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Summary (250 words) 

Language comprehension engages a cortical network of left frontal and temporal regions 
[1-6]. Activity in this network is sensitive to linguistic features such as lexical 
information, syntax and compositional semantics [7-10]. However, this network shows 
virtually no engagement in non-linguistic tasks [11-14] and is therefore language-
selective. In addition, language comprehension engages a second network consisting of 
frontal, parietal, cingulate, and insular regions [15-18]. Activity in this “Multiple Demand 
(MD)” network [19] is sensitive to comprehension difficulty, increasing in the presence 
of e.g. ambiguity [20-26], infrequent words [27-33] and non-local syntactic dependencies 
[34-40]. However, this network similarly scales its activity with cognitive effort across a 
wide range of non-linguistic tasks [19, 41] and is therefore domain-general. Given the 
functional dissociation between the language and MD networks [42, 43], their respective 
contributions to comprehension are likely distinct, yet such differences remain elusive. 
Critically, given that each network is sensitive to some linguistic features, prior research 
has presupposed that both networks track linguistic input closely, and in a manner 
consistent across individuals. Here, we used fMRI to test this assumption by comparing 
the BOLD signal time-courses in each network across different individuals listening to 
the same story [44-46]. Language network activity showed fewer individual differences, 
indicative of closer input tracking, whereas MD network activity was more idiosyncratic 
and, moreover, showed lower reliability within an individual across repetitions of a story. 
These findings constrain cognitive models of language comprehension by suggesting a 
novel distinction between the processes implemented in the language and MD networks.  

Results 

Correlations in network activity across individuals listening to the same story 

To characterize the functional contributions of the language and MD networks to 
comprehension, we tested how closely each network tracks naturalistic linguistic input 
(stories) and how similar such tracking is across individuals. Our interest in naturalistic 
cognition is three-fold: first, some brain regions respond more reliably to richly 
structured natural input compared to experimentally controlled input [47]. Second, task-
free natural language processing plausibly differs from task-based processing, especially 
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given that MD regions operate in a task-dependent manner by biasing representations in 
other cortical networks in favor of task-relevant features [48-50]. Third, naturalistic 
stories require all aspects of the linguistic input to be combined into a single rich 
representation, unlike experimental stimuli that focus on particular linguistic features and 
have lower ecological validity. 

Prior to the story comprehension scan, language and MD regions were 
functionally identified in each individual participant. Language regions were localized 
using a reading task that contrasted sentences with pronounceable nonwords (Figure 1a). 
We localized 8 left-hemispheric (LH) regions (Figure 2a) as well as 8 right-hemispheric 
(RH) homologues, which are also activated during some aspects of language processing 
[1, 6, 51-56] but might differ from LH regions in their contribution to comprehension, as 
suggested by neuroimaging [57] and neuropsychological [58, 59] data. MD regions were 
functionally identified using a spatial working-memory task that contrasted a hard 
version with an easy version (Fig 1b). We localized nine regions in each hemisphere 
(Figure 2b) and, based on prior findings [60-64], grouped them into two functionally 
distinct sub-networks: fronto-parietal (MDfp) and cingulo-opercular (MDco) (similar 
results were obtained when regions were instead grouped by hemisphere). 

Each participant (n=19) then listened to 1-4 stories (duration: 270s-364s) 
constructed from publicly available texts, each followed by a comprehension test. To 
ensure that the stories strongly engaged the MD network, they were edited to include 
frequent occurrences of linguistic phenomena that increase processing difficulty and have 
been demonstrated to recruit this network (Figure 1c) (such phenomena are not naturally 
frequent enough; [65-67]). Following [46], we reasoned that if a given brain region 
tracked linguistic input with little individual differences then its activity time-course 
would be similar across participants and would thus show high Inter-Subject Correlations 
(ISCs) [68]. Therefore, we recorded the BOLD signal time-course in each language and 
MD region during each story and computed regional ISCs. To ensure that ISCs reflected 
tracking of linguistic information and not low-level sensory information, signals were 
first regressed against time-courses from the auditory cortex (similar results were 
obtained without regression). 

