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Abstract  

Orthology assignment is ideally suited for functional inference. However, because predicting 

orthology is computationally intensive at large scale, and most pipelines relatively inaccessible, 

less precise homology-based functional transfer is still the default for (meta-)genome annotation. 

We therefore developed eggNOG-mapper, a tool for functional annotation of large sets of 

sequences based on fast orthology assignments using precomputed clusters and phylogenies from 

eggNOG. To validate our method, we benchmarked Gene Ontology predictions against two widely 

used homology-based approaches: BLAST and InterProScan. Compared to BLAST, eggNOG-

mapper reduced by 7% the rate of false positive assignments, and increased by 19% the ratio of 

curated terms recovered over all terms assigned per protein. Compared to InterProScan, eggNOG-

mapper achieved similar proteome coverage and precision, while predicting on average 32 more 

terms per protein and increasing by 26% the rate of curated terms recovered over total term 

assignments per protein. Through strict orthology assignments, eggNOG-mapper further renders 

more specific annotations than possible from domain similarity only (e.g. predicting gene family 

names). eggNOG-mapper runs ~15x than BLAST and at least 2.5x faster than InterProScan. The 

tool is available standalone or as an online service at http://eggnog-mapper.embl.de.  

 

 

Introduction 

The identification of orthologous genes, originating from speciation rather than duplication events 

(Fitch 1970), is a long-standing evolutionary problem with deep implications for the functional 

characterization of novel genes. The ‘Ortholog Conjecture’ states that ancestral functions are more 
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likely to be retained between orthologous genes than between paralogs (Tatusov et al. 1997). 

Therefore, information gained on the role of a gene in a model organism is potentially transferrable 

to its orthologs in less experimentally tractable species. While this motivation remains central 

(Gabaldón and Koonin 2013), its application is frequently left up to users (e.g. genome annotators) 

in the form of ad hoc scripted solutions, often based on more general homology searches rather 

than orthology assignments. Most tools in use for functional annotation of newly sequenced 

genomes apply BLAST (Blast2GO (Götz et al. 2008); RAST (Overbeek et al. 2014)) or HMMER 

searches (Finn et al. 2014; Jones et al. 2014) to transfer functional terms from homologous 

sequences.  

 

Building on recent improvements made to the eggNOG orthology resource (Huerta-Cepas et al. 

2016), we have created eggNOG-mapper, an application intended for fast functional annotation of 

novel sequences using precomputed sequence profiles and orthology assignments. The tool is 

designed for the annotation of large collections of novel sequences, typically targeting translated 

gene-coding regions from (meta-)genome and transcriptome data.  

 

 

New Approaches 

The annotation algorithms in eggNOG-mapper are implemented as follows:  

 

1) Sequence Mapping (Figure 1A). For each query sequence, HMMER 3 (Eddy 2011) is first used 

to search for significant matches in the precomputed collection of Hidden Markov Models (HMM) 

available from the eggNOG database (Huerta-Cepas et al. 2016). HMM matches, each associated 

to a functionally annotated eggNOG Orthologous Group (OG), provide a first (more general) layer 

of functional annotation. Next, each query protein is searched against the set of eggNOG proteins 

represented by the best matching HMM using the phmmer tool. Finally, the best matching 

sequence for each query is stored as the query’s seed ortholog and used to retrieve other 

orthologs (see step 2 below). At present, eggNOG HMM collection comprises sequence profiles of 

1,911,745 Orthologous Groups (OGs), spanning 1678 bacteria, 115 archaea, 238 eukaryotes and 

352 viruses. 104 sub-databases are available that allow restricting searches to narrower taxonomic 

groups, thereby speeding up computations and enforcing annotations to be exclusively transferred 

from orthologs in a particular set of species. Alternatively, a faster mapping approach can be 

selected that uses DIAMOND (Buchfink et al. 2015) to search for the best seed ortholog of each 

query directly among all eggNOG proteins. This option is considerably faster than the HMM 

approach, but should be considered less sensitive (e.g. HMMER sensitivity is comparable to PSI-

BLAST (Söding 2005) whereas DIAMOND is comparable to BLAST). Although the use of 

DIAMOND had little impact in the re-annotation of model organisms (see additional benchmarks in 

Supplementary Material), novel sequences coming from organisms without close representatives 
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in the eggNOG taxonomic scope may indeed be overlooked. HMMER searches, however, would 

still allow for functional annotation of distant homologs via HMM matches. 

