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The frontal lobes are essential for human volition and goal-directed behavior, yet 

their function remains unclear. While various models have highlighted working 

memory, reinforcement learning, and cognitive control as key functions, a single 

framework for interpreting the range of effects observed in prefrontal cortex has yet 

to emerge.  Here we show that a simple computational motif based on predictive 

coding can be stacked hierarchically to learn and perform arbitrarily complex goal-

directed behavior.  The resulting Hierarchical Error Representation (HER) model 

simulates a wide array of findings from fMRI, ERP, single-units, and 

neuropsychological studies of both lateral and medial prefrontal cortex.  Additionally, 

the model compares favorably with current machine learning approaches, learning 

more rapidly and with comparable performance, while self-organizing representations 

into efficient hierarchical groups and managing working memory storage.  By 

reconceptualizing lateral prefrontal activity as anticipating prediction errors, the HER 

model provides a novel unifying account of prefrontal cortex function with broad 

implications both for understanding the frontal cortex and building more powerful 

machine learning applications.  

Keywords: dorsolateral prefrontal cortex, predictive coding, anterior cingulate, 

computational model, working memory 

Introduction 

The frontal lobes are central to volition and higher 

cognitive function, especially goal-directed behavior
1–

3
.  Recent work has highlighted reinforcement 

learning, 
4–6

 performance monitoring 
7,8

, and 

hierarchical abstraction and working memory 
9–11

 as 

key elements of frontal function, often under the 

framework of cognitive control
12

.  Considering the 

range of methods and perspectives applied to 

investigating prefrontal cortex (PFC), there is a clear 

need for a common framework for interpreting the 

variety of functions assigned to the frontal lobes. 

Within the past decade, predictive coding has emerged 

as just such a potentially unifying framework for 

understanding the organization and function of the 

brain 
13

.  Hierarchical predictive coding, as well as 

related approaches including free energy 
14

 and 

Hierarchical Bayesian Inference 
15

, generally treat 
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bottom-up processing of information in the brain as a 

source of evidence that must be "explained away" by 

top-down processes carrying information regarding the 

likely causes of sensory information.  In the predictive 

coding framework, top-down processes provide 

predictions from superior hierarchical levels to inferior 

levels, while residual prediction errors, i.e., input that 

cannot be accounted for by the predictions supplied by 

top-down processes, are carried from inferior levels to 

superior levels.  This motif of top-down predictions 

and bottom-up prediction errors repeats through 

successive hierarchical iterations, forming a 

sophisticated processing stream composed of "dumb 

processes that correct... error in the multi-layered 

prediction of input."
13

.  Predictive coding accounts 

have achieved great success in accounting for effects 

related to the processing of sensory input 
16–22

. Given 

this success in accounting for the structure and 

function of the brain in early sensory areas, it has been 

suggested
13

 that the predictive coding framework 

might be extended to account for the organization of 

brain regions underlying sophisticated cognitive 

processes, especially the frontal lobes.  To date, 

however, this proposed extension has remained largely 

hypothetical, and it remains an open question as to 

whether frontal lobe function can be accommodated 

within the predictive coding framework. 

There are several reasons to believe that predictive 

coding formulations may indeed map well to PFC in 

addition to primary sensory areas.  PFC is generally 

considered to be organized hierarchically along a 

rostrocaudal abstraction gradient
9,10,23,24

, with rostral 

regions coding for abstract rules and task sets, while 

caudal regions represent concrete stimulus-response 

associations.   Significant portions of PFC are 

specialized for reporting error as a deviation from 

predicted events 
7,25

, and distinct regions within medial 

PFC (mPFC) appear to encode error at different levels 

of abstraction
26,27

, while regions within dorsolateral 

PFC (dlPFC) appear to encode hierarchical task set 

information 
23

 and to contextualize behavioral 

responses based on a learned model of the 

environment
10,24

. 

In recent work
28

 we proposed the error representation 

hypothesis, formalized in the Hierarchical Error 

Representation (HER) computational model, of the 

functions and interactions of mPFC/dlPFC.  We began 

with the PRO model of mPFC, which simulates a wide 

range of empirical findings as resulting from 

prediction errors calculated within mPFC 
7,25

.  We then 

proposed that the mPFC prediction errors further train 

dlPFC to represent items in working memory that 

reliably predict the prediction errors generated by 

mPFC.  These "error prediction" signals in turn are 

deployed to reduce subsequent prediction errors.  

Residual errors - those that cannot be fully predicted at 

a given level - act as a "proxy" outcome for higher 

levels of a mPFC/dlPFC hierarchy, and these proxy 

outcomes may in turn be the targets for further 

prediction and error computations.  The result is a self-

organizing hierarchical network that learns, maintains, 

and flexibly switches working memory representations 

as a product of learning to minimize prediction error.  

