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 1 

ABSTRACT 2 

 3 

High throughput technologies opened a new era in biomedicine by enabling massive analysis of 4 

gene expression at both RNA and protein levels. Unfortunately, expression data obtained in 5 

different experiments are often poorly compatible, even for the same biological samples. Here, 6 

using experimental and bioinformatic investigation of major experimental platforms, we show that 7 

aggregation of gene expression data at the level of molecular pathways helps to diminish cross- and 8 

intra-platform bias otherwise clearly seen at the level of individual genes. We created a 9 

mathematical model of cumulative suppression of data variation that predicts the ideal parameters 10 

and the optimal size of a molecular pathway. We compared the abilities to aggregate experimental 11 

molecular data for the five alternative methods, also evaluated by their capacity to retain 12 

meaningful features of biological samples. The bioinformatic method OncoFinder showed optimal 13 

performance in both tests and should be very useful for future cross-platform data analyses. 14 

                15 

 16 

  17 
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INTRODUCTION 1 

 2 

Next generation sequencing (NGS), Microarray hybridization (MH) and high throughput proteomic 3 

techniques opened a new era in biomedicine by enabling large scale analysis of gene expression at 4 

both the RNA and protein levels [Kumar, 2016]. Multiple experimental platforms based on different 5 

principles and utilizing different reagents were developed for these tasks [Kumar, 2016]. According 6 

to the International Aging Research Portfolio, over eight billion dollars in government funding have 7 

been spent on research projects involving high throughput gene expression analysis since 1993 8 

[Zhavoronkov, 2011]. This resulted in tens of thousands of publications. Unfortunately, gene 9 

expression data obtained using different experimental platforms are poorly compatible with each 10 

other even when obtained using the same biosamples. For example, a generally weak correlation 11 

between NGS and microarray gene expression data has been reported [Buzdin, 2014]. Therefore,  a 12 

new data processing method is badly needed to enable data harmonization among different 13 

platforms and experiments [MAQC Consortium, 2006; Zhang, 2013]. 14 

Recently we showed that aggregation of gene expression data into molecular pathways, each 15 

containing dozens or hundreds of gene products, may help to solve the problem of poor data 16 

compatibility among different experimental platforms [Buzdin 2014a]. NGS and microarray data 17 

obtained for the same transcripts showed generally low correlation (<0.2) when examined at the 18 

level of individual genes. However, these correlations improved dramatically, up to 0.9, when 19 

activation of 90 molecular pathways was analyzed instead [Buzdin, 2014a]. The output measure 20 

was a Pathway Activation Strength (PAS), which positively reflects the degree of pathway 21 

activation. The PAS makes it possible to interrogate, quantitatively, processes such as molecular 22 

signaling, metabolism, DNA repair and cytoskeleton reorganization,  based on gene expression 23 

data. These processes determine cell fate by governing growth, differentiation, proliferation, 24 

migration, survival and death [Diderich, 2016; Zhavoronkov, 2014]. Molecular modeling of 25 

intracellular pathways has been carried out for more than two decades [Kholodenko, 1999; 26 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 21, 2016. ; https://doi.org/10.1101/076620doi: bioRxiv preprint 

https://doi.org/10.1101/076620
http://creativecommons.org/licenses/by/4.0/


5 

 

Hanahan, 2000]. A plethora of molecular pathways have been discovered and catalogued, each 1 

containing different numbers of gene products [Haw, 2012; Nakaya et al., 2013]. Pathway 2 

activation strength was also found to be a better marker of human tissue types [Borisov, 2014; 3 

Lehznina, 2014] and tumor response to chemotherapy treatment [Zhu 2015;Venkova, 2015; 4 

Artemov, 2015]. Several approaches were published by us and others to assess the activation of 5 

signaling pathways, basing on large scale molecular data [Khatri, 2012; Buzdin, 2014b, 6 

Zhavoronkov, 2014]. These methods take into account different factors like the extent of 7 

differential gene expression, architecture of molecular pathways, and the roles of individual gene 8 

products in a pathway (e.g., activator/repressor) [Khatri, 2012; Buzdin, 2014b].  For example, a 9 

method we used to minimize discrepancies between the NGS and microarray platforms, termed 10 

OncoFinder, relies on differential gene expression and the known roles in a pathway, but does not 11 

take into account pathway architecture, i.e. the position of a gene product in a pathway [Buzdin, 12 

2014b].   13 

In spite of this progress it is not known why data aggregation improves expression information 14 

stability and what factors influence it. It is also unclear which bioinformatic algorithms provide 15 

better PAS outputs for cross-platform data stability. Additionally, PAS algorithms have not yet been 16 

applied to the high throughput proteomic data.  17 

In this study, we applied data aggregation methods to transcriptomic information obtained using 18 

the Affymetrix HG U133 Plus 2.0, the Illumina HT12 bead array, the Agilent 1M array, the llumina 19 

Genome Analyzer platforms, and to proteomic data from the Orbitrap Velos and XL mass 20 

spectrometer platforms. We confirmed that for both transcriptomic and proteomic expression levels,  21 

the PAS approach provided more stable results than the expression of individual genes. To explain 22 

this phenomenon, we created a biomathematical model simulating error acquisition in individual 23 

gene expression and in PAS-based approaches. In agreement with the experimental data, in the 24 

mathematical model PAS methods produced significantly more stable results under a majority of 25 

conditions. This model also predicts the optimal size of a molecular pathway and ideal parameters 26 
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of the normalizing (control) set of gene expression data. 1 

To test the predictions further of the biomathematical model, we designed a new experimental 2 

gene expression array using the CustomArray microchip platform (USA) enabling direct 3 

electrochemical synthesis of oligonucleotide probes on a blank array. We compared results for the 4 

seven human kidney cancer tissue samples independently profiled by the two laboratories on the 5 

this customized array and on the commercial Illumina HT12 bead array platform. In agreement with 6 

the theoretical model, gene expression features differed significantly among the platforms for the 7 

same biosamples, while PAS values remained highly correlated. Therefore, gene expression data 8 

aggregated at the PAS level appears to be the method of choice for cross-platform data comparisons, 9 

including both transcriptomic and proteomic approaches. 10 

We next explored the capacity of five most popular PAS calculation methods,  OncoFinder 11 

[Buzdin, 2014b],  TAPPA (Topology analysis of pathway phenotype association) [Gao, 2007], 12 

