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Abstract

Background: Transcriptomics, metabolomics, metagenomics, and other various
next-generation sequencing (-omics) fields are known for their production of large
datasets, especially across single-cell sequencing studies. Visualizing such big data
has posed technical challenges in biology, both in terms of available
computational resources as well as programming acumen. Since heatmaps are
used to depict high-dimensional numerical data as a colored grid of cells,
efficiency and speed have often proven to be critical considerations in the process
of successfully converting data into graphics. For example, rendering interactive
heatmaps from large input datasets (e.g., 100k+ rows) has been computationally
infeasible on both desktop computers and web browsers. In addition to memory
requirements, programming skills and knowledge have frequently been
barriers-to-entry for creating highly customizable heatmaps.

Results: We propose shinyheatmap: an advanced user-friendly heatmap software
suite capable of efficiently creating highly customizable static and interactive
biological heatmaps in a web browser. shinyheatmap is a low memory footprint
program, making it particularly well-suited for the interactive visualization of
extremely large datasets that cannot typically be computed in-memory due to
size restrictions. Also, shinyheatmap features a built-in high performance web
plug-in, fastheatmap, for rapidly plotting interactive heatmaps of datasets as
large as 105 – 107 rows within seconds, effectively shattering previous
performance benchmarks of heatmap rendering speed.

Conclusions: shinyheatmap is hosted online as a freely available web server with
an intuitive graphical user interface: http://shinyheatmap.com. The methods
are implemented in R, and are available as part of the shinyheatmap project at:
https://github.com/Bohdan-Khomtchouk/shinyheatmap. Users can access
fastheatmap directly from within the shinyheatmap web interface, and all source
code has been made publicly available on Github:
https://github.com/Bohdan-Khomtchouk/fastheatmap.

Introduction
Heatmap software can be generally classified into two categories: static heatmap

software [30, 29, 49, 25, 14, 7, 8, 16, 19] and interactive heatmap software

[32, 4, 18, 51, 23, 34, 48, 1, 17, 9, 52]. Static heatmaps are pictorially frozen snap-

shots of genomic activity displayed as colored images generated from the underlying

data. Interactive heatmaps are dynamic palettes that allow users to zoom in and

out of the contents of a heatmap to investigate a specific region, cluster, or even

single gene while, at the same time, being able to hover the mouse pointer over any

specific row and column entry in order to glean information about an individual
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cell’s contents (e.g., gene name, expression level, and column name). Interactive

heatmaps are especially important for visualizing large gene expression datasets

wherein individual gene labels eventually become unreadable due to text overlap, a

common drawback seen in static heatmaps of large input data matrices. As such,

interactive heatmaps are popular for examining the entire landscape of a large gene

expression dataset while, at the same time, allowing users to zoom into specific

sectors of the heatmap to visualize them in a magnified manner (i.e., at various

resolution levels). Currently, there is a pressing need for modern libraries that are

able to visually scale millions of data points at various resolutions [43]. In general,

new software infrastructure that facilitates interactive navigation and smooth scal-

ing at different resolution levels is necessary for on-the-fly calculations of both the

frontend and backend algorithms in big data visualization software [42].

Even though static heatmaps are still the preferred type of publication figure in

many studies, interactive heatmaps are becoming increasingly adopted by the sci-

entific community to emphasize and visualize specific sectors of a dataset, where

individual numerical values are rendered as user-specified colors. As a whole, the

concept of interactivity is gradually shifting the heatmap visualization field into

data analytics territory, for example, by synergizing interactive heatmap software

with integrated statistical and genomic analysis suites such as PCA, differential ex-

pression, gene ontology, and network analysis [22, 17]. However, currently existing

interactive heatmap software are limited by implicit restrictions on file input size,

which functionally constrains their range of utility. For example, in Clustviz [22],

which employs the pheatmap R package [19] for heatmap generation, input datasets

larger than 1000 rows are discouraged [20] for performance reasons. Similarly, in Mi-

croScope, the user is prompted to perform differential expression analysis on the

input dataset first, thereby shrinking the number of rows rendered in the interac-

tive heatmap to encompass only statistically significant genes [17]. In general, the

standard way of thinking has been to avoid the production of big heatmaps due

to a combination of various factors such as poor readability, as static heatmaps

are not zoomable; computational infeasibility, since large interactive heatmaps re-

quire supercomputer-level memory resources to perform efficient, lag-free zooming

and panning [36, 37, 38, 39, 40, 41, 45]; and unclear interpretation, since large

heatmaps contain so much information that the standard recommended approach

has been to preemptively subset the input data matrix into a smaller size [3].

