three subject for
all the multi mental tasks classification problem.
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Table 12: Comparison table of classification accuracy achieved for multi mental task
classification of the work of Zhang et al. (2010) with proposed approach.

Two class classification Three class classification Four class classification Five class classification
Zhang et al. (2010) A B C A B C A B C A B C
Sub1 77.60 85.90 83.80 63.90 75.30 70.90 54.40 66.60 60.50 47.60 60.40 55.40
Sub2 62.90 67.50 66.20 46.50 53.80 47.90 37.90 45.40 38.30 31.90 39.90 33.60
Sub3 69.40 72.50 71.50 54.10 59.40 57.00 45.30 52.10 49.80 39.30 46.30 43.70
Proposed approach EMD EEMD CEEMDAD EMD EEMD CEEMDAD EMD EEMD CEEMDAD EMD EEMD CEEMDAD
Sub1 88.90 89.78 89.99 77.95 80.39 80.14 67.95 71.71 70.59 59.60 65.23 63.85
Sub2 85.85 90.37 90.10 73.83 79.50 78.91 63.37 70.23 69.74 56.71 63.00 62.92
Sub3 72.64 73.51 73.43 58.79 60.05 59.97 50.23 51.23 51.28 44.53 44.69 46.93

4.4 Discussion

Since EEG signal having non-linear and non-stationary property, thus there is a need
of an algorithm which can capture such properties of the signal. EMD is such an
algorithm which can capture tempo-spectral information of the signal. After decom-
posing the signal in high and low frequency components, it is important to extract
some statistical and uncertainty parameters from the decomposed signal to its com-
pact representation and to distinguish from one mental state to another. In addition,
there are two improved version of EMD algorithm named as EEMD and CEMDAN
algorithm, which can capture tempo-spectral information even from noise assist sig-
nal.

Figure 3 to Figure 6 represent the average classification over all tasks combination
for all the possible combination of mental tasks of all subjects. From the figures, it
is clear that EEMD algorithm outperforms from other two algorithm. It is also
observed that for the Sub 1, Sub 2 and Sub 7, the distinguish capacity of the SVM
to differentiate the two or more mental tasks simultaneously is better than other
subjects, from the extracted features by the EMDs algorithms.

Although, all the EMDs algorithms are data driven approach , there is need of
more data driven approach algorithm such that performance of the given learning
system would be independent of the data.
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Figure 3: Bar chart for the average classification accuracy over all binary mental tasks
for all six subjects.

Figure 4: Bar chart for the average classification accuracy over all three class mental
tasks for all six subjects.

Figure 5: Bar chart for the average classification accuracy over all four class mental
tasks for all six subjects.
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Figure 6: Bar chart for the average classification accuracy over all five class mental
tasks for all six subjects.

4.5 Statistical Test

We have utilized a two way, non-parametric statistical test known as Friedman test
(Derrac et al., 2011; Friedman, 1937) to find out the significant difference among
these three EMD methods for EEG signal. The Table 13 shows the average Friedman
ranking of the methods for different combination of metal tasks classification problem,
which shows that EEMD method outperform among three methods for all the possible
metal tasks classification problem.

The performance of any EMD method (in this work) is studied with respect to
control method i.e. best performer from the Friedman’s ranking (EEMD). The test
statistics for the comparison of mth method to nth method, z, is given as

z =
Rm −Rn√

k(k+1)
6N

, (17)

where Rm and Rn are the average ranking of the methods, k and N are the number
of methods (algorithms) and experiments respectively. However, these p values so
obtained are not suitable for comparison with the control method. Instead, adjusted
p values (Derrac et al., 2011) are computed that take into account the error accumu-
lated and provide the correct correlation. For this, a set of post-hoc procedures are
defined and adjusted p values are computed to be used in the analysis. For pair-wise
comparisons, the widely used post hoc methods to obtain adjusted p values are (Der-
rac et al., 2011): Bonferroni-Dunn,Holm,Hochberg and Hommel procedures. Table 14
shows the various value of adjusted p values obtained from aforementioned methods.
From this table, it is clear that there is statistical difference between EEMD and other
two methods.
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Table 13: Average Rankings of the algorithms

Algorithm Ranking
method Binary Class Three Class Four Class Five Class
EMD 3.00 3.00 3.00 2.93
EEMD 1.03 1.01 1.03 1.17
CEEMDAN 1.97 1.99 1.97 1.90

Table 14: Adjusted p-values

Class Combinations Algorithm unadjusted p pBonf pHolm pHoch pHomm
Binary Class EMD 4.16E-44 8.33E-44 8.33E-44 8.33E-44 8.33E-44

CEEMDAN 2.99E-11 5.99E-11 2.99E-11 2.99E-11 2.99E-11
Three Class EMD 5.69E-45 1.14E-44 1.14E-44 1.14E-44 1.14E-44

CEEMDAN 4.22E-12 8.44E-12 4.22E-12 4.22E-12 4.22E-12
Four Class EMD 4.16E-44 8.33E-44 8.33E-44 8.33E-44 8.33E-44

CEEMDAN 2.99E-11 5.99E-11 2.99E-11 2.99E-11 2.99E-11
Five Class EMD 1.49E-35 2.97E-35 2.97E-35 2.97E-35 2.97E-35

CEEMDAN 2.44E-7 4.89E-7 2.44E-7 2.44E-7 2.44E-7

5 Conclusion

Classification of EEG signal for any purpose requires detail analysis of the signal, i.e.
intrinsic properties of the signal. This work presented a comprehensive comparison
of three different EMDs algorithms to find intrinsic characteristics of the EEG signal
for mental task classification problem. After decomposing the signal through the
EMDs algorithms, 8 parameters were calculated from each segment of the decomposed
signal to form the feature vector of the signal. SVM was used for the classification
process. Experimental results showed that EEMD algorithm perform best among
three. A set of statistical analysis are also performed to investigate whether three
EMDs algorithms statistically different or not.

In the future work, we would like to explore some advance decomposition methods
for the EEG signal. It would be also of interest to find some new parameters which
can help to identify the different mental states.
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