Topology-Based Score (TBScore) [Ibrahim, 2012], Pathway-Express [Draghici, 2007], and SPIA 13 

(Signal pathway impact analysis) [Tarca, 2009] to generate stable and biologically relevant data. 14 

We used the MicroArray Quality Control (MAQC) dataset [MAQC Consortium, 2006 ] including 15 

expression data for four biological samples profiled in fifteen replicates on major commercial 16 

microarray platforms. The abilities of the various PAS methods to increase correlation between  17 

transcriptomic features of the same biosamples examined using different experimental platforms 18 

were tested. We also checked whether the PAS methods were able to retain biological features after 19 

data harmonization using a generally accepted cross-platform harmonization procedure XPN 20 

[Shabalin, 2008]. We found that the OncoFinder method showed the optimal performance in both 21 

tests. 22 

 23 

 24 

 25 

 26 
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RESULTS 1 

 2 

Cross-platform processing of transcriptomic and proteomic data 3 

We processed transcriptomic and proteomic data to establish pathway activation strength (PAS) 4 

profiles corresponding to intracellular molecular pathways. The analysis included 271 molecular 5 

pathways (Supplementary dataset S1). For PAS measurements, we applied the OncoFinder method 6 

which was previously shown to diminish the cross-platform variation between the MH and NGS 7 

data [Buzdin, 2014a]. OncoFinder has previously been applied to many human and non-human 8 

systems including cell culture, leukemia and solid cancers, fibrosis, asthma, Hutchinson Gilford and 9 

Age-Related Macular Degeneration Disease [Makarev, 2016; Artcibasova, 2016;  Alexandorva, 10 

2016; Lebedev, 2015]. The PAS for a given pathway (p) is calculated as: 11 

( )∑ ⋅
n

nnpp CNRARR=PAS log

 

[Buzdin, 2014b], where the functional role of the n
th

 gene product 12 

in the pathway is indicated  by the activator/repressor role (ARR), which equals 1 for an activator, –13 

1 for a repressor, and  intermediate values -0,5; 0,5 and 0 for gene products having intermediate 14 

repressor, activator, or unknown roles, respectively. The CNRn value (case-to-normal ratio) is the 15 

ratio of the expression level of gene n in the sample under investigation to the average expression 16 

level in the control samples. A positive PAS value indicates activation of a pathway, and a negative 17 

value indicates repression.  18 

 19 

Building pathway activation profiles and assessment of batch effects  20 

To identify if the OncoFinder technique may improve gene expression analysis by eliminating  21 

batch effects, we profiled a set of human clinical bladder cancer tissue samples using the same 22 

experimental platform (Illumina human HT 12 v4 bead arrays) in two different laboratories. We 23 

investigated gene expression profiles generated from 17 bladder cancer samples and seven normal 24 

bladder tissue samples. Eight cancer and four normal samples were analyzed in Dr. Kovalchuk’s 25 

laboratory in Lethbridge (Canada), and nine cancer and three normal bladder tissue samples were 26 
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analyzed in Dr. Buzdin’s laboratory in Moscow (Russia). The gene expression data were deposited 1 

in the GEO database (http://www.ncbi.nlm.nih.gov/geo/) with accession numbers GSE52519 and 2 

GSE65635. 3 

In agreement with previous reports [Lazar, 2013], the normalized gene expression showed 4 

significant batch effects with data from different laboratories clearly clustered on a Principal 5 

Component Analysis (PCA) plot (Fig.1A). However, the PAS data formed a single merged cluster 6 

(Fig.1B). The principle component variability was 4-6 times smaller for the PAS data (Fig.1A,B).  7 

Similarly, using PAS values these two sets of samples formed mixed groups on a 8 

hierarchical cluster heatmap (Fig.1C). The Canadian samples were labeled 55 - 72; the Russian 9 

samples X1 - X8. Some sub-clusters are evidently formed by the samples coming from the different 10 

sets, e.g. by samples X5, X8, 69, 68 and X1. (Fig.1C). These data show that data aggregation at the 11 

PAS level is sufficient to suppress the batch effect in gene expression comparisons.  12 

 13 

Mathematical modeling of data aggregation effects 14 

We investigated the hypothesis that the apparently higher robustness of  OncoFinder PAS scoring 15 

compared to single gene expression, is due to the cumulative nature of the former. PAS is the sum 16 

of multiple mathematical terms that correspond to each individual gene product participating in a 17 

pathway. Model calculations showed that this cumulative effect is able to reduce stochastic noise.  18 

In the model, we included 271 pathways with variable numbers of gene products.  We 19 

assumed that the expression level of every gene product could be measured using two different 20 

methods, say X and Y, corresponding to different experimental platforms (e.g. MH and NGS). Each 21 

method introduces errors into the determination of gene expression level, and these errors are 22 

independent. A Monte Carlo trial was performed as follows: we simulated both biased CNR (with a 23 

median value of 1.5) and unbiased CNR with a median value of 1. We explored both noisy and 24 

exact expression profiling methods, to allow whether measurement procedures introduce errors in 25 

the true expression values. The four scenarios of the stochastic simulations (labeled A to D) are 26 
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shown in Table 1.     1 

For each scenario, we calculated the benefit ratio
g

p

C

C
R = , where Cp and Cg are the 2 

correlation coefficients between the results obtained using methods X and Y, using pathway-based 3 

(PAS), and individual gene product-based log CNR values, respectively. For each subset of genes in 4 

a pathway, we performed 100 Monte Carlo stochastic simulations and then computed the mean 5 

values of Cp and Cg using the R statistical package. The greater R>1, the higher the benefit from 6 

using PAS instead of individual gene expression for the cross-platform comparisons;  R<1 means 7 

operating at the individual gene product level is better than the PAS level. 8 

For biased expression profiles, scenarios A and B of Table 1, (Fig. 2), the PAS method 9 

shows much better agreement between the results obtained using different methods, compared to 10 

the individual gene expression levels. The data aggregation advantage of PAS is especially strong 11 

when both expression methods are noisy (scenario A). In scenario B, when one method is exact, the 12 

benefit of pathway data aggregation is lower. This is caused mainly by higher expression 13 

correlation already at the level of individual gene products (Fig. 3). However, the advantages of 14 