Nevertheless, NGS-driven research studies often produce datasets on the order of

104 rows (e.g., transcriptome studies such as the HTA 2.0 array [35] that have up

to 400,000 rows, each representing individual exons). Likewise, single-cell RNA-seq

studies often produce datasets ranging from several thousand to several hundred

thousand cells [53, 54], posing significant computational challenges to efficient data

visualization. Currently, interactively visualizing such big data is not possible using

existing state-of-the-art methodologies, despite existing efforts in this direction [12,

13]. Unlocking the computational ability to visualize interactive heatmaps on such

unprecedented size scales would allow researchers to investigate high-dimensional

numerical data as a colored grid of cells that is easily zoomable to any desired

resolution, thereby aiding the exploratory data analysis process.
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With the advent of increasingly sophisticated interactive heatmap software and

the rise of big data coupled with a growing community interest to examine it inter-

actively, there has arisen an unmet and pressing need to address the computational

limitations that hinder the production of large, interactive heatmaps. Examining

such heatmaps would be valuable for visualizing the landscape of both global gene

expression patterns as well as individual genes. Motivated to address these objec-

tives, we propose an ultra fast and low memory user-friendly heatmap software suite

capable of efficiently creating highly customizable static and interactive heatmaps

in a web browser.

Materials and Methods
shinyheatmap is hosted online as an R Shiny web server application. shinyheatmap

may also be run locally from within R Studio, as shown here: https://github.

com/Bohdan-Khomtchouk/shinyheatmap. shinyheatmap leverages the cumulative

utility of R’s heatmaply [12], shiny [5], data.table [10], and gplots [50] libraries to

create a cohesive web browser-based software experience requiring absolutely no

programming experience from the user, or even the need to download R on a local

computer. This kind of user-friendliness is geared towards the broader biological

community, but will also appeal to the bioinformatics and computational biology

communities. In contrast to most existing state-of-the-art heatmap software, shiny-

heatmap provides users with an extensive array of user-friendly hierarchical cluster-

ing methods, both in the form of multiple distance metrics as well as various linkage

algorithms. This is especially useful for exploratory data analysis, particularly when

the underlying data structure is unknown [31]. Since the choice of distance measure

and linkage algorithm will directly influence the hierarchical clustering results, it is

recommended to try different hierarchical clustering settings during analysis [31].

Agglomerative hierarchical clustering algorithms and their properties are described

in detail at [27, 28, 44, 47, 15].

For the static heatmap generation, shinyheatmap employs the heatmap.2 function

of the gplots library. For the interactive heatmap generation, shinyheatmap employs

the heatmaply R package, which directly calls the plotly.js engine, in order to create

fast, interactive heatmaps from large input datasets. The heatmaply R package is a

descendent of the d3heatmap R package, which successfully creates advanced inter-

active heatmaps but is incapable of handling large inputs (e.g., 2000+ rows) due to

memory considerations. As such, heatmaply constitutes a much-needed performance

upgrade to d3heatmap, one that is made possible by the plotly R package [33], which

itself relies on the sophisticated and complex plotly.js engine [24]. Therefore, it is

the technical innovations of the plotly.js source code that make drawing extremely

large heatmaps both a fast and efficient process. However, heatmaply also adds

certain features not present in either the plotly.js engine nor the plotly R package,

namely the ability to perform advanced hierarchical clustering and dendrogram-side

zooming.

