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Spiraling complexity: a test of the snowball effect in a
computational model of RNA folding
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ABSTRACT Genetic incompatibilities can emerge as a by-product of genetic divergence. According to Dobzhansky
and Muller, an allele that fixes in one population may be incompatible with an allele at a different locus in another
population when the two alleles are brought together in hybrids. Orr showed that the number of Dobzhansky–Muller
incompatibilities (DMIs) should accumulate faster than linearly—i.e., snowball—as two lineages diverge. Several studies
have attempted to test the snowball effect using data from natural populations. One limitation of these studies is that
they have focused on predictions of the Orr model but not on its underlying assumptions. Here we use a computational
model of RNA folding to test both predictions and assumptions of the Orr model. Two populations are allowed to evolve
in allopatry on a holey fitness landscape. We find that the number of DMIs involving pairs of loci (i.e., simple DMIs) does
not snowball—rather, it increases approximately linearly with divergence. We show that the probability of emergence
of a simple DMI is approximately constant, as assumed by the Orr model. However, simple DMIs can disappear after
they have arisen, contrary to the assumptions of the Orr model. This occurs because simple DMIs become complex (i.e.,
involve alleles at three or more loci) as a result of later substitutions. We introduce a modified Orr model where simple
DMIs can become complex after they appear. Our modified Orr model can account for the results of the RNA folding
model. We also find that complex DMIs are common and, unlike simple ones, do snowball. Reproductive isolation,
however, does not snowball because DMIs do not act independently of each other. We conclude that the RNA folding
model supports the central prediction of the Orr model that the total number of DMIs snowballs, but challenges some of
its underlying assumptions.
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“[It is not] surprising that the facility of effecting a first
cross, the fertility of the hybrids produced, and the
capacity of being grafted together . . . should all run,
to a certain extent, parallel with the systematic affinity
of the forms which are subjected to experiment . . . ”
Darwin (1859)

In the absence of gene flow, the gradual accumulation of diver-
gent genetically based characteristics in different populations

can bring new species into being. Some of these divergent char-
acteristics, known as reproductive isolating barriers (Johnson
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2006), decrease the level of interbreeding between populations.
As populations diverge, isolating barriers accumulate, and the
level of reproductive isolation (RI) among populations increases
(Coyne and Orr 1989; Roberts and Cohan 1993; Sasa et al. 1998;
Edmands 2002; Presgraves 2002; Lijtmaer et al. 2003; Mendelson
2003; Dettman et al. 2003; Moyle et al. 2004; Bolnick and Near
2005; Liti et al. 2006; Scopece et al. 2007; Stelkens et al. 2010; Jew-
ell et al. 2012; Giraud and Gourbière 2012; Larcombe et al. 2015).
Eventually RI reaches a point where two of these populations
are considered distinct species. Elucidating the precise nature of
the relationship between divergence and RI remains one of the
central challenges in the study of speciation (Gavrilets 2004; The
Marie Curie SPECIATION Network 2012; Nosil and Feder 2012;
Seehausen et al. 2014).

Dobzhansky (1937) and Muller (1942) proposed a general
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mechanism through which genetic divergence can cause RI.
They noted that, in the absence of gene flow between two popula-
tions, an allele that fixes in one population may be incompatible
with an allele at a different locus in another population when the
two alleles are brought together in hybrids. This negative epis-
tasis, or genetic incompatibility, causes the two populations to
become reproductively isolated. Dobzhansky-Muller incompati-
bilities (DMIs) have been shown to cause inviability or sterility
in hybrids between closely related species (reviewed in Pres-
graves 2010b; Rieseberg and Blackman 2010; Maheshwari and
Barbash 2011).

Orr (1995) modeled the accumulation of multiple DMIs as
populations diverge. Consider two populations diverged at k
loci and showing Ik simple DMIs. A simple DMI is defined as
a negative epistatic interaction between an allele at one locus
in one population and an allele at a different locus in the other
population. Orr showed that when the next substitution takes
place, the expected number of simple DMIs is

Ik+1 = Ik + kp , (1)

where p is the probability that there is a simple DMI between
the latest derived allele and one of the k alleles at the loci that
have previously undergone substitutions (from the population
that did not undergo the latest substitution). Assuming I1 = 0,
the solution to Equation 1 is

Ik =
k(k− 1)p

2
. (2)

Equation 2 predicts that the number of simple DMIs will accumu-
late faster than linearly as a function of divergence (prediction
#1; Orr 1995). This prediction assumes that p remains constant
as populations diverge (assumption #1).