PAS remain considerable for pathways that contain at least 10 gene products (Fig. 2). For shorter 15 

pathways, the data aggregation effect is gradually decreased, and the R ratio reflecting the benefit of 16 

using PAS values, trends towards 1. 17 

  For unbiased transcription profiles, with median relative gene expression levels equal to 1, 18 

the data aggregation effect is completely lost (scenarios C and D). Here, the mean value for each 19 

gene product component of the PAS score is zero; consequently, the expected PAS is also zero, and 20 

the relative data variation is the same at the gene product and the PAS level. 21 

The simulations clearly elucidate how the cumulative nature of PAS suppresses cross-22 

platform data variation and batch effects. They show that there is a significant advantage of using 23 

PAS to compare platforms, when at least one is noisy. This should apply to most if not all existing 24 

high throughput experimental platforms, and it should be seen when experimental expression data is 25 

compared. The simulations demonstrate that PAS calculations are advantageous for biased 26 
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transcriptomes and proteomes and virtually useless for unbiased ones. Unbiased data sets are too 1 

similar to the control group used as the reference to calculate CNR values. This means that the PAS 2 

approach will be especially useful when the expression signature in the sample under study is very 3 

different from that of the control samples. This finding may help to identify appropriate control 4 

samples for decreasing expression data noise. Finally, this model shows that the higher is the 5 

number of gene products in a pathway, the greater the benefit of shifting from individual 6 

gene/protein expression to PAS data For example, the mean number of gene products in the 7 

OncoFinder database is 68 per pathway, and the model predicts about a 4.5 –fold decrease in data 8 

variation at the PAS level in the biased noisy-noisy scenario, which may explain the success of the 9 

OncoFinder approach in various applications [Buzdin, 2014a].  10 

 11 

Experimental model of cross-platform comparisons. 12 

In transcriptomic methods, batch effects arise from errors introduced at the stages of RNA 13 

purification, library preparation and amplification, hybridization and reading of arrays [Risso, 14 

2011]. We investigated whether the OncoFinder PAS algorithm can suppress batch effects 15 

introduced by cross-platform comparisons. At the same time we assessed if the algorithm works 16 

efficiently for formalin-fixed, paraffin-embedded (FFPE) tissue samples. Seven FFPE tissue blocks 17 

isolated from human renal carcinomas were profiled using two independent experimental platforms. 18 

The first was the Illumina HT 12 v4 bead array system optimized for FFPE tissues. The second was 19 

a customized microchip system developed using the CustomArray (USA) technology of direct on-20 

chip electrochemical oligonucleotide synthesis. The custom arrays had 3775 oligonucleotide probes 21 

corresponding to 2214 human gene products involved in 271 intracellular signaling pathways 22 

(Supplementary dataset S1). The custom arrays, used the original oligonucleotide probe sequences 23 

of the Illumina HT 12 v4 platform, but shortened by 5 nucleotides at the 5’ end and by 5 nucleotides 24 

at the 3’ end. Quantile –normalized gene expression data were deposited into the GEO database 25 

with the accession numbers GSE65637 and GSE65639. The differences between the Illumina and 26 
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the Custom platforms included shorter oligonucleotide probe sequences, different library 1 

preparation protocols and different hybridization signal development and reading methods 2 

(Supplementary Fig.1). The Custom method for library preparation was quite distinct from Illumina 3 

and identical to that used by the Agilent MH platform (Supplementary Fig.1B,C,E) with the sole 4 

exception that biotinylated rather than fluorescently labeled DNA is used at the terminal stage 5 

(Supplementary Fig.1 B,E). A brief comparison of the protocols used for the Custom and top 6 

commercial MH platforms manufactured by the Illumina, Agilent and Affymetrix companies for 7 

FFPE tissue profiling is given in Supplementary dataset S2. 8 

 To compare with the renal carcinoma samples, we used GEO dataset GSE49972 [Karlsson, 9 

2014]  containing 6 normal kidney samples to normalize the expression data and calculate PAS. The 10 

normalized CNR expression data and PAS values are shown in Supplementary dataset S1. At the 11 

level of individual gene products, we observed relatively low correlations (0.2-0.3) between the 12 

same transcriptomes profiled using the two platforms (Fig. 4; Supplementary dataset S3). In 13 

contrast, at the PAS level the correlations were strong, varying from 0.84 to 0.91 (Fig. 4; 14 

Supplementary dataset S3).  15 

These results experimentally confirm the hypothesis that data aggregation at the PAS level 16 

increases the stability of cross-platform expression data and that the advantage of PAS is retained 17 

for FFPE samples. 18 

 19 

Data aggregation effects assessed on different RNA and protein expression profiles  20 

We investigated quantitative aspects of the effect of data aggregation on several datasets where the 21 

same samples were profiled using different expression platforms (Tab. 2, Supplementary dataset 22 

S4).  23 

We observed two trends for the behavior of the benefit ratio 
g

p

C

C
R =  . In model 24 

calculations, we observed a crucial role of expression profile bias between the case and normal 25 

samples for successful data aggregation of genes into pathways (Fig. 2, 3). We introduce a measure 26 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 21, 2016. ; https://doi.org/10.1101/076620doi: bioRxiv preprint 

https://doi.org/10.1101/076620
http://creativecommons.org/licenses/by/4.0/


12 

 

of such bias, termed 









=

2

2

1

1 ,min
σ

µ

σ

µ
β , where iµ and iσ  are the mean and standard deviation, 1 

respectively, of the set of log CNR values obtained for a given sample using the experimental 2 

platform i. The results of the model calculation (Fig. 2,3, scenarios A and B) suggest that, even for 3 

the same values of β,  R may be different depending on Cg (correlation at the individual gene 4 

product level): the higher Cg, the lower R at equal β. 5 

With a discrimination threshold for Cg chosen as equal to 0.25 between low-correlated and the 6 

considerably correlated samples, we can see the clear clusters of data for data aggregation effect 7 

(Fig. 5, blue dots for low and red dots for considerably correlated samples. Note that the two 8 

clusters of data depending on the Cg threshold are seen for both transcriptome-to-transcriptome and 9 

transcriptome-to-proteome comparisons. 10 

The data obtained suggests that when β is low, the R is hardly distinguishable from 1; 11 

however, when β exceeds a threshold, the increase of R becomes statistically significant. Finally, 12 

these results also demonstrate that transcriptomic and proteomic profiles demonstrate more 13 

compatible results at the molecular pathway level rather than on the level of individual gene 14 

products. 15 

 16 

    17 

Comparison of PAS scoring methods according to their capacities in data aggregation  18 