 

 
Figure 1. Experimental tasks. (a) The reading task used to localize language regions, based on the critical 
contrast sentences > nonwords. (b) The spatial working-memory task used to localize MD regions, based 
on the critical contrast hard > easy. (c) An excerpt from a story used in the main comprehension 
experiment. Linguistic phenomena that increase processing difficulty and have been shown to recruit the 
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MD network, but are naturally infrequent, were edited into the text. These include non-local syntactic 
dependencies (green; words in this relation have subscripts with the same number but different letters); 
temporary ambiguity (purple), where a likely initial parse is later revealed to be wrong; and low-frequency 
words (brown). 

 

 
Figure 2. Functional regions of the language 
and MD networks. (a) LH language regions 
in 3 individual participants are shown in 
dark red. These regions were localized with 
a reading task (see Figure 1a). These regions 
were constrained to fall within eight broad 
areas where activations for this task are 
common across the population, shown in 
light pink. These areas were defined based 
on group-level data from a previous sample 
[1]. (b) LH MD regions of the same 3 
participants are shown in dark blue. These 
regions were localized with a spatial 
working-memory task (see Figure 1b). These 
regions were constrained to fall within nine 
broad areas where activations for this 
localizer are common across the population, 
shown in light blue. These areas were 
anatomically defined [41]. 
 

We used linear, mixed-effect models to test whether the language and MD 
networks differed from each other in the degree of stimulus tracking, as estimated via 
their ISCs. Across stories, the LH language network showed the highest ISCs (Fisher 
transformed r=0.280), stronger than ISCs in the RH language network (r=0.210; Cohen’s 
d=0.73, z=6.25, p<10-9), the MDfp network (r=0.136; d=1.07, z=14.12, p≈0) and the 
MDco network (r=0.117; d=1.32, z=13.51, p≈0). The RH language network, in turn, 
showed higher ISCs than both the MDfp network (d=1.07, z=7.27, p<10-11) and the 
MDco network (d=1.04, z=7.72, p<10-13). The two MD networks did not differ from each 
other (d=1.80, z=1.70, p=0.218) (Figure 3; all p-values here and elsewhere are corrected 
for multiple comparisons using False-Discovery Rate (FDR) correction; [69]). The 
difference between the LH language network and the two MD networks was also 
observed for each story separately. 

Next, we performed two replication experiments. In the first (n=13), we computed 
ISCs in a new participant group for two of the stories used above. In the second (n=19), 
we used a story recorded at a live event (duration: 420s; [45]) that did not undergo 
linguistic editing and was thus even more naturalistic than our previous stimuli. In both 
experiments, we again found that ISCs in the LH language network (replication 1: 
r=0.252; replication 2: r=0.303) were stronger than in the RH language network 
(r=0.172, d=0.90, z=5.62, p<10-7; r=0.250, d=0.77, z=3.35, p=0.001), the MDfp network 
(r=0.147, d=1.06, z=8.09, p<10-15; r=0.160, d=1.29, z=9.95, p≈0) and the MDco network 
(r=0.114, d=1.33, z=8.95, p≈0; r=0.163, d=1.34, z=8.20, p<10-15). ISCs in the RH 
language network were somewhat stronger than ISCs in the MDfp network (d=0.46, 
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z=1.93, p=0.066; d=0.82, z=6.28, p<10-9) and stronger than ISCs in the MDco network 
(d=0.70, z=3.74, p<0.001; d=0.83, z=5.10, p<10-7). The two latter networks reliably 
differed from each other only in the first replication (d=0.53, z=2.28, p<0.033) (Figure 3). 

Across these three experiments, we find that signals in the language and MD 
networks differ in their ISCs and, thus, in the percentage of variance they share across 
people. To further interpret these findings we computed an “upper bound” on ISCs, 
reflecting the highest values that could be expected in our measurements; namely, we 
computed ISCs in low-level auditory regions (defined anatomically) that track sensory 
input very closely [45]. Combining data across experiments, these auditory ISCs are 
estimated at r=0.450. Thus, signals in the LH language network (r=0.287) share 40.8% of 
this “maximum shareable variance” across people; signals in the RH language network 
(r=0.216) share 23%, whereas signals in the MDfp network (r=0.153) and MDco network 
(r=0.134) share only 11.6% and 8.8%, respectively. Importantly, however, almost all 
ISCs – even those in MD regions – are significantly greater than expected by chance 
(Figure 3). Therefore, even domain-general MD regions track stories to a non-trivial 
extent. 
 