(Figure 1; supplementary material/methods).  Notably, 

the HER model reconceptualizes working memory 

function as a product of learning to maintain 

representations of predicted errors, which in turn 

minimize prediction errors.  In the framework of 

predictive coding, items in working memory in the 

HER model reflect hypothetical causes of observations 

that are selected based on bottom-up error signals, and 

the predictions of which are refined in order to explain 

away error at lower hierarchical levels.  Hierarchical 

representation in the model therefore emerges as each 

hierarchical level identifies the most likely causes of 

residual errors reported by lower levels, and the degree 

to which a given hierarchical level influences the 

processing of a lower level is proportional to the 

amount of additional error that is accounted for given a 

hypothetical cause (supplementary materials/methods). 
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Figure 1. Predictive Coding in Prefrontal Cortex. A) In the HER model, information is passed to hierarchical levels through bottom-up and top-

down pathways.  In the bottom-up paths (top), regions in mPFC compute an error signal as the discrepancy between the expected and actual output of 

inferior hierarchical levels.  Error signals generated by mPFC train error predictions in lateral PFC which are associated with task stimuli that reliably 

precede them.  Following training, learned representations of error predictions are elicited by task stimuli and actively maintained in dlPFC for as long 

as they have predictive value.  In the top-down pathway (bottom), error predictions are passed from superior hierarchical levels in order to successively 

modulate predictions made at inferior levels.  B) The organization of the HER model is similar to formulations of predictive coding and free energy 

previously used to explain results from early sensory processing areas and hypothesized to extend into the frontal lobes. C) A detailed circuit diagram of 

the HER model shows bottom-up (red and green) and top-down (violet) pathways, as well as the working memory gating mechanism that allows 

information to be maintained over extended durations.  The connections match known neuroanatomy29,30.  

Computational simulations of the HER model have 

demonstrated its ability to learn complex cognitive 

tasks in a manner comparable to human performance, 

both in terms of behavioral markers of learning as well 

as the speed at which such tasks were acquired 
28

.  

Furthermore, the HER model performs well compared 

to state-of-the-art “deep learning” models such as 

LSTM 
28

 (cf. Table 1).  The model's ability to perform 

these tasks is noteworthy considering that it is 

composed of a repeated motif of relatively "dumb 

processes" organized hierarchically: individual 

hierarchical levels instantiate simple RL learners that 

receive feedback in the form of error signals generated 

by lower levels, and whose predictions serve to 

modulate lower level predictions.   

Here we demonstrate that the HER model, in addition 

to autonomously learning hierarchically structured 

cognitive tasks, is able to account for a range of effects 

in dlPFC, mPFC, and their interactions previously 

reported in the literature.  These effects are derived 

from signals in the model that compute differences 

between observed and predicted outcomes 
7,25

 (in 

mPFC), and signals related to the maintenance, 

updating, and modulation of working memory 
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Figure 2. Information encoding in dlPFC.  As the information content of a context cue increases, activity across hierarchically organized regions of 

dlPFC increases.  The strength of error predictions maintained in dlPFC is proportional to information content: the more informative a cue is, the larger 

a reported error will be without the information supplied by that cue.  The HER model captures effects of information related both to the nature of task-

relevant stimuli (x axes) as well as responses that may be required (y axes).  The HER thus provides a complementary account to the Information 

Cascade model of PFC.  In the Task Condition of Koechlin et al.24 (right column), activity across dlPFC is observed to increase with the information 

content of a contextual cue.  However, here activity in caudal dlPFC (middle frame) shows an additional increase when subjects must occasionally 

switch between two tasks (vowel/consonant, upper/lower case identification).  This additional increase related to task switching is accounted for as 

transient increases in activity in the HER model when the nature of the task changes (Fig 2., right column, middle row).   

representations 
24,31

 (in dlPFC).  Notably, all signals in 

the model derive from the computation of predictions 

errors, and thus suggest a common neural currency of 

error and error representation in prefrontal cortex. 

Results 

Context, Working Memory, & Control 

The role of dlPFC in working memory and 

representation of task structure remains an ongoing 

research concern.  In the past two decades, numerous 

fMRI studies have investigated the structure and 

function of dlPFC under various hierarchical task and 

working memory demands.  In Koechlin et al. 

(2003)
24

, the authors investigated the function of 

dlPFC in two tasks while manipulating the amount of 

information conveyed by task-relevant stimuli.  In 

their Motor Condition, activity throughout dlPFC – 

from areas labeled PMd (dorsal premotor cortex) to 

rostral dlPFC –was observed to increase monotonically 

as the information content of a contextual cue 

increased (fig 2, middle column).  An additional 

increase in activity was observed only in PMd when 

subjects were required to make two responses rather 
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than a single response.  In Simulation 1 (Figure 2), the 

HER model accounts for the general trend of 

increasing activity across dlPFC as the increasing 

strength of error prediction representations learned by 

the model – more information means more potential 

errors that must be accounted for.  This account 

complements the Information Cascade model 
24

 based 

on information theoretic formulations; in information 

theory, information is the amount by which uncertainty 

about a random variable decreases given another 

variable.  Error predictions learned by the HER model 

are used to modulate outcome predictions in order to 

support correct behavior - that is, their role is to reduce 

uncertainty regarding the likely outcomes of actions.   

The HER model accounts for the additional increase in 

activity observed in PMd through the transient update 

of representations (see supplementary material) at the 

lowest model level when successive stimuli mandate 

different responses, while conditions in which only a 

single response is required do not entail an additional 

update (Fig. 2, left column, bottom). 