 19 

We compared the abilities of five popular PAS scoring methods to yield an advantageous  20 

the data aggregation effect when the expression of molecular pathways is compared instead of 21 

individual gene products. For the seven renal carcinoma samples discussed above, we calculated R 22 

using alternative PAS scoring methods:  OncoFinder [Buzdin, 2014b], topology analysis of pathway 23 

phenotype association, TAPPA [Gao, 2007], topology-based score (TB) [Ibrahim, 2012], pathway-24 

express (PE) [Draghici, 2007], and signaling pathway impact analysis (SPIA) [Tarca, 2009] 25 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 21, 2016. ; https://doi.org/10.1101/076620doi: bioRxiv preprint 

https://doi.org/10.1101/076620
http://creativecommons.org/licenses/by/4.0/


13 

 

methods (Supplementary data set S5). These methods differ in the factors used to evaluate the 1 

importance of distinct gene products in pathway activation. 2 

Only three of the methods, OncoFinder, PE and SPIA, showed a substantial data aggregation 3 

effect (R) ranging from 2-2.3. Other methods showed lack of any positive effect (Fig. 6).  4 

 5 

Different methods for PAS scoring show different properties in retention of biological features 6 

Cross-platform data comparison has the potential to become an extremely useful tool in 7 

contemporary biomedicine and bioinformatics. Although the application of PAS methods has the 8 

ability to restore correlations between different expression data sets, the absolute values of PAS may 9 

differ between platforms. To overcome this inconsistency, several cross-platform harmonization
1
 10 

methods can be applied ranging from the simplest z-scaling and mean-centering to more 11 

sophisticated algorithms utilizing machine-learning/Bayesian harmonization  (e.g., [Warnat, 2005; 12 

Shabalin, 2008; Hsu, 2014], including the popular harmonization technique XPN [Shabalin, 2008] . 13 

In many applications these harmonization methods can diminish the systematic bias introduced by 14 

the experimental methods and devices used, but they demonstrate lower efficiencies for routine 15 

batch effects like those observed when comparing results obtained using the same platform but on 16 

different calendar dates or in different laboratories.  17 

This made it of interest to compare the ability of the five PAS scoring methods to retain biological 18 

features after cross-platform data harmonization with the XPN method.  19 

We used the results of the Microarray quality control project (MAQC) [MAQC Consortium, 20 

2006] as a model dataset for this study. The MAQC project investigated four types of samples (A-21 

D; each sample profiled in 15 technical replicates) using different microarray devices. Type A 22 

samples were taken from the Stratagene Universal Human Reference RNA; type B samples – from 23 

the Ambion Human Brain Reference RNA. Type C and D samples were obtained by combining 24 

samples A and B in mass ratios 75:25 for C, and 25:75 for D, respectively.  25 

                                                 
1
 In the current paper, we apply the term normalization to any method for within-platform batch effect elimination, and 

harmonization when such procedure is performed for the cross-platform comparison, although the mathematical 

methods for both the former and latter procedures may be different.    
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After XPN harmonization of gene expression profiling using the Agilent Whole Human 1 

Genome Oligo and Affymetrix Human Genome U133 Plus 2.0 platforms, we applied different 2 

methods of PAS scoring (Supplementary dataset S6) using the samples of type A as normal. The 3 

probability densities of the Euclidean distances between the PAS vectors calculated for the three 4 

samples (B, C, and D) differ greatly depending on the PAS scoring method used (Fig.7). In such an 5 

assay, an ideal PAS scoring method should make distinctions between samples depending primarily 6 

on the sample types, rather than on the experimental platform used. A satisfactory PAS calculation 7 

method, therefore, should yield a unimodal distribution of the PAS-PAS distances, without any 8 

significant deviations. If the distribution of PAS-PAS distances is bimodal or multimodal, this points 9 

to the inability to eliminate platform-specific bias even at the pathway level. Only the OncoFinder 10 

and TAPPA methods were able to eliminate the cross-platform bias for all three sample types 11 

(Fig.7).       12 

Hierarchical clustering (dendrograms shown in Supplementary data set S7). demonstrates 13 

that only the OncoFinder and TAPPA methods enabled clustering of the PAS vectors exclusively 14 

according to biological sample type. Thus, among the five PAS scoring algorithms tested, only 15 

OncoFinder showed effective data aggregation with efficient retention of biological information in 16 

three independent tests  (Table 3). 17 

 18 

DISCUSSION 19 

 20 

High throughput gene expression may produce both random and systematic errors, arising from the 21 

steps in RNA or protein purification, library preparation and/or amplification, hybridization and 22 

sequencing, reading arrays, and mapping and annotation of the reads [Chalaya, 2004; Shugay, 2014; 23 

Risso, 2011]. It is generally hard to identify the types of errors and to find out which kind of 24 

experimental protocol provides more reliable data. While the measured concentration of each 25 

individual gene product may be in error, we show in this report that combining sufficient numbers 26 
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of these concentrations into a pathway-oriented network apparently generates significantly more 1 

stable data. We also tested whether OncoFinder and other PAS scoring methods can improve 2 

expression data to suppress batch effects, the unwanted variation in gene expression measurements 3 

on the same experimental platform made at different times, which frequently originate from the 4 

limitation in the number of samples that can be processed at once in a single experiment 5 

[Demetrashvili, 2010]. Batch effects also hinder the combination of different experimental datasets. 6 

Batch effects are almost inevitable [Lazar, 2012]. By limiting analyses to single data sets, one 7 

frequently must use an insufficient number of samples, which leads to high false-negative rates 8 

[Lazar, 2012].  Eliminating batch effects enables larger datasets, and provides more statistical 9 

power to subsequent analyses [Lazar, 2012]. 10 

Here, using the Illumina HT12 bead array platform to profile human cancer samples, we 11 

demonstrate that the PAS scoring technology OncoFinder effectively suppresses batch effects 12 

present in the individual gene expression measurements (Fig.1). OncoFinder efficiently increases 13 

expression data stability from all major experimental platforms, for both fresh and formalin-fixed, 14 

paraffin-embedded tissue samples (Fig.4).  15 

Various publicly available repositories of gene expression data embrace the full spectrum of 16 

normal and pathological conditions for the majority of known human diseases [Cancer Genome 17 