DMIs involving three or more loci, known as complex DMIs
(Cabot et al. 1994), are also expected to snowball but following
different relationships from that in Equation 2: DMIs of order n
are expected to accumulate at a rate approximately proportional
to kn (prediction #2; Orr 1995; Welch 2004). If DMIs have small,
independent effects on RI (assumptions #2 and #3, respectively),
then the postzygotic RI they generate is also expected to increase
faster than linearly with k (prediction #3; Orr 1995). Orr (1995)
described these patterns of quantities increasing faster than lin-
early as “snowballing.” We shall refer to predictions #1–3 of the
Orr model collectively as the “snowball effect” (Orr and Turelli
2001).

Several studies have attempted to test the snowball effect.
They have employed three different approaches. The first tests
prediction #3 of the Orr model: that postzygotic RI snowballs.
For example, Larcombe et al. (2015) measured the strength of hy-
brid incompatibility between Eucalyptus globulus and 64 species
of eucalypts. They observed a faster than linear increase in RI
with genetic distance, consistent with prediction #2 of the Orr
model. Results from other studies using a similar approach
have provided little support for a snowball effect in RI (Sasa
et al. 1998; Lijtmaer et al. 2003; Mendelson et al. 2004; Bolnick
and Near 2005; Gourbière and Mallet 2010; Stelkens et al. 2010;
Giraud and Gourbière 2012), leading some to pronounce the
snowball “missing” (Johnson 2006; Gourbière and Mallet 2010).
However, this approach has several limitations. It can only be
applied when postzygotic RI � 1. Furthermore, it only tests
one prediction (#3) of the Orr model, and this prediction relies
on one assumption (#3) that typically goes untested. Thus, the
number of DMIs might snowball (predictions #1–2 of) even if RI
does not.

The second approach tests predictions #1–2 of the Orr model:
that the number of DMIs snowballs. For example, Moyle and
Nakazato (2010) used a QTL mapping approach to estimate the
number of DMIs between species of Solanum directly. They in-
trogressed one or a few genomic segments from one species
to another. When an introgressed segment caused a reduction
in fitness, they concluded that it participated in a DMI. They
found that DMIs affecting seed sterility accumulated faster than
linearly. However, DMIs affecting pollen sterility appeared to
accumulate linearly, contrary to the snowball effect. Studies
following similar approaches have tended to find support for
the snowball effect (Matute et al. 2010; Moyle and Nakazato 2010;
Matute and Gavin-Smyth 2014; Sherman et al. 2014; Wang et al.
2015). One advantage of the second approach over the first is
that it relies on fewer assumptions (#1 compared to #1–3, respec-
tively). However, the second approach also has limitations. The
order (n) of the DMIs identified is unknown. Therefore, this
approach cannot disentangle predictions #1 and #2. Another
limitation of these studies is that they are likely to underestimate
the true number of DMIs for two reasons. First, the introgressed
genomic segments typically contain many genetic differences.
For example, the individual segments introgressed in Moyle and
Nakazato (2010) included approximately 2–4% of the genome,
and likely contained hundreds of genes. Second, individual
alleles might participate in multiple DMIs, specially if complex
DMIs are common.

The third approach tests prediction #1 of the Orr model: that
the number of simple DMIs snowballs. Consider two species, 1
and 2, diverged at k loci. If an allele, X2, at one of these loci (X)
is known to be deleterious in species 1 but is fixed in species 2,
then species 2 must carry compensatory alleles at one or more
loci (Y2, Z2, . . .) that are not present in species 1 (which carries
alleles Y1, Z1, . . . at those loci). In other words, there must be a
DMI involving the X2 and Y1, Z1, . . . alleles.

Following Welch (2004), we define P1 as the proportion of
the k fixed differences between the species where the allele from
one species is deleterious in the other species. For example,
Kachroo et al. (2015) replaced 414 essential genes of the yeast
Saccharomyces cerevisiae with their human orthologs. Over half
of the human genes (P1 = 57%) could not functionally replace
their yeast counterparts.