Learned Representation 

While the HER model is able to capture a range of 

results related to the activity of ensembles of neurons 

reflected by the BOLD signal (supplementary 

material), it also posits a particular representation 

scheme deployed in dlPFC.  Namely, single units in 

the HER model dlPFC each code for a component of a 

multi-dimensional error prediction.  In addition to 

capturing data related to the strength of activity 

observed in dlPFC, then, the HER model should also 

be able to account for data relating to the activity of 

individual neurons as well as techniques designed to 

decode neural activity such as MVPA. 

To investigate whether the error prediction 

representations learned by the HER model are 

consistent with those observed in human subjects, we 

recorded activity from the model as it performed the 1-

2AX continuous performance task (Simulation 2, 

Figure 3A).  We subsequently classified active 

representations in the model during periods of the task 

in which the model had been shown high- and low-

level context variables (see Online Methods), but prior 

to a potential target cue being displayed.  This 

approach is similar to the multi-voxel pattern analyses 

reported by Nee & Brown 
11

.  Classification of the 

model representations is consistent with that observed 

in human subjects (Fig. 3A): at the lowest hierarchical 

level, sequences that may culminate in a target 

response (1A/2B) and those that will certainly not 

culminate in a target response (1B/2A) are represented 

in a distinct fashion (Fig. 3A, Bottom).  However, the 

representations also partially overlap such that 1A 

sequences are partially categorized as 2B sequences, 

while 1B sequences are partially categorized as 2A 

sequences.  At level 2 of the HER model, classification 

of each sequence is more decisive, with each unique 

sequence (1A/1B/2A/2B) being unambiguously 

decoded (Fig. 3A, Middle).  This result is similar to 

human data, in which a region in mid-dlPFC shows a 

trend toward increased evidence for unique sequence 

coding.  Finally, at the third hierarchical level (Fig. 

3A, Top), sequences beginning with 1 or 2 are each 

collapsed (i.e.., equal evidence for 1A and 1B), 

reflecting the role of rostral dlPFC in coding high level 

context variables.  The HER model explains the 

confusion of one target sequence with another (1A/2B) 

and one non-target sequence with another (1B/2A) at 

the lowest hierarchical level as a consequence of the 

increased activation of a predicted response common 

to both types of sequences – a target response in the 

former condition, and a non-target response in the 

latter condition. 

Single-Unit Neurophysiology 

The representation scheme proposed by the HER 

model suggests that individual neurons in lPFC should 

code for components of a distributed error 

representation, with single units signaling the identity 
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Figure  3. Distributed Representations in PFC.  Separate units in the HER model represent components of a hierarchically-elaborated, multi-

dimensional error prediction, suggesting how cognitive tasks may be represented neurally.  A) Left:  MVPA on error prediction representations 

maintained by the model while performing the 1-2AX CPT are consistent with human data showing that caudal regions of lPFC code for potential 

target sequences regardless of higher-order context, while more rostral regions encode more abstract context variables.  Right:  Human MVPA results, 

reprinted from Nee & Brown 201211. Classification results of model representations are naturally more robust than pattern analysis of fMRI data since it 

is possible to record the activation of units in the model with perfect fidelity, while BOLD signals are subject to noise.  B) Units in level 1 of the HER 

model (left) show activity related to match suppression and enhancement while performing a delayed match-to-sample task.  Prior to observing a target 

stimulus, activity in these units reflects the equal probability of observing a match or non-match cue.  Following the presentation of the target stimulus, 

the activity of units predicting the occurrence of a match is enhanced, while the activity for non-match-predicting units is suppressed, similar to data 

recorded from monkey lPFC (right).  The HER model further predicts the existence of units showing effects of mismatch enhancement and suppression. 

Reprinted from Miller et al., 1996. 

 

and likelihood of observing a particular error.  The 

model further suggests that these signals should evolve 

through the course of a trial as the likelihood of 

observing specific types of errors increases or 

decreases.  We recorded activity in the model as it 

performed a delayed match-to-sample (DMTS) task 

(Simulation 3).   Consistent with observed unit types 

recorded in macaque monkeys 
32

, units in the HER 

model were identified with increased activity 

following the occurrence of a target probe that 

matched the sample (match enhancement; Fig. 3B), 

while distinct units were identified whose activity 

decreased following a matching target (match 

suppression; Fig 3B).   The HER model accounts for 
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these two types of neurons as the modulation of 

predictions regarding possible responses following the 

presentation of a target cue.  When a matching target is 

presented, the activity of units predicting a “match” 

response increases (enhancement) while the activity of 

units predicting a “non-match” response decreases 

(suppression).  The HER model further suggests a 

priori that additional types of neurons should be 

observed in lPFC, namely mismatch enhancement and 

suppression neurons – neurons whose activity reflects 

the increased and decreased likelihood of making a 

non-match and match response, respectively. 