Atlas Research Network, 2008; Jones, 2006]. Unfortunately, batch effects, which bias the 18 

expression profiles, hamper the joint analysis of most of this data obtained using different 19 

experimental settings.   20 

Discrepancies in data obtained on the same and different experimental platforms, rmust be 21 

addressed by different methods, termed normalization and harmonization, respectively. For intra-22 

platform normalization, more attention is paid to equilibration of scaling factors, while cross-23 

platform harmonization must address the type of distribution of output intensities for each gene. 24 

Exiting methods for intra-platform normalization include quantile normalization [Bolstad, 2003] 25 

and frozen robust multi-array analysis (FRMA) [McCall. 2010] for microarray data, and the DESeq 26 
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method [Anders, 2010] for next-generation sequencing.  1 

Methods for cross-platform harmonization, such as distance-weighted discrimination (DWD) 2 

[Huang. 2012], cross-platform normalization (XPN) [Shabalin, 2008], and platform-independent 3 

latent Dirichlet allocation (PLIDA) [Deshwar, 2014], provide deep restructuring or signal intensity 4 

redistribution for the entire set of genes profiled. As a rule, the cross-platform harmonization 5 

involves data clustering and finding similarity regions among results obtained using different 6 

platforms, to strengthen similarity during the harmonization process.  7 

Unfortunately, current normalization and harmonization methods hardly distinguish between 8 

artifacts introduced by batch effects and the real biological differences. Additional tools are needed 9 

to improve normalization and harmonization procedures. We demonstrate here for most major 10 

transcriptomic and proteomic commercial platforms that data aggregation at the level of molecular 11 

pathways has the potential to reduce greatly the bias in the datasets under comparison. Since each 12 

pathway may contain hundreds of different gene products, transition from single gene products to 13 

the whole pathway level may restore biologically significant correlations. 14 

We propose a term data aggregation effect for such restoration of biological correlation at 15 

the pathway level. We created a mathematical model that simulates it and identifies the necessary 16 

conditions for its applicability. Sample expression profiles must be biased compared to control 17 

samples, i.e. the transcriptional signatures of the case samples must differ significantly from the 18 

normal ones (Fig. 5). The strength of the data aggregation effect grows with the number of gene 19 

products in a molecular pathway. The data aggregation effect is especially strong when the initial 20 

correlation between the expression data is weak (Fig. 2,3). Finally, the choice of PAS scoring 21 

method affects the data aggregation effect.  On a model data set, the OncoFinder, Pathway-Express 22 

and SPIA algorithms result in a considerable data aggregation effect, while TAPPA and TB-Score 23 

don’t (Fig. 6). Only OncoFinder and TAPPA were able to preserve the biological features on the 24 

model dataset MAQC after cross-platform harmonization, while with Pathway-Express, SPIA and 25 

TB-Score methods, platform-introduced bias features still dominated the output expression 26 
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signatures (Fig.7). Thus, among the five PAS scoring methods tested here, the OncoFinder 1 

algorithm showed the best efficiency and accuracy (Tab.3), which makes OncoFinder a method of 2 

choice for many applications using high-throughput analysis of gene expression at the RNA or 3 

protein levels. 4 

It should be possible in the future to refine PAS methods to create universal platform-5 

agnostic analytic tools. These tools have a huge potential to accelerate progress in genetics, 6 

physiology, biomedicine, molecular diagnostics and other applications by combining unbiased data 7 

from many sources and various experimental platforms. 8 

 9 

MATERIALS AND METHODS  10 

 11 

Tissue collection and RNA isolation from fresh biosamples 12 

Seven normal bladder and seventeen bladder carcinoma specimens from patients treated at the P.A. 13 

Herzen Moscow Oncological Research Institute (HMORI; Moscow, Russia) were analyzed. Of 14 

these samples (cancer/normal), nine/three were examined at the Shemyakin-Ovchinnikov Institute 15 

of Bioorganic Chemistry (IBC; Moscow, Russia) and eight/four at the University of Lethbridge 16 

(UL; Alberta, Canada). All patients provided written informed consent to participate in this study. 17 

This study was approved by the local ethical committees at IBC, UL and HMORI. Tumor samples 18 

were obtained from patients who had undergone surgery for bladder carcinoma at the HMORI 19 

between 2009 and 2013. The median age of the cancer patients at the time of surgical tumor 20 

resection was 64 years (range 48–77 years). Tissue samples from non-cancer controls were 21 

collected from autopsies at the Department of Pathology at the Faculty of Medicine, Moscow State 22 

University. Both the tumors and normal tissues were evaluated by a pathologist to confirm the 23 

diagnosis and estimate the tumor cell numbers. All tumor samples used in this study contained at 24 

least 80% tumor cells. The median age of the healthy tissue donors was 45 years (range 20–71 25 

years). Tissue samples were stabilized in RNAlater (Qiagen, Germany) and then stored at −80°C. 26 
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Frozen tissue was homogenized in TRIzol Reagent (Life Technologies, USA), and RNA was 1 

isolated following the manufacturer’s protocol. Purified RNA was dissolved in RNase-free water 2 

and stored at −80°C. 3 

 4 

Microarray profiling of gene expression in fresh biosamples 5 

Total RNA was extracted using TRIzol Reagent and then reverse-transcribed to cDNA and cRNA 6 

using the Ambion TotalPrep cRNA Amplification Kit (Invitrogen, USA). The cRNA concentration 7 

was quantified and adjusted to 150 ng/ml using an ND-1000 Spectrophotometer (NanoDrop 8 

Technologies, USA). 750 ng of each RNA library was hybridized onto the bead arrays. 9 

Gene expression experiments were performed by Genoanalytica (Moscow, Russia) and the O. 10 

Kovalchuk Laboratory (Lethbridge, Canada) using the Illumina HumanHT-12v4 Expression 11 

BeadChip (Illumina, Inc.). This gene expression platform contains more than 25,000 annotated 12 

genes and more than 48,000 probes derived from the National Center for Biotechnology 13 

Information RefSeq (build 36.2, release 22) and the UniGene (build 199) databases. The expression 14 

data were deposited in the GEO database (http://www.ncbi.nlm.nih.gov/geo/), accession numbers 15 

GSE52519 and GSE65635. 16 

 17 

Synthesis of microarrays. 18 

A B3 synthesizer (CustomArray, USA) was used for oligonucleotide probe synthesis on the 19 