Welch (2004) has argued that estimates of P1 can be used to
test the Orr model if two additional conditions are met. If each
allele participates in at most one DMI, then we have P1 = Ik/k.
If, in addition, P1 is entirely based on simple DMIs, then it is
expected to increase linearly with genetic distance according to
the Orr model (Equation 2)

P1 =
(k− 1)p

2
. (3)

Interestingly, P1 can be estimated without studying hybrids
directly. Kondrashov et al. (2002) and Kulathinal et al. (2004)
estimated P1 in mammals and insects, respectively. Surprisingly,
both studies reported that P1 ≈ 10% and is constant over broad
ranges of genetic distances (e.g., human compared to either
nonhuman primates or fishes, Kondrashov et al. 2002). These
results are inconsistent with prediction #1 of the Orr model
(Welch 2004; Fraïsse et al. 2016). The results of the second and
third approaches give inconsistent results, a paradox first noted
by Welch (2004). However, the third approach is less direct
because it relies on two additional assumptions that have not
been tested.
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One common limitation to all approaches is that they focus
on testing predictions of the Orr model, without testing its as-
sumptions (e.g., assumption #1, constant p). Here we use a com-
putational model of RNA folding (Schuster et al. 1994; Lorenz
et al. 2011) to test both predictions and assumptions of the Orr
model. The RNA folding model makes satisfactory predictions
of the secondary structures of real RNA molecules (Mathews
et al. 1999; Doshi et al. 2004; Lorenz et al. 2011) and has been used
to study other evolutionary consequences of epistasis, including
robustness (van Nimwegen et al. 1999; Ancel and Fontana 2000),
evolvability (Wagner 2008; Draghi et al. 2010), and the rate of
neutral substitution (Draghi et al. 2011). We model populations
evolving in allopatry on a holey fitness landscape (Gavrilets
2004). In his original model, Orr (1995) made no assumptions
on either the evolutionary causes of genetic divergence, or the
molecular basis of the DMIs arising from this divergence. Thus,
Orr’s predictions should be met in our RNA “world.” Our re-
sults provide mixed support for the Orr model.

Materials and Methods

Genotype and phenotype
The genotype is an RNA sequence. Unless otherwise stated we
used sequences with a length of 100 nucleotides. The phenotype
is the minimum free-energy secondary structure of the sequence
computed using the ViennaRNA package 2.1.9 (Lorenz et al.
2011) with default parameters.

Fitness
The fitness of RNA sequence i is determined using the step
function:

wi =

 1 if βi > α and δi 6 α

0 otherwise
(4)

where βi is the number of base pairs in the secondary structure
of sequence i, δi is the base-pair distance between the structure
of sequence i and the reference structure, and α is an arbitrary
threshold. Unless otherwise stated we used α = 12. The fitness
function in Equation 4 specifies a neutral network (Schuster
et al. 1994; van Nimwegen et al. 1999), a type of holey fitness
landscape (Gavrilets 2004) (Figure 1).

Evolution
Burn-in period: We begin by picking a random viable RNA se-
quence, define its secondary structure as the reference, and allow
it to accumulate 200 random neutral substitutions sequentially,
allowing multiple hits. The resulting sequence is used as the
ancestor. Table S1 shows summary statistics for the ancestral
sequences for α = 12.

The burn-in period is necessary because the initial sequence
is not representative for the fitness landscape. For example, it
has the reference structure (i.e., δi = 0 base pairs), whereas most
sequences in the fitness landscape are δi ≈ α base pairs away
from the reference structure (Table S1).

Divergence: The ancestor is used to found two identical haploid
lineages. The lineages evolve by alternately accumulating a
series of neutral substitutions without gene flow (allopatry) until
they differ at k = 40 sites. At a given step, one of the evolving
sequences is subjected to a random mutation. If the mutation
is neutral, it is allowed to substitute; if it is deleterious, it is

discarded and a new random mutation is tried. The process is
repeated until a neutral mutation is found. At the next step, the
other evolving lineage is subjected to the same process.