The neural bases of behavior in prefrontal cortex 

In addition to reproducing effects from human fMRI 

data regarding the nature of stimulus representations in 

PFC, the HER model also suggests how these 

representations may influence patterns of behavior.  In 

order to investigate the influence of hierarchically-

organized representations on the timecourse of learned 

behaviors, we simulated the model (Simulation 4, 

Figure 4B) on a ternary probability estimation task 
33

 

in which subjects were asked to estimate the 

probability that a compound stimulus, varying along 

two feature dimensions, belonged to each of three 

categories.  Subjects were found to adopt three 

different strategies in their responses (Fig. 4B, bottom 

row): one group (Least Certain, LC, left) consistently 

assigned near-equal probabilities for each category, a 

second group (Label Margin, LM, center) assigned a 

low probability to one category and approximately 

equal probabilities to the other two, while the final 

group (Most Certain, MC, right) assigned a high 

probability to one category and low probabilities to the 

others.  Similar patterns of behavior were observed in 

the HER model during simulated experiments in which 

the learning rate was manipulated as follows (Fig. 4B, 

top row).  For simulations in which all learning was 

disabled, the model's probability estimates 

corresponded to the LC group.  When learning was 

                      

Figure 4.  Connecting representations to behavior.  Behavior of the HER model (top) with learning selectively enabled at zero (left), one (center), 

and all (right) hierarchical levels.  The model's estimate of the probabilities of three possible categories matches the behavior of three groups of human 

subjects (bottom) during a ternary probability estimation task.  The HER model thus provides an account of how task representation at the level of 

single units contributes to behavior.  Reprinted from Markant & Gureckis (2012) 
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enabled only for the lowest hierarchical level, the 

model's behavior corresponds to the LM group, 

reflecting learned representations that allow the model 

to rule out one of the three categories but lacking the 

higher order information required to distinguish 

between the remaining two.  Finally, when learning is 

enabled for all levels, the model rapidly learns the 

entire task, corresponding to the behavior of the MC 

group.  In the HER model, these behaviors are 

intimately linked to learned error predictions:  the 

model decomposes a task by selecting at each 

hierarchical level the stimulus feature that best reduces 

response uncertainty.  The HER model thus provides 

an account of how neural representations acquired 

during learning might contribute to patterns of 

behavior.

 

Figure 5. Interactions of mPFC and dlPFC.  The HER model suggests how mPFC and dlPFC may cooperate to minimize prediction error through 

passing error and error prediction information through hierarchical levels.  A) Increased activity in parallel hierarchical regions in the HER model, 

associated with mPFC and dlPFC, is associated with errors (mPFC) and updates of error predictions (dlPFC) at different levels of abstraction, from 

concrete (level 1, stimulus switch) to abstract (level 2, response switch; level 3, context switch). B) Modulation of mPFC by error predictions 

maintained in dlPFC is critical for contextualizing predictions regarding the likely outcome of actions. In a delayed-match-to-sample task, the HER 

model correctly captures the elimination of the ERN following correct trials due to the maintenance of information regarding the sample cue.  However, 

when the model is lesioned such that information normally maintained in dlPFC is no longer available to mPFC, the model produces an ERN to correct 

and error trials alike. 
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Interaction of mPFC and dlPFC 

The HER model, being an extension of the PRO model 

of ACC/mPFC, already captures a wide array of 

effects observed within ACC
7,25

.   The HER model 

extends the PRO model in two critical ways: first, it 

specifies how mPFC and dlPFC may interact in order 

to support sophisticated behaviors, and two, it suggests 

a parallel hierarchical organization of mPFC in which 

successive hierarchical regions report increasingly 

abstract error signals.  Such an organization of mPFC 

has been proposed previously
34,35

, and, indeed, 

evidence has been found that supports a role for mPFC 

in processing hierarchical errors 
27

.  The HER model is 

able to capture the pattern of activity observed by Kim 

et al. 
26

 (Simulation 5) for distinct regions of both 

mPFC  and dlPFC (Fig. 5A, middle column).  The 

HER model interprets activity in hierarchically-

organized regions of mPFC as the discrepancy 

between increasingly abstract predicted and observed 

outcomes, consistent with the role of mPFC in error 

computation proposed by the PRO model 
7,25

 , and 

complementary to the interpretation of Kim et al.  

However, while their notion of higher-order error 

signals is specified qualitatively, successively more 

abstract errors in the HER model are a product of 

quantitative predictions at lower levels that are 

insufficient to explain a subject’s observations, in line 

with the predictive coding framework that informs the 

structure of the HER model.   

Additional evidence regarding the interaction of mPFC 

and dlPFC comes from studies of patients with dlPFC 

lesions 
36

.  In a delayed match to sample task, an Error 

Related Negativity (ERN) is observed in subjects with 

lesions to dlPFC for both correct and incorrect trials 

(Fig. 5B, left column).  The HER model (Simulation 6) 

explains this as the inability to maintain relevant 

information across a delay period in order to modulate 

predictions regarding likely outcomes (Fig 5B, right 

column).  Without this additional contextual 

information available in the model, both correct and 

incorrect outcomes are surprising, resulting in 

increased mPFC activity in a lesioned version of the 

HER model on both types of trials. 

Application to Machine Learning 

Recent advances have led to machine learning 

algorithms, such as deep learning, capable of 

performing complex tasks at or above human level.  