 
Figure 3. ISCs during story comprehension in the language and MD networks. (a) ISC (Fisher-
transformed) for each brain region. Black dots are individual data points. Thick, colored horizontal lines 
show the average ISCs across participants. Gray rectangles show 95% confidence intervals of these average 
ISCs (empirically derived using 1,000 permutations). Colored vertical curves show Gaussian fits to 
empirical null distributions against which average ISCs can be tested (ns, non-significant results at a 
threshold of 0.05; FDR-corrected). Regions are grouped into 4 functional networks, indicated by color. 
Across experiments, a replicable pattern emerges where ISCs are stronger in language regions (red) than in 
MD regions (blue). (b) Mean ISCs within each functional network, same conventions as in (a). Black, 
horizontal lines connect pairs of networks that significantly differ from one another (in each pair, the left 
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ISC is greater than the right ISCs and all ISCs that are further to the right). L – left; R – right; Post – 
posterior; Temp – temporal; Mid – middle; Ant – anterior; Inf – inferior; Orb – orbital; Op – opercular; Sup 
– superior; Supp – supplementary. 

Correlations of network activity within individuals listening to a story twice 

The relatively low ISCs in MD regions could be interpreted in two ways: on the one 
hand, MD regions might closely track linguistic input but do so in an idiosyncratic 
fashion across individuals. For example, if different people find different sections of the 
story difficult to comprehend, they might each recruit their MD network at respectively 
different times. In this case, MD activity time-courses would be stimulus-locked for each 
individual but would differ across individuals. Alternatively, activity in the MD regions 
might not be closely linked to the linguistic input at all. These two interpretations can be 
distinguished by correlating signal time-courses within a given individual who is 
listening to the same story twice [70]: if MD activity tracks the story in an idiosyncratic 
manner across individuals, then it should still be similar across two instances of the same 
story within an individual; however, if MD activity does not track the story, then it 
should not exhibit reliable time-courses even within an individual. 

Therefore, we scanned several participants listening to stories twice, and then 
computed Within-Subject Correlations (WSCs) for each network across the two 
instances. One group of participants (n=7) heard the stories repeatedly within the same 
scanning session (approximately one hour apart); another group (n=8) heard the stories in 
two sessions that were 6.5-21.5 months apart. These two groups did not differ from each 
other in their network WSCs, so their data were combined. In line with our findings 
above, WSCs in the LH language network (r=0.160) were stronger than in the RH 
language network (r=0.129; d=0.33, z=3.66, p<0.001), the MDfp network (r=0.083; 
d=0.83, z=8.5, p≈0) and the MDco network (r=0.097; d=1.25, z=6.05, p<10-8). WSCs in 
the RH language network were stronger than those in the MDfp network (d=0.30, z=4.48, 
p<10-4) and the MDco network (d=0.32, z=2.66, p=0.012), but the two latter networks did 
not differ (Figure 4a). 

These WSCs are lower than the ISCs reported above; this effect was expected 
because WSCs are measured by correlating noisy signals from two single trials, whereas 
ISCs are measured by correlating a signal from one participant with an average (i.e., 
noise reduced) signal across all other participants. To better compare WSCs and ISCs, we 
thus re-computed ISCs by correlating signal time-courses across pairs of individual 
participants (Figure 4b). Now, ISCs appeared weaker than WSCs (i.e., signals across 
participants were less similar than signals within a participant), but both measures 
patterned similarly in terms of between-network differences (for all comparisons between 
WSCs and ISCs, p>0.52). Therefore, even across story repetitions within a given 
individual, MD network activity is significantly less reliable than language network 
activity, indicating that the former, but not the latter, tracks linguistic input closely. 

 
 

 
 