CustomArray ECD 4X2K/12K slides. Synthesis was performed according to the manufacturer’s 20 

recommendations. At least three replicates of total 3823 unique oligonucleotide probes of 40 21 

nucleotides in length for 2278 genes were placed on each chip.  22 

 23 

Library preparation and hybridization. 24 

RNA was extracted from freshly frozen tissue samples or samples stored in stabilizing buffer 25 

solutions using the standard protocol for TRIzol reagent (Life Technologies). RNA extraction from 26 
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FFPE samples was performed using the RecoverAll™ Total Nucleic Acid Isolation Kit for FFPE. 1 

Complete Whole Transcriptome Amplification WTA2 Kit  (Sigma) was used for reverse 2 

transcription and library amplification. The manufacturer’s protocol was modified by adding to 3 

amplification reaction a dNTP mix containing biotinylated dUTP, resulting to a final proportion 4 

dTTP/biotin-dUTP of 5:1.  5 

Hybridization was performed according to the CustomArray ElectraSense™ Hybridization and 6 

Detection protocol. The hybridization mix contained 2.5 ug of labeled DNA library, 6X SSPE, 7 

0.05% Tween-20, 20mM EDTA, 5x Denhardt solution, 100 ng/ul sonicated calf thymus gDNA, and 8 

0,05% SDS. The chip was incubated in the hybridization mix overnight at 50ºC. The hybridization 9 

efficiency was detected electrochemically using CustomArray ElectraSense™ Detection Kit and 10 

ElectraSense™ 4X2K/12K Reader. The chip was designed using the Layout Designer software 11 

(CustomArray, USA). 12 

 13 

Functional annotation of gene expression data 14 

The SABiosciences (http://www.sabiosciences.com/pathwaycentral.php) signaling pathways 15 

knowledge base was used to determine structures of intracellular pathways, as described previously 16 

[Spirin, 2014]. 17 

OncoFinder. We applied the original  OncoFinder algorithm  [Buzdin, 2014b] for functional 18 

annotation of the primary expression data and for calculating PAS scores. The microarray gene 19 

expression data were quantile normalized according to [Bolstad, 2003]. The formula used to 20 

calculate the PAS for a given sample and a given pathway p is as follows: 21 

( )∑ ⋅⋅Α
n

nnnpp CNRBTIFARR=SP log

                                                          (1)

 22 

Here the case-to-normal ratio, CNRn, is the ratio of the expression level of gene n in the sample 23 

under investigation to the average expression level of that gene in the control group of samples. The 24 

Boolean flag of BTIF (beyond tolerance interval flag) equals one or zero when the CNR value has 25 
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simultaneously passed or not passed, respectively, the two criteria that indicate a significantly 1 

perturbed expression level from an essentially normal expression level. The first criterion is that the 2 

expression level of the sample lies within the tolerance interval, with p < 0.05. The second criterion 3 

is whether the CNR value lies outside the cut-off limits, i.e., either CNR < 2/3 or CNR > 3/2. ARRnp, 4 

the discrete value of the activator/repressor role equals the following fixed values: −1, when the 5 

gene/protein n is a repressor of molecular pathway; 1, if the gene/protein n is an activator of 6 

pathway; 0, when the gene/protein n is known to be both an activator and a repressor of the 7 

pathway; and 0.5 and −0.5, respectively, tends to be an activator or a repressor of the pathway p, 8 

respectively. 9 

Our approach to calculations of РAS implies two principal assumptions: 10 

1) First, computational modeling of signal transduction processes [Birtwistle, 2007; Borisov, 2009; 11 

Kuzmina, 2011] indicates that for most interacting proteins the concentration of their active forms, 12 

which are sufficient for downstream signaling, is much lower than the total abundance of the 13 

corresponding protein. In other words, signal transduction may be performed even at the very low 14 

level for most gene products.  15 

2) Second, we stipulate that each pathway graph may be simplified up to the following structure 16 

that includes only two chain-like (linear) branches: one for sequential events that promote activation 17 

of whole pathway, and another for repressor sequential events. The adequacy of this quite radical 18 

approximation was shown before in comparison with the full-scaled kinetic model [Kuzmina, 19 

2011], when all protein-protein interactions were described using the mass-action law along each 20 

edge of a highly branched pathway graph [Buzdin, 2014].  21 

Under these conditions, we presume that all activator/repressor members have equal importance for 22 

the whole pathway, and come to the following formula for the overall signal outcome (SO) of a 23 

given pathway, 

[ ]

[ ]∏

∏

=

=
M

j

j

N

i

i

RGEL

AGEL

=SO

1

1
. Here the multiplication is done over all possible activator and 24 

repressor proteins in the pathway, [AGEL]i and [RGEL]j are relative gene expression levels of 25 
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activator (i) and repressor (j) members, respectively. To obtain an additive value, it is possible to 1 

take the logarithmic levels of gene expression, and thus come to a function of PAS. 2 

The results for 271 pathways were obtained for each sample (see Supplementary Data set S1). 3 

Statistical tests used the R software package. 4 

TAPPA (Topology analysis of pathway phenotype association). Imagine а pathway graph, ),( EVG , 5 

where
 

},,,{= 21 ngggV K  is the set of graph nodes (vertices), and 6 

}interactandgenes|),{(= jiji ggggE  is the set of graph edges [Gao, 2007]. The adjacency 7 

matrix is defined as follows, 1=ija , if ji =  or Egg ji ∈),( , and 0=ija , if Egg ji ∉),( . A centered 8 

Z-scoring procedure was applied to the logarithmic gene expression matrix s

orig

is

orig

isis xxx σ)/(= − . 9 

The adjacency index for a pathway is defined as follows, 10 

 ,||||)(sign=
1=1=

jsijisjsis

N

j

N

i

xaxxxJ +∑∑
                (2)

 11 

where N is the number of genes in the pathway, and the double summation of over the 12 

)(sign jsis xx +  reveals whether the pathway has more up- or down-regulated genes. The sign (of 13 

what?), indicates whether the whole pathway is up- or down-regulated is calculated as14 