At each step, the only sites that are allowed to mutate are
those that have not yet undergone a substitution in either lineage
since the lineages have started to diverge from their common
ancestor. This constraint implies that no more than two alleles
are observed at each site during the course of evolution and that
substitutions are irreversible, in agreement with the assump-
tions of the Orr (1995) model. All types of base-substitution
mutations have equal probability. Insertions and deletions are
not considered.

Detecting DMIs
In this section we use the general terms genotypes, loci and
alleles, instead of sequences, sites and nucleotides.

Two genotypes, 1 and 2, both have fitness w = 1 and differ
at k ≥ 2 loci. Loci are denoted by A, B, C, . . . The alleles of geno-
type 1 are indicated by a subscript 1 (A1, B1, C1, . . .); the alleles
of genotype 2 are indicated by a subscript 2 (A2, B2, C2, . . .). In-
trogression of the A1 and B1 alleles from genotype 1 to genotype

2 is denoted 1 A,B−−→ 2.

Simple DMIs: There is a simple DMI between the A1 and B2
alleles if all of the following 6 conditions are met.

1. The single introgression 1 A−→ 2 results in an inviable geno-
type (Figure 2, step I). On its own, this condition indi-
cates that there is a DMI between the A1 allele and one
or more alleles from genotype 2 at the remaining k− 1 loci
(B2, C2, . . .).

2. The single introgression 2 B−→ 1 results in an inviable geno-
type. On its own, this condition indicates that there is a
DMI between the B2 allele and one or more alleles from
genotype 1 at the remaining k− 1 loci (A1, C1, . . .). Taken
together, conditions #1–2 are not sufficient to indicate that
the A1 and B2 alleles participate in the same DMI.

3. The double introgressions 1 A,B−−→ 2 and 2 A,B−−→ 1 both result
in viable genotypes (Figure 2, step II). In other words, a
second introgression rescues viability. Taken together, con-
ditions #1–3 indicate that the A1 and B2 alleles participate
in the same DMI; the conditions do not, however, rule out
the possibility that the DMI involves additional alleles from
either genotype at the remaining k − 2 loci (C, D, . . .). In
other words, the DMI might be simple or complex.

4. A1 and B2 are not both ancestral (Orr 1995). If conditions
#1–3 are met but condition #4 is violated, then the DMI must
involve a derived allele at an additional locus—i.e., the DMI
is complex—because A1 and B2 were not incompatible in
the ancestor.

5. If both A1 and B2 are derived alleles, this condition is ig-
nored. If A1 is an ancestral allele, then the B2 substitution
occurred after the A2 substitution; if B2 is an ancestral allele,
then the A1 substitution occurred after the B1 substitution
(Orr 1995). If conditions #1–4 are met but condition #5 is
violated then the DMI is complex because A1 and B2 were
not incompatible in the background in which the derived
allele arose.
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Figure 1 Evolution on a holey fitness landscape. Mutational network of RNA sequences. Lines connect sequences of 20 nucleotides
that can be reached by a single nucleotide substitution. Only a tiny fraction of the entire mutational network of ∼ 1012 sequences is
shown. Furthermore, only a few of the 60 mutational neighbors of each sequence are shown. A sequence is viable (yellow, blue or
gray circles) if its secondary structure both has more than α = 2 base pairs and is at most α = 2 base pairs away from the reference
structure (thick yellow circle); a sequence is inviable otherwise (red circles) (Equation 4). Each simulation starts with a burn-in
period where a sequence with the reference structure undergoes 3 neutral substitutions (thick dashed blue lines). After that, the
resulting sequence is used as the ancestor of two lineages that alternately accumulate neutral substitutions until they have diverged
at k = 8 sites (thick solid blue lines).
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Figure 2 Detecting DMIs. To find simple DMIs, we use an
introgression–rescue assay where we introgress one diverged

allele between the two lineages (step I: 1 A−→ 2), and if this
substitution results in an inviable genotype (red), we try to

rescue it with a second introgression (step II: 1 A,B−−→ 2). If the
second introgression rescues viability, we conclude that the
there is a DMI between the first introgressed allele (A1) and
the resident allele at the second locus (B2). The additional
criteria for establishing whether the DMI is simple or complex
are explained in the Materials and Methods.