Figure 4. WSCs (left) and pairwise-ISCs (right) during 
story comprehension in the language and MD networks. 
Same conventions as in Figure 3. 
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Discussion 
During story comprehension, a robust and reliable difference in neural activity 
distinguished between the language network and the MD network. The language 
network, particularly in the LH, showed relatively little individual differences in activity 
(high ISCs) due to close tracking of the story (high WSCs). In contrast, MD network 
activity was more idiosyncratic across individuals (low ISCs), showing weaker tracking 
of the story (low WSCs). These findings suggest a novel typology of mental processes 
contributing to language comprehension: some processes implemented in the language 
network are stimulus-related and consistent across individuals; other processes, 
implemented in the MD network, are less tightly coupled to the input and appear more 
idiosyncratic. This distinction importantly constrains cognitive models of language 
processing. 
 Critically, characterizing the respective contributions of the language and MD 
networks to comprehension was methodologically possible due to localization of these 
networks using functional contrasts, individually for each participant. First, identifying 
networks functionally allows us to tie our findings to a wealth of prior literature 
characterizing the response profiles of those networks. Second, our approach takes into 
account inter-individual variability in the mapping of function onto anatomy by 
comparing functional regions across participants even when those regions do not align 
well spatially. Such variability, evident in the temporal cortex [71-73] and especially in 
the frontal cortex [74, 75] (where language and MD regions lie side by side; [43]), 
renders anatomical localization precarious [76-79]. 
 Indeed, pioneering studies of inter-subject correlations during language 
processing [44-46] computed ISCs for anatomical locations, assuming that the same 
location had a common function across participants. These studies revealed that broad 
cortical swaths show significant ISCs during comprehension, proposing a neural correlate 
of “shared understanding” across individuals [80] yet offering no principled way to relate 
those regions to known functional divisions in the cortex. This issue was further 
complicated because studies had not directly contrasted regions to each other, and had 
usually reported only p-values but not the sizes of the correlations. By augmenting the 
ISC methodology with a single-participant functional localization approach, the present 
study provides one key characterization of the functional topology of ISCs, distinguishing 
between language and MD networks. 
 Within this topology, the role of MD regions in language comprehension is 
particularly interesting. Whereas task-based studies have demonstrated that MD regions 
scale their activity with increasing comprehension difficulty in numerous contexts [20-
40], we demonstrate that they track natural language relatively weakly even when it 
includes frequent occurrences of challenging linguistic features. Reconciling our data 
with past findings is thus challenging. Moreover, prior evidence suggests that MD 
regions track other naturalistic stimuli, such as audiovisual movies, with experiential 
features like “suspense” modulating MD activity similarly across individuals [81], 
possibly by influencing the frequency of attentional disengagement [82]. Does the 
domain-general MD network play a different role in language comprehension compared 
to its role in processing other naturalistic stimuli? 

Perhaps MD regions are biased towards visual information (or audio-visual 
integration) in movies compared to the auditory information of stories [83, 84]. 
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Alternatively, MD regions may track both movies and stories, but fluctuations in MD 
activity during movie viewing could simply be slower, and thus more reliably measured, 
compared to the fast fluctuations during story comprehension. Therefore, evidence of 
stimulus tracking by MD regions during story comprehension might only be evident at 
high frequencies that cannot be measured with the temporally slow BOLD signal of 
fMRI. Finally, activity in MD regions may reflect internal fluctuations in domain-general 
attention or “focus” [85, 86] that may co-vary with the emotional manipulations in 
movies [87] but be relatively independent of input processing difficulty during natural 
language comprehension. This account is also consistent with previous findings of greater 
MD activity with increased linguistic demands in experimentally designed tasks, insofar 
as such tasks control the focus of participants more explicitly than naturalistic stories. 

Conclusion 

Using a combination of task-based functional localization in individual participants and a 
naturalistic cognition paradigm for comparing brain activity across participants, we 
characterize distinct contributions of the language network and MD network to story 
comprehension. Whereas activity in the language network is similar across individuals 
and closely tracks stories, activity in the MD network is more idiosyncratic and does not 
linguistic input as closely. These findings thus suggest a novel distinction between 
different mechanisms that underlie language processing based on individual differences 
in their processing patterns and their coupling to the linguistic input. 

Experimental Procedures 
The following methodological details have been previously reported (see Supplementary 
Materials): the design, materials and procedure for the language and MD localizer tasks 
[1, 41]; the stories used in the main experiments [42, 45]; data acquisition parameters 
[42]; spatial [1] and temporal [42] preprocessing streams; modeling of the localizer data 
[9]; and definition of language and MD regions [1, 41]. 

Participants 
Forty-five participants (30 females) between the ages of 18 and 50, recruited from the 
MIT student body and the surrounding community, were paid for participation. All 
participants were native English speakers and gave informed consent in accordance with 
the requirements of MIT’s Committee on the Use of Humans as Experimental Subjects 
(COUHES). 