,=TAPPA Npp JJ −  where

 
NJ  is the expected value of J over the set of samples that are 15 

considered normal. 16 

 17 

TBScore (Topology-based score) [Ibrahim, 2012]. For a pathway p that has N nodes, the value 18 

ii

N

i

p NWNV ⋅=∑
1=

TBScore , where the node value, NV,  equals to zero if all the genes in the node i are 19 

non-differential genes, or equals to the sum of log-fold-changes of the differential genes in the node 20 

i . The gene is considered differential, if the gene is considered differential in terms of the Boolean 21 

flag BTIF (as for the OncoFinder algorithm). The node weight, NWi, equals the number of 22 

downstream nodes for node i.  To determine the value of NWi, we used the depth-first search 23 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 21, 2016. ; https://doi.org/10.1101/076620doi: bioRxiv preprint 

https://doi.org/10.1101/076620
http://creativecommons.org/licenses/by/4.0/


22 

 

method [Even, Sh. Graph Algorithms, Cambridge University Press, 2011] using labeling visited 1 

nodes to avoid the infinite cycling. 2 

Pathway-Express (PE) [Draghici, 2007]. The PE-score for a pathway K was calculated as follows, 3 

 .
)(||

|)(|

)(1/log=
PNE

gPF

pPE
d

Kg

K
∆

+

∑
∈

 (3) 4 

The first term in this sum is the p-value for the probability to obtain the observed or a higher 5 

number Nd of differentially expressed genes (between the pools of case and normal samples) by  6 

random chance, assuming a hypergeometrical distribution for Nd. The second term is a summation 7 

over the perturbation factors )(PF  for the all genes g of the pathway K, 8 

                                .
)(

)(
)(=)(

γ

γ
β γ

γ down

g

g
U n

PF
gEgPF ∑

∈

+∆

                                                    (4)

 9 

Here )( gE∆  is the signed difference of gene g logarithmic expression in a given sample compared 10 

with the expected value for the pool of normal samples.  The latter term expresses the summation 11 

over all the genes γ that belong to the set Ug of the upstream genes for the gene g. The value of 12 

ndown(γ)  denotes the number of downstream genes for gene γ. The weight factor gγβ  indicates the 13 

interaction type between γ and g: 1=gγβ  if γ activates g, and 1−=gγβ  when γ inhibits g. 14 

Although the value of PF may be positive or negative, the overall score of PE is obligatory positive. 15 

The search for upstream/downstream genes is performed according to the depth-first search method, 16 

as in the TBScore method.  17 

SPIA (Signal pathway impact analysis) [Tarca, 2009]. To obtain an estimator for pathway 18 

perturbation that is positive for an up-regulated and negative for a down-regulated pathway, use the 19 

second term in formula (4), resulting in the accuracy value, ).()(=)( gEgPFgAcc ∆−  It can be 20 

shown that [Tarca, 2009] this accuracy vector may be expressed as follows,  21 

                                        ,)(= 1
∆EBIBAcc ⋅−⋅ −

 where                                                (5) 22 
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 3 

The overall score for pathway pertubation calculated as: )(=SPIA gAcc
g∑ .    4 

 5 

Statistical tests 6 

Principal component analyses were performed using the MADE4 package [Culhane, 2005]. 7 

Hierarchical clustering heat maps with Pearson distances and average linkage were generated using 8 

heatmap.2 function from the gplots package [Scales, 2015]. 9 

 10 

Mathematical modeling  11 

We performed a Monte Carlo trial to investigate the data aggregation effect. Something may be 12 

missing here? We assumed that the number of genes in each pathway is distributed log-normally 13 

with the variable median number N. The case-to-normal-ratio (CNR) values for each gene were also 14 

sampled from the log-normal law, so that the value of log CNR had a normal distribution. When 15 

sampling CNR, we distinguished between biased and unbiased models of gene expression. For the 16 

biased model, the CNR distribution has a median value of 1.5, whereas for the unbiased model, the 17 

median CNR value is 1. The standard deviation of the mean log CNR value was set to 0.3 for both 18 

biased and unbiased models. The independent error produced by an experimental platform was also 19 

sampled stochastically. We simulated both the exact and noisy expression profiling methods. By the 20 
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definition, exact methods did not introduce errors. For  noisy methods, the error was chosen from 1 

the log-normal distribution, with a median value of 1.0. All the calculations were made using the R 2 

open source platform (version 3.1.2).  3 

 4 

Analysis of published transcriptomic and proteomic datasets  5 

Prior to analysis, all the microarray data were quantile normalized [Bolstad, 2003], and the RNA-6 

seq data were normalized using the DESeq package from Bioconductor software [Anders, 2010]. 7 

All gene products showing zero intensities were skipped to avoid aberrant data variations.  Pearson 8 

correlation coefficients between the same samples examined using different expression profiling 9 

methods (e.g., proteome vs transcriptome or MH vs NGS) were calculated at two levels of data 10 

aggregation: first, at the level of distinct genes and gene products – namely for the value of log CNR 11 

(the so-called Cg correlation value); and, second, at the level of the whole pathways, for the PAS 12 

value (the Cp correlation coefficient). Then, the ratio 
g

p

C

C
R =  was calculated for each sample. 13 

Analysis of biological relevance after cross-platform harmonization.  14 

Transcriptional profiles were obtained using the Agilent Whole Human Genome Oligo and 15 

Affymetrix Human Genome U133 Plus 2.0 array platforms. The transcriptomic data were cross-16 

platform harmonized with the XPN method [Shabalin, 2008] using the R package CONOR [Rudy, 17 

2011]. Then, the cross-harmonized gene expression patterns between the Agilent and Affymetrix 18 

platforms were used as the input data for the PAS calculations. For all the calculations,  type A 19 

samples were used as normal, and  type B, C and D samples - as cases.  20 

Euclidean distances between the PAS vectors were used  to determine whether the resulting 21 

PAS samples are grouped in agreement with their biological properties (i.e., biological sample types 22 

B, C and D compared to A), or according to the experimental platform used to investigate them 23 

(i.e., Agilent or Affymetrix microarray platform). The cluster dendrograms and violin plots were 24 

drawn using the R packages dendextend and vioplot, respectively.  25 

 26 
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TABLES 1 

 2 

 3 

Table 1. Cross-platform comparisons for modeling the data aggregation effect.  4 

 Scenario A Scenario B Scenario C Scenario D 

Expression 

profile 

Biased Biased Unbiased Unbiased 

Method X Noisy Noisy Noisy Noisy 

Method Y Noisy Exact Noisy Exact 

 5 

  6 
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 1 

Table 2. Transcriptomic and proteomic datasets used to assess data aggregation effects.  2 