 

2) Orthology assignment (Figure 1B). For each query, the best matching sequence, which points 

to a protein in eggNOG, is used to retrieve a list of fine-grained orthology assignments from a 

database of pre-analysed eggNOG phylogenetic trees (i.e. excluding evident (in-)paralogs as 

described in (Huerta-Cepas et al. 2007)). Additional filters such as bit-score or E-value thresholds 

can be used at this step in order to avoid inferring functional data for query sequences without 

sufficient homology to any protein in the eggNOG database.  

 

3) Functional Annotation. All functional descriptors available for the retrieved orthologs are 

transferred to the corresponding query proteins. By default, functional transfers are automatically 

restricted to the taxonomically closest orthologs of each query, reducing the risk of false 

assignments from too distant species (Figure 1C). This parameter is automatically adjusted for 

every sequence, without the need of prefixing any taxonomic filter and allowing each query to be 

annotated using the most suitable taxonomic source. Finally, although all orthologs are considered 

by default, users can choose to restrict annotations to those based on one-to-one orthology 

assignments only (Figure 1D, left), thus increasing the reliability of functional transfers at the cost 

of lower annotation coverage (see Supplementary Materials). Functional descriptors are based on 

the most recent eggNOG build, and currently include curated GO terms (Gene Ontology 

Consortium 2015), KEGG pathways (Kanehisa et al. 2014) and COG functional categories 

(Galperin et al. 2015). Moreover, taking advantage of the fine-grained orthology assignments, gene 

family names are predicted for each query.   

 

Accuracy of functional assignments 

 

To test the performance of annotation transfer along orthology relationships, we benchmarked 

eggNOG-mapper GO predictions for the complete proteomes of five functionally well-characterised 

model organisms alongside those produced by two existing approaches. The first is standard 

BLAST homology searches at different E-value thresholds, which is the approach used by tools 

like Blast2GO (Götz et al. 2008) and RAST (Overbeek et al. 2014). The other is the state-of-the-art 

InterProScan 5 pipeline (Jones et al. 2014), which unifies twelve independent databases into a 

manually curated collection of functional models based on sequence profiles. 

 

As a gold standard for functional assignment, we used curated GO terms (evidence code other 

than “IEA” or “ND”) as true positives, and curated taxon exclusion GO data (Deegan née Clark et 

al. 2010) as false positive terms. GO terms not falling into the true or false positive categories were 

considered uncertain assignments. Species were selected on basis of sufficient experimental 
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annotation deposited in public databases, thus ensuring a high coverage of curated GO terms per 

protein. BLAST-based annotation was performed using the same set of reference proteomes and 

functional data as in eggNOG v4.5. In addition, we excluded each target proteome from all 

reference databases when annotating that species, both for eggNOG-mapper and BLAST, and 

disabled the automatic taxonomic adjustment in eggNOG-mapper to not unfairly penalize BLAST. 

This experimental setup allowed us to measure the specific effect of excluding paralogs from the 

functional transfer process. On the other hand, as we could not exclude self-annotations from 

InterProScan, the comparison with eggNOG-mapper was done using default parameters of both 

programs. This setup is not representative of measuring the absolute amount of curated terms 

recovered per protein, as circularity in annotations cannot be prevented without deep alterations to 

the InterProScan code or data. However, it allowed us to evaluate the rates of false and uncertain 

assignments achieved by eggNOG-mapper per protein, as compared with those based on the 

manually curated InterProScan functional models (see Materials and Methods for more details). 