ISCs and WSCs 
For each participant and functional region, BOLD signal time-courses recorded during 
story comprehension were extracted from each voxel beginning 6 seconds following the 
onset of the story (to exclude an initial rise in the hemodynamic response relative to 
fixation, which could increase ISCs). These time-courses we first temporally z-scored in 
each voxel and then averaged across voxels. Next, those signals were regressed against 
signals extracted from low-level auditory regions (defined anatomically around the 
postero-medial and antero-lateral sections of Heschl’s gyrus bilaterally). Finally, for each 
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participant and region, we computed Pearson’s moment correlation coefficient between 
the residual time-course and the corresponding average residual time-course across the 
remaining participants [45]. 

For each participant who listened to the same story on two occasions, we 
correlated the residual time-course in each region across the two trials. Because these 
WSCs are based on two single-trial signals, we also re-computed ISCs in a comparable 
manner; namely, for each participant and region, we correlated the residual time-course 
with the corresponding, individual residual time-course of each of the other participants, 
and averaged the resulting values. 

ISCs/WSCs were Fisher-transformed prior to averaging and statistical testing in 
order to improve normality.  

Statistical tests 
In each region, ISCs/WSCs were tested for significance against an empirical null 
distribution based on 1,000 simulated signal time-courses that were generated by phase-
randomization of the original data [88]. Individual distributions were each fit with a 
Gaussian and the resulting parameters were analytically combined across participants. 
The original ISCs/WSCs, also averaged across participants, were then z-scored relative to 
these parameters and converted to one-tailed p-values. 

ISCs/WSCs were compared across networks using a linear, mixed-effects 
regression [89] implemented with the “lme4” package in R. In each experiment, 
ISCs/WSCs across all brain regions, participants and stories were modeled with a fixed 
effect of region and random intercepts for participant and story. The fixed effect 
estimates were combined across regions within each functional network (LH language, 
RH language, MDfp and MDco) and were pairwise compared to each other using the 
“multcomp” package in R. Hypotheses were two-tailed for the first experiment and one-
tailed afterwards. For more information, see Supplementary Materials. 

In each experiment, p-values are reported following False Discovery Rate (FDR) 
correction for multiple comparisons [69]. 
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Supplementary Materials 
Language localizer task 
Regions in the language network were localized using a reading task contrasting 
sentences and lists of unconnected, pronounceable nonwords (ref), in a standard blocked 
design with a counterbalanced order across runs (for timing parameters, see Table S1). 
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Stimuli were presented one word / nonword at a time (see Figure 1). For the first ten 
participants only, each trial ended with a memory probe and they had to indicate, via a 
button press, whether or not that probe had appeared in the preceding sequence of words / 
nonwords. For half of these participants, the localizer included an additional condition of 
unconnected word lists, for purposes of another experiment. The remaining 35 
participants instead read the materials passively (we included a button-pressing event at 
the end of each trial, to help these participants remain alert and focused). Note that in the 
former version nonwords are more engaging than sentences because their memorization 
is harder, whereas in the latter version sentences are more engaging than nonwords 
because they are meaningful. Importantly, this localizer has been shown to generalize 
across such manipulations, as the language network robustly and reliably shows a 
sentences > nonwords effect regardless of the task [1]. This localizer also generalizes 
across both visual and auditory presentations [90-92].  

MD localizer task 
Regions in the MD network were localized with a spatial working-memory game [11] 
contrasting a hard version with an easy version. On each trial (8s), participants saw a 3x4 
grid and kept track of eight (hard version) or four (easy version) locations that were 
sequentially flashed two at a time or one at a time, respectively (1s per flash, 4s total). 
Then, participants indicated their memory for these locations in a 2-Alternative, Forced-
Choice (2AFC) paradigm via a button press (3s total). Feedback was immediately 
provided upon choice (or lack thereof) (250ms). Trials began and ended with brief 
fixations (500ms and 250ms, respectively). Hard and easy conditions were presented in a 
standard blocked design (4 trials in a 32s block, 6 blocks per condition per run) with a 
counterbalanced order across runs. Each run included 4 blocks of fixation (16s each) and 
lasted a total of 448s. Thirty-nine participants completed 1-2 runs of the localizer. The 
remaining participants either provided poor-quality data (5 participants) or were not run 
on this task (1 participant). For this latter group, MD regions were localized with data 
from the language localizer task, namely, the nonwords > sentences contrast. Both the 
hard > easy contrast and the nonwords > sentences contrast have been previously 
demonstrated to robustly and reliably identify the MD network [41]. 