 3 

Paper 

reference, 

Dataset ID 

Origin Case and control 

samples 

Experimental platforms Number 

of 

samples  

[van Delft, 

2012], 

GSE36244 

HepG2 cells Cells treated with 

benzopyrene (cases) 

vs untreated cells 

(norms) 

Transcriptomes using Affymetrix 

Human Genome U133 Plus 2.0 

arrays and Illumina Genome 

Analyzer sequencer 

4 

[Xu, 2013], 

GSE41588 

 

HT-29 cells Cells treated with  5-

aza-deoxy-cytidine 

(cases) vs untreated 

cells (norms) 

Transcriptomes using Affymetrix 

Human Genome U133 Plus 2.0 

arrays and Illumina Genome 

Analyzer sequencer 

6 

[Kim, 2013] 

GSE37765 

 

Lung 

adeno-

carcinoma 

Tumor samples 

(cases) vs normal 

lungs (norms) 

Transcriptomes using Agilent 1M 

CNV arrays and Illumina Genome 

Analyzer sequencer 

6 

This study  Renal 

carcinoma 

tissue 

Tumor samples 

(cases) vs normal 

adult kidneys 

(norms) 

Transcriptomes using Illumina 

Human HT-12 v4 microarrays and 

Custom microchip platform (see 

text) 

7 

[Yang, 

2014], 

GSE52488, 

PXD000624 

 

Human 

smooth 

muscle cells  

Cells treated with 

PDGF served as 

cases, untreated - as 

norms. 

Transcriptome using Affymetrix 

Human Gene 1.0 ST arrays and 

proteome using triplex SILAC at 

Orbitrap XL mass spectrometer. 

2 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 21, 2016. ; https://doi.org/10.1101/076620doi: bioRxiv preprint 

https://doi.org/10.1101/076620
http://creativecommons.org/licenses/by/4.0/


35 

 

[Cabezas-

Wallscheid, 

2014], 

EMTAB- 

2262, 

PXD000572 

Murine 

hemato-

poietic stem 

cells (HSC) 

HSC served as 

norms, multipotent 

progenitor 

population 1 (MPP1) 

– as cases. 

Transcriptome using RNA-seq 

HiSeq2000 (Illumina) and proteome 

using duplex SILAC at Orbitrap 

Velos Pro mass spectrometer 

4 

[Hara, 2013] Human 

pathologic 

skin 

fibroblasts 

 

Samples from two 

patients served as 

cases. Three and two  

normal samples were 

used as norms for 

proteome and 

transcriptome 

investigation, 

respectively 

Transcriptome using Affymetrix 

Human Genome U133 Plus 2.0 

arrays and proteome using triplex 

SILAC at Orbitrap Velos mass 

spectrometer 

2 

 1 
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 1 

 2 

Table 3.  Comparison of PAS scoring methods using functional and statistical tests.    3 

Method Data aggregation 

effect 

Distance distribution 

within each sample type 

Quality of PAS 

clustering 

OncoFinder ++ +++ +++ 

TAPPA  -- +++ ++ 

TBScore  - -- - 

Pathway-

express  

+++ -- -- 

SPIA  +++ -- -- 

 4 

 5 

  6 
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FIGURES 1 

 2 

 3 

 4 

 5 

 6 

Figure 1. Renal carcinoma datasets assessed at the level of individual gene expression and pathway 7 

activation. A, principal component analysis (PCA) plot for transcriptomes from datasets obtained in 8 

Russia (red dots) and Canada (black dots), at the level of individual gene expression. B, PCA plot at 9 

the level of molecular pathway activation. C, hierarchical clustering dendrogram of the datasets 10 

obtained in Russia (marked white) and Canada (marked blue), at the level of molecular pathway 11 

activation.  12 
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Figure 2. Ratio of pathway-related and gene-related correlation coefficients between  results 3 

obtained using hypothetical methods X and Y, as a function of the median gene number, N, in a 4 

pathway for four scenarios: A (blue) – biased expression profile, noisy method Y; B (red) - biased 5 

expression profile, exact method Y; C (green) – unbiased expression profile, noisy method Y; D 6 

(magenta) –  unbiased expression exact method Y. The method X is always condsidered noisy. 7 

 8 

 9 
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 1 

Figure 3. Distributions of values obtained during random trials using two different expression 2 

profiling methods X (horizontal axis) and Y (vertical axis). Median number of gene products in a 3 

pathway is 100. Left column: log CNR for individual gene products, method Y vs method X. Right 4 

column: PAS scoring method Y vs method X. Blue dots: scenario A (biased expression profile, 5 

noisy method Y). Red dots: scenario B (biased expression profile, exact method Y). Green dots: 6 

scenario C (unbiased expression profile, noisy method Y). Magenta dots: scenario D (unbiased 7 

expression profile, exact method Y). Method X is always considered noisy. 8 
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 1 

 2 

 3 

Figure 4. Correlation between transcriptomic data obtained for the same representative renal 4 

carcinoma specimen using the Illumina HT12 (ordinate) and CustomArray (abscissa) microarray 5 

platforms. The panels represent (from left to right) correlation between the oligonucleotide 6 

expression tags, correlations at the level of individual genes, and correlation at the level of 7 

molecular pathways. 8 
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 1 

Figure 5. Dependence of the data aggregation effect (R) on the minimal expression profile bias β. 2 

Left panel: transcriptome-to-transcriptome comparisons for the same samples using different 3 

experimental platforms. Right panel: transcriptome-to-proteome comparisons for the same samples.  4 

The Cg threshold between the samples low and considerably correlated at the gp level was chosen as 5 

equal to 0.25; blue dots: low correlation at gene product level; red dots: considerable correlation at 6 

gene product level. 7 

 8 

 9 

 10 
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 1 

  2 

Figure 6. Data aggregation effect R for five pathway activation scoring methods (OncoFinder, 3 

TAPPA, TBScore (TB), Pathway-Express (PE), and SPIA) on the renal carcinoma dataset.   4 

 5 

 6 
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 1 

Figure 7. Distribution of Euclidean distances between the PAS vectors for different sample types 2 

taken from the MAQC dataset (marked as B, C and D) using different methods of PAS scoring. A 3 

unimodal distribution indicates lack of significant difference between within-platform and cross-4 

platform distances. A bimodal distribution means that the cross-platform PAS distance (upper mode 5 

in the violin plots) is essentially higher that the within-platform distance.  See text for descriptions 6 

of the different scoring methods. 7 
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