6. If the latest substitution at either the A or the B locus was
the i-th substitution, and i < k, then conditions #1–3 are
also met in the genotypes present immediately after the
i-th substitution. If conditions #1–5 are met but condition
#6 is violated then the DMI is complex because A1 and B2
were not incompatible in the background in which the latest
derived allele arose.

Complex DMIs: Imagine that condition #1 for a simple DMI is

met: a single introgression 1 A−→ 2 results in an inviable genotype.
As explained above, this is indicative of a DMI involving the A1
allele. This DMI is complex if any of the following 4 conditions
are met.

7. It satisfies conditions #2–3 for a simple DMI but violates
one or more of conditions #4–6.

8. The double introgression 1 A,B−−→ 2 rescues viability, but the

single introgression 2 B−→ 1 results in a viable genotype (i.e.,
condition #2 is violated).

9. The double introgression 1 A,B−−→ 2 rescues viability, but

the double introgression 2 A,B−−→ 1 results in an inviable
genotype (i.e., condition #3 is violated).

10. There is no double introgression of the form 1 A,B−−→ 2 that
rescues viability (i.e., condition #3 is violated).

A DMI is also complex if it satisfies the following condition:

11. The introgression of 1 < i < k alleles (e.g., 1 A,B,...−−−→ 2)
results in an inviable genotype, but all the introgressions of
each individual allele and of any combination of between
2 and i− 1 of the alleles result in a viable genotype. This
condition indicates that the i alleles participate in a complex
DMI of order n > i + 1.

Assays

Number of simple DMIs: To count simple DMIs in our simula-
tions, we introgress nucleotides between the two sequences at
each of the k divergent sites, in both directions. Every time an
introgression results in an inviable genotype (condition #1), we
look for another introgression in the opposite direction that also
results in an inviable genotype (condition #2). We then test both
double introgressions involving these alleles to test for condition
#3. If we find a pair of alleles satisfying conditions #1–3, we test
for conditions #4–6 directly. We count simple DMIs after every
substitution when k > 2.

Number of complex DMIs: The criteria described above (condi-
tions #7–11) allow us to detect complex DMIs. However, count-
ing them for highly diverged sequences (high k) is virtually
impossible for two reasons. First, the number of high-order in-
trogressions required is enormous. Second, as the conditions
#1–3 for detecting simple DMIs highlight, establishing that alle-
les participate in the same DMI requires additional introgressions.
For example, if alleles A1 and B1 from population 1 are incom-
patible with allele C2 from population 2, then both the double

introgression 1 A,B−−→ 2 and the single introgression 2 C−→ 1 result
in an inviable genotype. However, showing that the 3 alleles are
involved in the same DMI of order n = 3 would require demon-

strating that the triple introgressions 1 A,B,C−−−→ 2 and 2 A,B,C−−−→ 1
both result in viable genotypes.

Thus, without conducting “rescue” introgressions, the intro-
gressions in both directions will tend to overestimate the num-
ber of complex DMIs. To avoid this problem, we estimate the
number of complex DMIs through all single, double and triple
introgressions in one direction only (e.g., from population 1 to
population 2). For the single introgressions, we count complex
DMIs using conditions #7–10 (these conditions require perform-
ing introgressions in both directions, but only DMIs detected
from an introgression in one direction are counted). For double
and triple introgressions, we use condition #11.

The resulting count of complex DMIs will still underestimate
the true number for two reasons. First, if the introgressed alleles
participate in more than one complex DMI, an introgression test
can only detect a single DMI (this limitation does not apply to
simple DMIs). Second, complex DMIs that can only be detected
by introgressing four or more alleles will not be detected.

Proportion of single introgressions involved in a DMI: We use
the single introgression data to calculate P1, the proportion of
the 2k single introgressions at diverged sites (in both directions)
that result in an inviable sequence (Welch 2004). Both simple
and complex DMIs are expected to influence P1.