 

Compared with BLAST-based annotations at the most stringent E-value cutoff tested (1E-40), 

eggNOG-mapper increased the proportion of true positives (term assignments validated through 

manual curation) to false positive term assignments per protein by 7% on average (Figure 2, left 

panel). Similarly, the proportion of curated terms recovered over total assignments (which also 

includes terms neither supported by curation nor excluded by taxonomy) improved by 19% using 

eggNOG-mapper (Figure 2, middle panel). BLAST-based annotation covered a larger portion of 

the target proteomes (Figure 2, right panel), but at the cost of considerably lower quality of 

annotations compared to eggNOG-mapper: i.e. the latter annotated 9% more proteins with only 

true positives assignments (Figure 2, blue bars in right panel) and 2% fewer proteins with only 

false or uncertain assignments (Figure 2, orange bars in right panel). These results were 

consistently achieved regardless of the target species or E-value threshold (applied to both BLAST 

and eggNOG-mapper hits to achieve a fair comparison). However, we found even more marked 

differences at lower E-value cutoffs (0.001 and 1E-10 cutoff bars in Figure 2). 

 

Finally, we benchmarked eggNOG-mapper annotations against those produced by InterProScan 

v5.19-58 (Jones et al. 2014). As the sources for GO annotations could not be adjusted in 

InterProScan, circularity in the annotation of reference proteomes could not be avoided. Therefore 

we compared the performance of both tools without any additional cutoff and using default 

parameters. On average, the total number of terms assigned by eggNOG-mapper per protein was 

32 times higher than with InterProScan. These annotations were inferred with a similar ratio of 

false positive assignments (0.3% difference, Figure 3, left panel). In addition, the ratio of true 

positive terms over total assignments was increased by 26% in eggNOG-mapper (Figure 3, middle 

panel). Except for Arabidopsis thaliana, proteome coverage was also improved. eggNOG-mapper 
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rendered 30% more proteins receiving only true assignments (Figure 3, blue bars in right panel), 

and 32% less proteins having false or uncertain terms only (Figure 3, orange bars in right panel).   

 

Computation time was also considerably reduced. Overall, eggNOG-mapper completed 

annotations ~15 times faster than running BLAST and 2.5 faster than InterProScan using the same 

system and the same number of CPU cores. In the context of this benchmark we disabled the 

lookup service in InterProScan, since it would not improve the speed when annotating novel 

proteomes. 

 

Conclusions 

Although orthology is considered one of the most reliable sources for functional transfer, 

computational requirements, as well as the lack of practical tools, have hindered its use for the 

functional annotation of novel genomes. Here, we have presented a novel method and a tool, 

eggNOG-mapper, for easily annotating large sets of proteins based on fast orthology mappings.  

 

We observed clear improvements relative to homology-based annotations using BLAST, 

reinforcing the central idea of orthologs being better functional predictors than paralogs, as well as 

showing how the latter cannot be fully excluded merely by using strict E-value BLAST thresholds. 

On the other hand, eggNOG-mapper achieved the same low rate of false positives as when using 

manually curated InterProScan functional models, while still increasing the amount and quality of 

annotations. Furthermore, eggNOG-mapper runs orders of magnitude faster than a standard 

BLAST-based approach, and at least 2.5 faster than InterProScan, which makes it particularly 

suitable for large-scale annotation projects such as in metagenomics. 

  

eggNOG-mapper is distributed as a standalone package and can be easily integrated into third-

party bioinformatics pipelines. In addition, we provide an online service that facilitates functional 

annotation of novel sequences by casual users (http://eggnog-mapper.embl.de). The tool is 

synchronised with the eggNOG database, ensuring that the annotation sources and taxonomic 

ranges will be kept up-to-date with future eggNOG versions.  

 

 

Material and Methods  

Benchmark data: 

Benchmarking was performed using the proteomes of five model species downloaded from 

eggNOG v.4.5, namely Escherichia coli, Drosophila melanogaster, Saccharomyces cerevisiae, 

Arabidopsis thaliana and Homo sapiens. For all five proteomes, GO terms were retrieved from 

eggNOG version 4.5. GO terms with evidence codes different than IEA or ND were considered 
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curated positive terms. Similarly, any assignment of a term to a protein from a taxon it is excluded 

from (according to taxon exclusion data downloaded in Dec 2015 from the Gene Ontology 

Consortium) was considered a false positive (e.g. nervous system development terms assigned to 

a plant gene). Non-curated terms that are not explicitly listed in the false positive category were 

considered uncertain terms.  