While the HER model has previously been shown to 

learn tasks used to investigate human cognition at a 

level comparable to deep learning algorithms 
28

, a 

stronger test involves examining the model's 

performance on typical machine learning tasks.  We 

therefore simulated a slightly modified version of the 

HER model (Simulation 7, See Online Methods) on a 

suite of tasks previously used as benchmarks for 

investigating the performance of machine learning 

algorithms
37,38

.  The results of these simulations (Table 

1) are notable for two reasons.  First, while no 

particular effort was made to optimize model 

parameters, the HER framework compares favorably 

to several out-of-the-box ML algorithms on a number 

of benchmark tasks.  Additionally, the HER model 

performs these tasks using the same general 

architecture as used in our simulations of human 

behavior and neural activity, indicating that the HER 

model provides a general framework that may scale 

well and be applied to a wide range of problems with 

little or no modification.   

Additional simulations 

The results reported above are by no means 

exhaustive, but rather were selected to highlight how 

the HER model is able to account for patterns of 

activity observed in dlPFC and mPFC.  Simulations of 

additional tasks are included in supplementary online 

materials.  The results of these additional simulations 

show how the HER model simulates a variety of other 

fMRI findings.  These serve to emphasize the main 
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Table 1. The HER model performs comparably to several out-of-the-box machine learning algorithms using the data sets described by Meyer et al., 

200337.  Dark grey cells reflect those tasks in which the HER model equaled or exceeded the best classifier tested in that paper for various definitions of 

error (see Online Methods).  In particular, the model tends to perform well on data that are principally categorical in nature, while performing less well 

on metric data sets.  This is consistent with the design emphasis of the HER model on learning rules and task-sets required for performing typical 

cognitive tasks. 

point that the HER model of PFC, as an 

instance of predictive coding formulations, 

is able to autonomously learn complex tasks 

in a manner that reproduces patterns of 

behavior, neuropsychological effects, and 

neural activity as measured by fMRI, EEG, 

single unit neurophysiology observed in 

empirical investigation. 

Discussion 

In this paper, we have deployed a new 

computational neural model, consistent with 

known anatomy 
29,30

, to simulate a range of 

effects observed in studies of mPFC and 

dlPFC.  Simulations demonstrate that the 

HER model captures various dlPFC effects, 

as well as how dlPFC and mPFC interact to 

support the acquisition and execution of 

sophisticated cognitive tasks.  Because the 

HER model extends our previous PRO 

model of ACC/mPFC 
7
, it can also 

comprehensively account for mPFC activity 

in simple cognitive control experiments as 

previously reported 
7,25

.  These results, taken 

as a whole, make the HER model among the 

most comprehensive models of PFC to date 

and provide an existence proof that simple 

predictive coding can account for a large 

corpus of PFC empirical findings.  

The HER model provides a complementary 

perspective on existing models.  Donoso et 

al. 
39

 cast the PFC as searching for, 

evaluating, selecting, and discarding task 
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strategies to maximize reward.  In the HER 

model, task strategies are represented 

automatically as hierarchical self-organized 

abstract representations of task context, 

which serve as a working memory basis for 

guiding behavior.  Strategies are discarded 

from working memory when they no longer 

provide useful predictive information about 

subsequent events, or when contingencies 

change such that predictive information in 

working memory is repurposed by retraining 

its connections to modulate lower level 

predictions differently.  The HER model can 

switch strategies flexibly as task cues 

change, and it can learn new responses when 

environmental contingencies changes.  As 

with other neural models that include PFC 
40

,  as well as models of hierarchical 

behavior 
4,41

, the HER model captures key 

aspects of neural anatomy, neurophysiology,  

and behavior during performance of 

cognitive tasks. The HER model further 

addresses the question of how these tasks 

might be learned in the first place, as well as 

how the components of a task are 

represented as expected prediction errors.  

The HER model thus fills a critical void left 

by models concerned with how coherent 

behaviors are organized based on pre-

existing representations without specifying 

the nature of those representations or how 

those representations were acquired 
4,40,41

. 

More generally, the HER model 

demonstrates how the predictive coding 

framework may be extended into prefrontal 

cortex in order to account for sophisticated 

cognitive behaviors.  Each hierarchical level 

of the HER model is a relatively 

straightforward RL learner based on 

previous models of mPFC 
7,25

, and 

augmented with a WM component able to 

maintain representations over periods of 

time.  It is notable that the model is not only 

able to replicate effects observed throughout 

PFC during the performance of complex 

tasks, it learns these tasks autonomously in a 

manner comparable to human performance 
28

, despite its simple motif structure.   
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Methods 

The Hierarchical Error Representation 

Model 

A detailed description of the HER model is 

provided in our previous publication
1
.  Here 

we provide a summary of the components of 

the HER model and how they interact.  The 

HER model is composed of multiple levels, 

each instantiating a relatively simple RL 

learner based on the PRO model of mPFC
2
, 

and endowed with a working memory gating 

mechanism that governs whether a stimulus 

is stored in WM or not.  Levels interact with 

one another through top-down and bottom-

up pathways. 

Reinforcement Learning 

The output of each level is determined by 

the item currently stored in WM at each 

level and the strength of weights associated 

with that item: 

        (1) 

where p is a vector of predicted outcomes, r 

is the item currently stored in WM, and W is 

a weight matrix associating r and p.  Errors 

at each level are computed as the difference 

between observed and predicted outcomes: 

              (2) 

where o is the observed outcome and a is a 

filter set to 0 for unselected actions and 1 

everywhere else, effectively preventing 

learning about unselected actions in the 

model.  Weights are updated according to: 

               
     (3) 

where   is a learning rate parameter and t 

indicates the current model iteration. 