DMI network: The simple DMIs that might, potentially, affect
a sequence can be computed exhaustively by measuring the
fitness of all possible single and double mutants derived from
the sequence. For every pair of sites, there are 9 combinations
of double mutants. A potential simple DMI is defined as an
inviable double mutant between mutations that are individually
neutral. We summarize the pattern of interactions between sites
using an undirected network where the vertices are sites and
the edges represent the existence of at least one potential simple
DMI between them. The resulting network is an example of the
networks of interactions described by Orr and Turelli (2001) and
Livingstone et al. (2012).
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We measure the degree of similarity between two DMI net-
works X and Y using the Jaccard index

J =
|X ∩Y|
|X ∪Y| , (5)

where |X ∩ Y| is the number of edges shared between the two
networks, |X ∪ Y| is the sum of |X ∩ Y| and the numbers of
edges unique to X and Y, and there is a one-to-one correspon-
dence between the vertices of X and Y (i.e., between the sites
in the corresponding sequences). J varies between 0 (the two
networks have no edges in common) and 1 (the two networks
are identical).

Reproductive isolation: The degree of RI between two se-
quences is defined as

RI = 1− wR ,

where wR is the mean fitness (Equation 4) of all possible 198
recombinants resulting from a single crossover between the se-
quences.

“Holeyness” of the fitness landscape: For each simulation, we
took the ancestor and each of the k = 40 genotypes generated
during the course of evolution and measured the proportion
of their single mutant neighbors (300 per sequence) that are
inviable, excluding the 41 original sequences. This estimates
the local holeyness of the fitness landscape traversed by the
diverging lineages.

Direct simulation of the Orr model

We also simulate the accumulation of DMIs following the Orr
(1995) model. An ancestral genotype has multiple loci and is
used to found two identical haploid lineages. The lineages are
allowed to evolve by alternately accumulating neutral substitu-
tions (Figure 3).

Lineage 1 Lineage 2

k = 0 A0 B0 C0 D0 . . . A0 B0 C0 D0 . . .

k = 1 A1 B0 C0 D0 . . . A0 B0 C0 D0 . . .

k = 2 A1 B0 C0 D0 . . . A0 B2 C0 D0 . . .

k = 3 A1 B0 C1 D0 . . . A0 B2 C0 D0 . . .

k = 4 A1 B0 C1 D0 . . . A0 B2 C0 D2 . . .

Figure 3 Sequence evolution in a direct simulation of the Orr
model showing the first k = 4 substitutions. Only 4 loci are
shown, denoted by A–D. Ancestral alleles are indicated by
subscript 0. Derived alleles are shown in bold and indicated
by subscripts 1 or 2 depending on the lineage.

After the k-th substitution, simple DMIs are sampled at ran-
dom with probability pk from all pairs of alleles consisting of
the latest derived allele paired with any of the k− 1 ancestral
or derived alleles from the other population at loci that have
previously undergone substitutions in either population. For
example, when k = 4 the new possible simple DMIs are: D2/A1,
D2/B0, and D2/C1 (Figure 3).

Statistical analyses
All statistical analyses were conducted with R version 3.3.0 (R
Core Team 2016). Partial rank correlations were calculated using
the “ppcor” package (Kim 2015).

Data availability
The software used to run all simulations was
written in Python 2.7 and is available at
https://github.com/Kalirad/RNA_folding_model_of_DMIs.
The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully within
the article.

Figure 4 Simple DMIs do not snowball in the RNA folding
model. We fitted the snowball model (Equation 2) and a linear
model (Equation 6) to each run from three kinds of simula-
tions: simulations of the RNA folding model (“RNA”), direct
simulations of the Orr model (“Snowball”) with values of p
estimated by fitting the model in Equation 2 to each RNA fold-
ing simulation (Figure S1A), and direct simulations of the Orr
model (“Linear”) with values of pk from Equation 7 estimated
by fitting the model in Equation 6 to each RNA folding simula-
tion (Figure S1B). Red segments show the proportions of runs
providing stronger support for the snowball model; yellow
segments show the proportions of runs providing stronger
support for the linear model; gray segments show the propor-
tions of runs providing approximately equal support for both
models. Each bar is based on 103 stochastic simulations. The
level of support for the two models was evaluated for three
different ∆AIC thresholds.