Benchmark setup: BLAST 

BLAST searches were performed using NCBI-BLAST 2.3.0 with an E-value threshold of 0.001, 20 

threads and unlimited number of hits. eggNOG v4.5 was used as target database 

(http://eggnogdb.embl.de/download/eggnog_4.5/eggnog4.proteins.core_periphery.fa.gz). While 

annotating query sequences, self hits were excluded both from BLAST hits and eggNOG-mapper 

hits to avoid circular annotations. No taxonomic restrictions were applied when transferring Gene 

Ontology (GO) terms from BLAST or eggNOG-mapper hits (automatic taxonomic adjustment was 

manually disabled). 

Benchmark setup: InterProScan 

InterProScan-5.19-58.0 (Jones et al. 2014) was run for all reference proteomes with default options 

and enabling GO annotation: “--goterms --iprlookup -pa”. All GO term predictions from all 

InterProScan source categories were used. eggNOG-mapper was executed with default options, 

which include using all types of orthologs and automatic adjustment of taxonomic sources. To 

standardize results and make the two set of predictions fully comparable, each GO term obtained 

from either program was augmented to include all its parent GO terms in the Gene Ontology 

hierarchy. For speed comparisons, both programs were executed enabling the use of 20 CPU 

cores. 

Supplementary Material 

For reproducibility, benchmark scripts and raw data are provided as online supplementary material 

at http://github.com/jhcepas/emapper-benchmark   
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FIGURE 1. eggNOG-mapper workflow 

Schematic representation of the eggNOG-mapper workflow and its different execution modes. A) 

Sequence mapping step showing two available options:  HMM-based searches (left), and 

DIAMOND-based searches (right). For each query, both options lead to the best seed ortholog in 

eggNOG. B) Inference of fine-grained orthologs based on the precomputed eggNOG phylogenies 

associated to the Orthologous Groups (OG) where the seed orthologs are found. C) Fine grained 

orthologs are further filtered based on taxonomic criteria.  Distant orthologs are automatically 

excluded unless manually specified. D) Functional transfer is performed using either one-to-one 

orthologs or all available orthologs. Gene Ontology terms, KEGG pathways, COG functional 

categories and predicted gene names are transferred from orthologs to query.   
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FIGURE 2. BLAST vs eggNOG-mapper 

Comparison of the annotation results for five model species using eggNOG-mapper (brighter 

colours) and BLAST (dimmed colours). Left panel shows the per-protein average proportion of 

true positive GO term assignments (TP, green, supported by manual curation) to false positive 

term assignments (FP, red, derived from taxonomic exclusion criteria). Within each plot, 

consecutive pairs of horizontal bars represent different BLAST E-value cutoffs ranging from 1E-03 

to 1E-40, with sequence matches under this cutoff being excluded from both BLAST and eggNOG-

mapper hits. Middle panel shows the per-protein average number of true positive GO term 

assignments (green), false positive term assignments (red), and assignments of GO terms where 

neither curated evidence nor taxonomic exclusion criteria holds (grey). Next to the plot is shown 

the ratio of true positive term assignments over the total number of assignments (TP ratio). Right 

panel shows the percentage of each proteome that receives annotation, indicating the fraction of 

proteins that were annotated exclusively with curated true positive terms (TP, blue); proteins 

annotated with curated terms but also false or uncertain assignments (purple); and proteins that 

only received false or uncertain assignments (no-TP, orange).    
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FIGURE 3. InterProScan vs eggNOG-mapper.  

Comparison of the annotation results for five model species using eggNOG-mapper (brighter 

colours) and InterProScan (dimmed colours) with default parameters and without further 

restrictions. The left panel shows the per-protein average proportion of true positive GO term 

assignments (TP, green, supported by manual curation) to false positive term assignments (FP, 

red, derived from taxonomic exclusion criteria). Consecutive pairs of horizontal bars represent 

each species in the benchmark. The middle panel shows the per-protein average number of true 

positive GO term assignments (green), false positive term assignments (red), and assignments of 

GO terms where neither curated evidence nor taxonomic exclusion criteria hold (grey). Next to the 

plot is shown the ratio of true positive term assignments over the total number of assignments (TP-

ratio). The right panel shows the percentage of each proteome that receives annotation, indicating 

the fraction of proteins that were annotated exclusively with curated true positive terms (TP, blue); 

proteins annotated with curated terms but also false or uncertain assignments (purple); and 

proteins that only received false or uncertain assignments (no-TP, orange). 
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