 

Working Memory Gating 

The WM gating mechanism, inspired by 

models of basal ganglia
3
 determines whether 

a currently presented stimulus will be stored 

in WM at each level.  This determination is 

made based on the learned, relative value of 

encoding a new stimulus in WM vs. 

maintaining the current contents of WM: 

                      (4) 

Here s indicates a vector of external 

stimulus features (distinct from internal 

representations), X is a weight matrix 

associating stimulus features with WM 

representations, and v is the value of storing 

a particular feature in s  as a representation 

in working memory r.  Weights X are 

trained through backpropagation of the error 

term calculated in eq. 2: 

             
         

     (5) 

While error backpropagation of error is 

biologically implausible, our intent was not 

to develop a neurally faithful model of basal 

ganglia, and so backpropagation was 

selected for computational convenience.  

Nevertheless,  in our previous work, we 

demonstrate how a more realistic model of 

WM gating using scalar reinforcement 

signals may be implemented in a manner 

consistent with previous proposals 
3–5

, so 

that the HER model functions as well while 

maintaining biological plausibility.  The 

value of storing stimulus features in WM is 

passed through a softmax function in order 
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to determine whether a stimulus will be 

stored in WM or the current contents of WM 

will be maintained. 

                            
        

            
   

 

(6) 

  is a gain parameter governing the 

probability of selecting the highest value in 

v. 

 

Bottom-Up and Top-Down Pathways 

The RL algorithm and WM gating 

mechanisms operate at each level of the 

HER model.  Layers interact with one 

another through bottom-up and top-down 

pathways based on Predictive Coding 

formulations.  In the bottom-up pathway, 

errors reported by a given hierarchical level 

(eq. 2) are passed to a superior hierarchical 

level.  In the HER model, the error reported 

by a level, conjoined with active WM 

representations at that level, acts as the 

outcome for the next higher level:  

       (7) 

Here O is the matrix computed from the 

outer product of the error and WM 

representation vectors.  For computational 

convenience, this is reshaped into a vector o.  

Error computation and learning is identical 

at each level (eqs 2 & 3), with the exception 

that the outcome term at each level above 

the 1st is derived from eq. 7. 

The purpose of training higher-order levels 

in the hierarchy using the outcome term in 

eq. 7 is to derive predictions regarding the 

likely errors that can be expected at lower-

order levels.  Predictions at each level are 

calculated as in eq. 1; however, at higher-

order levels, these predictions reflect 

expected errors reported by lower levels.  

Since knowledge of likely errors can be 

useful in avoiding those errors, the 

predictions generated at each level can be 

used to modulate the predictions generated 

by inferior levels.  For levels above the 1st, 

the prediction p is reshaped into a matrix P 

of the same dimensionality as the weight 

matrix W of the immediately inferior level.  

P and W are then added to one another, 

resulting in a modulated weight matrix used 

to compute a prediction of likely outcomes 

that incorporates higher-order information: 

               (8) 

 where m is the modulated prediction. 

Responses 

At the base level, model activity is translated 

into response probabilities.  As in the PRO 

model
2
, the HER model learns predictions of 

response-outcome associations.  Individual 

responses may be associated with either 

correct or error feedback.  In order to 

generate a response, the learned likelihood 

of receiving correct feedback is compared to 

the learned likelihood of receiving error 

feedback for each candidate response:  

                              

                   (9) 

which is then passed through a softmax 

function to determine the probability of the 

model making each response:  

          
      

                (10) 
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where   is a gain parameter.   

Sources of Activity in Prefrontal Cortex 

A key concern in relating computational 

neural models to empirical data, especially 

with regard to indirect measures of neural 

activity such as EEG and BOLD signals, is 

in selecting an appropriate measure of model 

activity.  In the PRO model
6
, ACC/mPFC 

activity was interpreted as negative surprise 

– the ongoing difference of predicted 

outcomes minus actual observations.  In the 

HER model, the role of mPFC is identical to 

its function in the PRO model, and thus the 

measure of model activity for mPFC 

remains the same: 

                           

                      (11) 

In comparison, dlPFC is thought to have 

multiple underlying mechanisms that 

contribute to its temporal activity profile.  

First, and central to its role in working 

memory, sustained dlPFC activity is 

observed during maintenance periods  of a 

task when one or more items must be 

remembered in order to inform future 

behavioral responses.  Second, the process 

of encoding an item in WM corresponds to a 

transient increase in BOLD activity 

following the presentation of an item to be 

maintained in WM.  Finally, the level of 

sustained activity observed in dlPFC is 

additionally modulated by higher order 

information.   