Story comprehension task 
Each subject listened to 1-4 stories over scanner-safe headphones (Sensimetrics, Malden, 
MA). In the main experiment and the first replication, stories were constructed based on 
publicly available fairy tales and short stories. These stories were edited to include a 
variety of linguistic phenomena that have been shown to increase processing difficulty 
and recruit the MD network, but do not occur with sufficiently high frequency in natural 
texts (see main text; for a sample text, see Appendix 1). In the second replication, 
participants listened to an autobiographical story (“Pie-man,” told by Jim O’Grady) 
recorded at a live storytelling event (“The Moth” storytelling event, NYC). Each story 
started an ended with 16s seconds of music and fixation that were not analyzed. 

After each story, participants answered 6-12 comprehension questions that 
required attentive listening (i.e., could not have been answered correctly based on 
common sense). For the main experiment and the first replication, participants answered 
2AFC questions via a button press while in the scanner. For the second replication, 
participants filled in a 4AFC questionnaire once they got outside the scanner. For eight 
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participants, answers to these questions were not collected. The remaining 37 participants 
demonstrated very good comprehension of the stories, with a negatively skewed accuracy 
distribution (mode=100%, median=87.5%, semi-interquartile range=12.85%).  

Data acquisition and preprocessing 
Structural and functional data were collected on a whole-body 3 Tesla Siemens Trio 
scanner with a 32-channel head coil at the Athinoula A. Martinos Imaging Center at the 
McGovern Institute for Brain Research at MIT. T1-weighted structural images were 
collected in 176 axial slices with 1mm isotropic voxels (repetition time (TR) = 2,530ms; 
echo time (TE) = 3.48ms). Functional, blood oxygenation level-dependent (BOLD) data 
were acquired using an EPI sequence with a 90o flip angle and using GRAPPA with an 
acceleration factor of 2; the following parameters were used: thirty-one 4.4mm thick 
near-axial slices acquired in an interleaved order (with 10% distance factor), with an in-
plane resolution of 2.1mm × 2.1mm, FoV in the phase encoding (A >> P) direction 
200mm and matrix size 96mm × 96mm, TR = 2000ms and TE = 30ms. The first 10s of 
each run were excluded to allow for steady state magnetization. 

Data preprocessing was carried out with SPM5 and custom MATLAB scripts. 
Preprocessing of anatomical data included normalization into a common space (Montreal 
Neurological Institute (MNI) template, resampling into 2mm isotropic voxels, and 
segmentation into probabilistic maps of the gray matter, white matter (WM) and 
cerebrospinal fluid (CSF). Preprocessing of functional data included motion correction, 
normalization, resampling into 2mm isotropic voxels, smoothing with a 4mm FWHM 
Gaussian filter and high-pass filtering at 200s. 

Additional temporal preprocessing of data from the story comprehension runs was 
carried out using the CONN toolbox [93] with default parameters, unless specified 
otherwise. Five temporal principal components of the BOLD signal time-courses 
extracted from the WM were regressed out of each voxel’s time-course; signal 
originating in the CSF was similarly regressed out. Six principal components of the six 
motion parameters estimated during offline motion correction were also regressed out, as 
well as their first time derivative. Next, the residual signal was bandpass filtered (0.008–
0.09 Hz) to preserve only low-frequency signal fluctuations [94]. 

Modeling localizer data 
For each localizer task, a General Linear Model estimated the effect size of each 
condition in each experimental run. These effects were each modeled with a boxcar 
function (representing entire blocks) convolved with the canonical Hemodynamic 
Response Function (HRF). The model also included first-order temporal derivatives of 
these effects, as well as nuisance regressors representing entire experimental runs and 
offline-estimated motion parameters. The obtained beta weights were then used to 
compute the functional contrast of interest: sentences > nonwords for the language 
localizer, and hard > easy for the MD localizer. 

Defining participant-specific language and MD regions  
Language and MD regions were defined based on functional contrast maps from the 
localizer experiments. These maps were first restricted to include only gray matter voxels 
by excluding voxels that were more likely to belong to either the white matter or the 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 20, 2016. ; https://doi.org/10.1101/076240doi: bioRxiv preprint 

https://doi.org/10.1101/076240


cerebrospinal fluid based on SPM’s probabilistic segmentation of the participant’s 
structural data. 