Despite these advantages, heatmaply is inadequate for plotting large datasets

beyond a certain size limit, even with computationally expensive operations like

hierarchical clustering disabled; for instance in certain cases, simple input matrices

as small as 5000×5 may pose users with severe efficiency problems during heatmap
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rendering and zooming, even with no clustering present [13]. Due to this limitation,

we developed a high performance web plug-in to shinyheatmap, called fastheatmap

[11], which can rapidly plot interactive heatmaps of datasets as large as 105 – 107

rows within seconds directly in a web browser. Zooming in and out of such ex-

tremely large heatmaps is achievable in milliseconds, in contrast to d3heatmap or

heatmaply, which takes minutes or even hours, if it is possible at all (due to mem-

ory limitations). This constitutes an unprecedented performance benchmark that

dominantly positions shinyheatmap and its high performance computing server,

fastheatmap, at the leading forefront of big data genomics heatmap visualization

technology. In fact, to the best of our knowledge, the shinyheatmap/fastheatmap

duo is the first big data software to appear on the biological heatmap visualization

scene. All source code from the fastheatmap project is made publicly available at:

https://github.com/Bohdan-Khomtchouk/fastheatmap.

Results
To use shinyheatmap, input data must be in the form of a matrix of integer values.

The value in the i-th row and the j-th column of the matrix denotes how many

reads (or fragments, for paired-end RNA-seq) have been unambiguously assigned to

gene i in sample j [21]. Analogously, for other types of assays, the rows of the ma-

trix might correspond e.g., to binding regions (with ChIP-seq), species of bacteria

(with metagenomic datasets), or peptide sequences (with quantitative mass spec-

trometry). For detailed usage considerations, shinyheatmap provides a convenient

Instructions tab panel upon login.

Upon uploading the input dataset, both static and interactive heatmaps are auto-

matically created, each in their own respective tab panel. The user can then proceed

to customize the static heatmap through a suite of available parameter settings lo-

cated in the sidebar panel (Figure 1). For example, hierarchical clustering, color

schemes, scaling, color keys, trace, and font size can all be set to the specifications

of the user. In addition, a download button is provided for users to save publication

quality heatmap figures. Likewise, the user can customize the interactive heatmap

through its own respective hoverable toolbar panel located at the upper right corner

of the heatmap (Figure 2). This toolbar provides extensive download, zoom, pan,

lasso and box select, autoscale, reset, and hover features for interacting with the

heatmap. Users with large input datasets will be directed by shinyheatmap to its

fastheatmap plug-in by way of a user-friendly message that automatically recognizes

the dimensions of the input data matrix (Figure 3). Performance benchmarks indi-

cate (Figure 4) that fastheatmap significantly outperforms the latest state-of-the-art

interactive heatmap software by several orders of magnitude. All benchmarks were

tested on a 64-bit Windows 10 Pro desktop machine with 16.0 GB of RAM and an

Intel(R) Core(TM) i7-5820K CPU at 3.30 GHz.

Conclusions
We provide access to a user-friendly web application designed to quickly and ef-

ficiently create static and interactive heatmaps within the R programming envi-

ronment, without any prerequisite programming skills required of the user. Our

software tool aims to enrich the genomic data exploration experience by providing

a variety of customization options to investigate large input datasets.
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Figures

Figure 1 shinyheatmap static heatmap. shinyheatmap UI showcasing the visualization of a static
heatmap generated from a large input dataset. Parameters such as hierarchical clustering
(including options for distance metrics and linkage algorithms), color schemes, scaling, color keys,
trace, and font size can all be set by the user. Progress bars appear during the heatmap rendering
process to alert the user if any technical issues may arise. Sample input files of various sizes are
provided as part of the web application, whose source code can be viewed on Github.

Figure 2 shinyheatmap interactive heatmap. shinyheatmap UI showcasing the visualization of an
interactive heatmap generated from a large input dataset. An embedded panel that appears top
right on-hover provides extensive download, zoom, pan, lasso and box select, autoscale, reset, and
other features for interacting with the heatmap.
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Figure 3 fastheatmap & shinyheatmap are linked together. A) shinyheatmap contains an
auto-detector that detects the size of a user’s input matrix and, if the input matrix is too large,
the user will be provided with a direct link to access shinyheatmap’s high performance computing
server: fastheatmap. B) fastheatmap UI upon clicking on the URL link shown in Panel A.

Figure 4 shinyheatmap performance benchmarks. shinyheatmap’s HPC plug-in, fastheatmap,
performs > 100000 faster than other state-of-the-art interactive heatmap software. “Number of
Rows” denotes the number of rows in the input file, “inf” (infinity) denotes a system crash due to
memory overload, “s” denotes seconds, “min” denotes minutes, and “ms” denotes milliseconds.
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