The role of dlPFC in the HER model is to 

learn to represent task stimuli that reliably 

precede prediction error signals generated 

by ACC.  That is, dlPFC learns the expected 

error given a stimulus S: 

                                    

(12) 

Using Error Prediction as the unit of 

currency, then, we model the three sources 

of dlPFC activity described above as 

follows.  First, sustained dlPFC activity 

related to WM maintenance is calculated as 

the absolute value of active error 

predictions: 

                                       

(13) 

Second, transient activity related to updating 

the contents of WM is modeled as the 

absolute difference on successive model 

iterations, t-1 and t, of active error 

predictions:  

      
      

                                              

 

 

     (14)  

Finally, the influence of top-down 

information on sustained activity is modeled 

as the difference between the Error 

Prediction for a given level, and the Error 

Prediction at that level if there were no top-

down modulation of error predictions:  

                

                               

                                       

(15) 
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While it is likely that these three sources 

contribute to dlPFC activity in differing 

measures, we remain agnostic as to their 

relative contributions.  Therefore, in order to 

compute an overall measure of dlPFC 

activity in the model, eqs 13-15 are simply 

summed together: 

                       

                            (16) 

Using eq. 16 as our measure of dlPFC 

activity, we show that the HER model is 

able to reproduce patterns of activity 

observed in hierarchically organized regions 

of dlPFC for tasks involving significant WM 

demand.  Moreover, we show that the 

proposed role of dlPFC in learning and 

maintaining representations of error is 

sufficient to reproduce data from single-unit 

and MVPA studies investigating the nature 

of representations in dlPFC.  Finally, using 

eq. 11 as our measure of mPFC activity, the 

HER model is able to capture the joint 

pattern of activity observed in mPFC and 

dlPFC data. 

 

Simulations 

In order to ensure that the effects reported 

were not due to a specific parameterization 

tailored to each task, all simulations were 

conducted using a common parameter set 

(table 1) unless otherwise noted below.  In 

previous work
1
 we examined the influence 

of alternative parameterizations on the 

development of the HER model.  Parameters 

for the current simulations were chosen 

based on this prior exploration in order to 

ensure that the model was able to learn each 

task.   

Simulation 1  : Koechlin et al (2003). 

We simulated the HER model on the 

behavioral task described in Koechlin 

(2003)
7
.  For the sake of brevity, we refer 

the reader to the supplementary online 

material associated with that paper for a 

detailed description.  Briefly, subjects 

participated in two experiments, a "motor" 

experiment and a "task" experiment.  In each 

experiment, the subjects experienced blocks 

of 12 sequentially presented stimuli whose 

visual appearance(color) indicated which 

response they were to make (in the case of 

the motor experiment) or which task 

(vowel/consonant or upper/lower case 

discrimination) they were to perform.  Each 

block was preceded by a context cue which 

indicated the mapping between stimulus 

color and the appropriate response or task.  

We simulated the motor and task conditions 

separately.  For the "motor" experiment, 

inputs to the model were the 4 context cues 

associated with each condition, and 6 colors 

that were observed by the subjects during 

the experiment. 2 responses were possible 

(left or right), and feedback to the model 

indicated either correct or incorrect 

performance.  For the "task" experiment, 

model inputs were the 4 context cues 

associated with each condition, 6 colors 

observed during the experiment, and 4 cues 

indicating whether the stimulus was a vowel 

or consonant, or upper or lower case.   4 

responses could be generated by the model, 

indicating upper or lower case or vowel or 

consonant responses.  Feedback to the 

model indicated correct or incorrect 
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performance.  The model performed each 

condition for 4500 blocks (1 block = 12 

trials). 

 

Simulation 2: 1-2AX CPT 

The 1-2AX CPT
3,8

 is a hierarchically 

organized task in which a subject's response 

to a target cue ('X' or 'Y') is governed by 

both the cue that immediately preceded it 

('A' or 'B'), as well as a "context" cue ('1' or 

'2') that indicates which target sequence 

('AX' or 'BY') is valid at any given time.  

Sequences of stimuli may be thought of as 

being organized in 'inner' and 'outer' loops, 

where inner loops are composed of 2-

stimulus sequences with 'A' or 'B' followed 

by 'X' or 'Y', and outer loops are the 

sequence of inner loops followed by the 

presentation of a context cue.  We simulated 

the HER model on a version of the 1-2AX 

task as described in O'Reilly & Frank 

(2006)
3
 in which each outer loop consisted 

of 1-4 inner loops, and the probability of 

observing a valid sequence was 0.25.  There 

were 8 inputs to the model, corresponding to 

the 6 relevant cues in the task, as well as 2 

distractor cues that had no task relevance.  

At each cue, the model made a response to 

indicate whether the current stimulus was a 

target or not.  In order to perform the task 

correctly, target responses should be made 

only at the presentation of a valid target cue; 

all other cues should result in non-target 

responses.  Feedback to the model indicated 

correct or incorrect performance.  We 

simulated the 1-2AX task on approximately 

24,000 individual cue presentations as 

described in previous work
1
.  The activity of 

each prediction unit at each higher level was 

recorded on the presentation of a potential 

target cue ('X' or 'Y') to be used as input to a 

2 level feedforward neural network with 10 

hidden units.  The neural network was 

trained on the sequence of high ('1' & '2') 

and low ('A' & 'B') level context cues using 

the MATLAB 
9
 neural networks toolbox. 

Simulation 3:Miller, Erickson, and 

Desimone (1996) 

The model was simulated for 6000 trials on 

a simple delayed match-to-sample (DMTS) 

task.  On each trial, a neutral stimulus 

indicating the beginning of a trial was 

presented, followed by one of two sample 

stimuli, and ending with one of two target 

stimuli.  There were a total of 3 inputs to the 

model, 1 indicating the trial onset, and 2 for 

the task-relevant stimuli.  Note that sample 

stimuli and target stimuli used the same 

representation.  The model could make two 

responses indicating either a match or non-

match between the sample and target 

stimuli, and each response resulted in either 

correct or incorrect feedback, for a total of 4 

outcome units. 