Then, regions in the language network were defined using group-constrained, 
participant-specific localization [1]. For each participant, the map of the sentences > 
nonwords contrast was intersected with binary masks that constrained the participant-
specific language network to fall within areas where activations for this contrast are 
relatively likely across the population. These masks are based on a group-level 
representation of the contrast obtained from a previous sample. We used 8 such masks in 
the LH, including regions in the posterior, mid-posterior, mid-anterior and anterior 
temporal lobe, as well as in the middle frontal gyrus, the inferior frontal gyrus and its 
orbital part. These masks were mirror-projected onto the RH to create 8 homologous 
masks  (the masks cover significant parts of the cortex, so their mirrored version is likely 
to encompass the RH homologue of the LH language network, despite possible 
hemispheric asymmetries in their precise locations). In each of the resulting 16 masks, a 
participant-specific language region was defined as the top 10% of voxels with the 
highest contrast values. This top n% approach ensures that functional regions can be 
defined in every participant and that their sizes are the same across participants, allowing 
for generalizable results [95]. 

Regions in the MD network were similarly defined based on the hard > easy 
contrast in the spatial working-memory game. Here, instead of using binary masks based 
on group-level data, we used anatomical masks ([96]; see [41, 42]). Nine masks were 
used in each hemisphere, including regions in the middle frontal gyrus and its orbital part, 
the opercular part of the inferior frontal gyrus, the precental gyrus, the posterior and 
inferior parts of the partieal lobe, the insula, and supplementary motor area and the 
cingulate cortex. The first five masks constitute the fronto-parietal MD sub-network, and 
the last three constitute the cingulo-opercular sub-network. 

Table S1. Timing parameters for the different versions of the language localizer task. 

 Version 
 A B C 
Number of participants 35 5 5 
Task: Passive Reading or Memory? PR M M 
Words / nonwords per trial 12 12 12 
Trial duration (ms) 6,000 6,000 6,000 
   Fixation 100 --- --- 
   Presentation of each word / nonword 450 350 350 
   Fixation 500 300 300 
   Memory probe --- 1,000 1,000 
   Fixation --- 500 500 
Trials per block 3 3 3 
Block duration (s) 18 18 18 
Blocks per condition (per run) 8 8 6 
Conditions Sentences 

Nonwords 
Sentences 
Nonwords 

Sentences 
Nonwords 
Word-lists 

Fixation block duration (s) 14 18 18 
Number of fixation blocks 5 5 4 
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Total run time (s) 358 378 396 
Number of runs 2 2 2-3 

Statistical tests 
Statistical tests on WSC data were run on a sample including both participants who 
listened to the same story twice within the same scanning session and those who listened 
to the same story across two sessions. Prior to these analyses, we tested whether WSCs in 
the within-session and across-session datasets differed from each other. To this end, we 
performed a linear, mixed-effects regression analysis that modeled WSCs with a fixed 
effect of the interaction between brain region and dataset, random intercepts for 
participant and story, and a random slope for dataset varying by participant (this model 
was chosen because a fuller model failed to converge). Pairwise contrasts tested whether 
WSCs in each network were stronger across sessions than within a session. 

A similar approach was used for comparing WSCs to pairwise-ISCs. Here, 
contrasts tested whether pairwise differences between networks observed with WSCs 
were distinct from those observed with ISCs. 

For all findings based on linear, mixed-effects regression analyses, similar results 
were obtained when ISCs/WSCs for each participant were first averaged across regions 
within each network and pairwise network comparisons (across participants) were then 
tested using exact permutation tests [97]. Therefore, our results are independent of 
assumptions regarding data normality. 

Appendix 1: A sample story and comprehension questions 

At ten years old, I could not figure out what it was that this Elvis Presley guy had that the 
rest of us boys did not have. He seemed to be no different from the rest of us. He was 
simply a man who had a head, two arms and two legs. It must have been something pretty 
superlative that he had hidden away, because he had every young girl at the orphanage 
wrapped around his little finger. 

At about nine o'clock on Saturday morning, I figured a good solution was to ask 
Eugene Correthers, who was one of the older and smarter boys, what it was that made 
this Elvis guy so special. He told me that it was not anything about Elvis's personality, 
but his wavy hair, and the way he moved his body. About a half an hour later, the boys in 
the orphanage called down to the main dining room by the matron were told that they 
were all going to downtown Jacksonville, Florida to get a new pair of Buster Brown 
shoes and a haircut. That is when I got this big idea, which hit me like a ton of bricks. If 
the Elvis haircut was the big secret, then Elvis's haircut I was going to get. 

I was going to have my day in the sun, and all the way to town that was all I 
talked about. The fact that I was getting an Elvis haircut, not just the simple fact that we 
were getting out of the orphanage, made me particularly loquacious. I told everybody, 
including the orphanage matron I normally feared, that I was going to look just like Elvis 
Presley and that I would learn to move around just like he did and that I would be rich 
and famous one day, just like him. The matron understood my idea was something that I 
was really excited about and said nothing. 

When I got my new Buster Brown shoes, I was smiling from ear to ear. Those 
shoes, they shined really brightly, and I liked looking at the bones in my feet, which I had 
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never seen before, through a special x-ray machine they had in the shoe store that made 
the bones in your feet look green. I was now almost ready to go back to the orphanage 
and practice being like the man who all the girls loved, since I had my new Buster Brown 
shoes. It was the new haircut, though, that I needed to complete my new look.  

We finally arrived at the unassuming, unembellished barbershop, where they cut 
our hair for free because we were orphans. Even though we were supposed to slowly wait 
to be called, I ran straight up to one of the barber chairs and climbed up onto the board 
the barber placed across the arms to make me sit up higher. I looked at the man and said, 
with a beaming smile on my face, "I want an Elvis haircut. Can you make my hair like 
Elvis's?" I asked. The barber, who was a genial young man, grinned back at me and said 
that he would try his best. 

I was so happy when he started to cut my hair, but just as he started to cut, the 
matron, who had been watching me and had a look as cold as ice, motioned for him to 
come over to where she was standing. She whispered something into his ear that caused 
the barber to shake his head, like he was telling her, "No". In response, the matron 
walked over to a little man sitting in an office chair that squeaked as it rolled around the 
floor and spoke to him. It was the little man who then walked over and said something to 
the man who was cutting my hair. The next thing I knew, the man who was cutting my 
hair told me that he was no longer allowed to give me an Elvis cut. 

"Why not?" I cried desperately. 
The kindly barber stopped by the matron did not answer, but from his expression, 

I could tell that he wished he could cut it as I had asked. 
Within a few minutes, it wasn't an Elvis haircut, but a short buzz cut that the 

barber had given me. When he finished shaving off all my hair and made me smell real 
good with his powder, the barber handed me a nickel and told me to go outside to the 
snack machine and buy myself a candy bar. I handed him the nickel back and told him 
that I was not hungry. "I'm so sorry, baby," he said, as I climbed out of his barber chair. 
"I am not a baby," I said, as I wiped the tears from my eyes. 

I then sat down on the floor and brushed away the hair that had accumulated on 
my shiny new Buster Brown shoes. My head was no longer in the clouds, and I got up off 
the floor, brushed off my short pants, and walked sullenly towards the door. 

The matron was smiling at me sort of funny like. 
The barber upset by the matron said to her, "You are just a damn bitch, lady." 
She yelled back at him at the top of her lungs, before walking toward the office, 

as fast as she could. 
To show his anger, the man hit the wall with his hand and then walked outside 

where he stood against the brick wall, smoking a cigarette. I understood right there my 
haircut was something that had been out of the power of the barber and then I slowly 
walked outside to join the man. He looked down, smiled at me, then he patted me on the 
top of my bald as a coot head. It was a fact of my life that I was not gonna have hair that 
was anything like Elvis's anytime soon. I then looked up at the barber with my wet red 
eyes and asked, "Do you know if Elvis Presley has green bones?" 

1. Why was the boy interested in Elvis? 
A. Girls at the orphanage liked Elvis 
B. Elvis had a lot of money 

2. What made Elvis special, in the opinion of Eugene Correthers? 
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A. Elvis's personality 
B. Wavy hair 

3. On the bus, how did the boy behave? 
A. Talked a lot 
B. Was very quiet 

4. What was the barber's initial reaction to the boy's request? 
A. Said he couldn't do it 
B. Said he'd try his best 

5. What did the barber hand to the boy when he finished the haircut? 
A. A candy 
B. A nickel 

6. What did the barber do to show his anger? 
A. Pushed the matron aside 
B. Hit the wall 
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