 

Simulation 4:  Markant & Gureckis (2012) 

The model was simulated on a ternary 

probability estimation task for 5000 trials in 

three different learning conditions.   Task 

stimuli were modeled as compound stimuli 

composed of two feature dimensions, and 

each dimension had three possible values as 

described in previous work
1
.  Each unique 

conjunction of feature dimension values was 

associated with one of three possible 

responses such that each feature of each 
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dimension was associated with each of the 

three possible responses in only one 

instance.  The learning rate of the model was 

manipulated across the three learning 

conditions as follows: in the no learning 

condition, the learning rate for all 

hierarchical levels of the model was set to 0, 

and thus no learning occurred during the 

experiment.  In a second learning condition, 

learning was enabled only for the lowest 

hierarchical level and set to the parameter 

values reported in table 1.  Finally, in the 

third learning condition, learning was 

enabled for all levels, and set to the 

parameter values in table 1. 

 

Simulation 5: Kim et al. (2011) 

In Kim et al. (2011)
10

, the authors attempted 

to identify brain activity related to set 

switches at various levels of abstraction.  

Subjects were presented with a colored (red 

or green) box situated in a single cell of a 

2X2 grid.  The color of the box indicated a 

cognitive set of two numbers that the box 

might indicate; a red box, for instance, may 

indicate either 5 or 7, depending on the box's 

horizontal position (left/right columns).  A 

red box appearing in the left column may 

indicate a 5, while a red box in the right 

column indicates a 7.  The vertical position 

of the box (upper/lower rows) indicated 

which of two operations (greater than/less 

than) the subject should perform in 

comparing the number indicated by the 

position and color of the box with a plain 

digit presented alongside the box.  Changes 

in the position and color of the box indicate 

set switches at various levels of abstraction: 

changes in the left/right position indicate 

stimulus switches, changes in the 

upper/lower position indicate switches in 

responses, and changes in box color indicate 

cognitive set switches.  The model was 

simulated on 20,000 trials, and activity was 

calculated from the final 2000 trials.  A total 

of 6 inputs were modeled, reflecting the 2 

colors, 2 horizontal positions, and 2 vertical 

positions possible in the task. 

 

Simulation 6: Gehring & Knight (2000) 

The model was simulated for 6000 trials on 

a simple delayed match-to-sample (DMTS) 

task.  On each trial, a neutral stimulus 

indicating the beginning of a trial was 

presented, followed by one of two sample 

stimuli, and ending with one of two target 

stimuli.  There were a total of 3 inputs to the 

model, 1 indicating the trial onset, and 2 for 

the task-relevant stimuli.  Note that sample 

stimuli and target stimuli used the same 

representation.  The model could make two 

responses indicating either a match or 

nonmatch between the sample and target 

stimuli, and each response resulted in either 

correct or incorrect feedback, for a total of 4 

outcome units.  Two conditions were 

simulated: a control condition in which all 

pathways were intact, and a lesion condition 

in which the value of P' in Eq. 8 was set to 

0, effectively removing any top-down 

influence between levels.  Activity was 

recorded from all 6000 trials. 

 

Simulation 7: Machine Learning 

In order to assess the suitability of the HER 

model for typical machine learning 
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applications, the model was modified as 

follows.  First, the WM gating mechanism 

was bypassed, and the contents of WM at 

each level were set to the input the array of 

features appropriate to each data set.  This 

deviates from the HER model insofar as, 

under the machine learning simulations, 

multiple values (instead of a single value) 

could be stored in WM on a single trial.  

Additionally, the values of WM 

representations were continuous numbers 

rather than binary as in our simulations of 

neural data.  The output of the model was 

passed through a sigmoid activation function 

rather than using a softmax function to 

determine the models output.  The model 

was simulated on a range of tasks reported 

in Meyer et al. (2003)
11

 using the data sets 

described in that paper and consisting of 100 

training and test sets under a 10 times 

repeated 10-fold cross validation regime.  

For each task, the model was trained on each 

training set for 100 epochs (1 epoch = 1 pass 

through the training data), and validation on 

the test set was performed after every 

second epoch.  Model performance assessed 

using the percent error calculated in two 

ways: first as the minimum of the 

mean/median of the error for 100 epochs (1 

pass through training data) for all 100 

training sets.   Error was also calculated as 

the mean/median of the minimum error over 

100 training epochs for all 100 training sets.  

This second approach treats the test data for 

each training set as a validation set, and thus 

limits how well the network may generalize 

to novel data. 

 

   Value for: 

Parameter Description Equation Layer 1 Layer 2 Layer 3 

  Learning Rate 3 0.1 0.02 0.02 

  
Eligibility Trace 

Decay 
5 0.3 0.5 0.9 

  

Working  

Memory 

Update Gain 

6 12 12 12 

  
Response Selection 

Temperature 
10 12 N/A N/A 

Table 1: Parameter set for all simulations 
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