Results

Simple DMIs do not snowball in the RNA folding model
The Orr (1995) model predicts that the number of simple DMIs,
Ik, should increase faster than linearly with the number of substi-
tutions, k. We tested this prediction (#1) using 103 evolutionary
simulations with the RNA folding model. For each simulation,
we fitted two models: the snowball model in Equation 2 and a
linear model of the form

Ik = (k− 1)b , (6)

where b is the slope. The k− 1 term ensures that I1 = 0, as in the
snowball model. Both models have a single parameter that we
estimated using the method of least squares.
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We compared the level of support for each model using
Akaike’s Information Criterion (AIC). If the difference in the
AIC values (∆AIC) was greater than a threshold, we concluded
that there was stronger support for the model with the lower
AIC. Setting the ∆AIC threshold at 2, 41.9% of RNA folding
simulations provided stronger support for the snowball model,
49.1% provided stronger support for the linear model, and 9.0%
provided approximately equal support for both models (Fig-
ure 4). Increasing the ∆AIC threshold did not affect this result
qualitatively (Figure 4).

To evaluate the extent to which the lack of support for the
snowball model was caused by random noise in the simulations
we conducted 103 direct simulations of a snowball process and
103 direct simulations of a linear process. As expected, snow-
ball simulations provided stronger support for the snowball
model and linear simulations provided stronger support for the
linear model (Figure 4). RNA folding simulations showed a
pattern of relative support for the snowball and linear models
that more closely resembled that of the direct simulations of a
linear process (Figure 4).

The number of simple DMIs in the RNA folding simulations
accumulated at a rate approximately proportional to k1.3 (Figure
5A; Table S2, c2). Thus, it was more closely approximated by the
linear model than by the snowball model, in agreement with the
AIC analysis. We conclude that prediction #1 of the Orr model
was not met in most RNA folding simulations.

The probability that a simple DMI appears is approximately
constant in the RNA folding model
What explains the lack of support for a snowball effect in simple
DMIs in the RNA folding simulations? One possibility is that p
itself evolved, contrary to assumption #1 of the Orr model.

If p declines with divergence according to the relationship

pk =
b
k

, (7)

where b is a positive constant, and we substitute p by pk in
Equation 1, the linear model in Equation 6 is a solution to the
resulting difference equation (assuming I1 = 0). To test whether
p changed as described by Equation 7, we measured it directly
in each simulation as pk = ∆I/k, where ∆I is the number of new
simple DMIs appearing as a result of the (k + 1)-th substitution
that involve the latest derived allele (see Equation 1). We found
that, although pk declined with k, the trend did not follow Equa-
tion 7. Indeed, when k & 10, pk was approximately constant
(Figure 5B).

Simple DMIs do not persist indefinitely in the RNA folding
model
The previous analysis also revealed that fitting the snowball
model to the RNA folding data underestimated the true value
of p by approximately 3-fold (Figure 5B). This discrepancy in-
dicates that a more fundamental assumption of the Orr model
may be violated in the RNA folding model: that simple DMIs,
once they have arisen, persist indefinitely (assumption #4). This
assumption was not stated explicitly by Orr (1995) and has never,
to our knowledge, been called into question.

To test assumption #4, we estimated the DMI networks of
sequences as they evolved in our RNA folding model. Figure 6A
shows an example of an RNA sequence evolving on a holey fit-
ness landscape. Initially the sequence displays potential simple
DMIs between 21 pairs of sites (Figure 6C). Figure 6B illustrates

Figure 5 Simple DMIs do not snowball in the RNA folding
model. (A) Evolution of the number of simple DMIs, Ik, as two
populations diverge by accumulating substitutions, k. Values
are means of 103 runs of three different kinds of stochastic
simulations: “RNA,” simulations of the RNA folding model
(blue); “snowball,” direct simulations of the Orr model with
constant pk estimated as explained in (B) (red); “linear,” direct
simulations of the Orr model with declining pk estimated as
explained in (B) (yellow). (B) Evolution of the probability, pk,
that there is a simple DMI between the latest derived allele
after the (k + 1)-th substitution and one of the k alleles at the
loci that have previously undergone substitutions. The blue
line (“RNA”) shows the values of pk estimated at each sub-
stitution directly from the RNA folding simulations. The red
line (“Snowball”) shows the values of p estimated by fitting
the model in Equation 2 to each RNA folding simulation (Fig-
ure S1A). The yellow line (“Linear”) shows the values of pk
from Equation 7 based on estimates of b obtained by fitting the
model in Equation 6 to each RNA folding simulation (Figure
S1B). Values are means of 103 simulations. Shaded regions
indicate 95% confidence intervals, CIs.
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Figure 6 A single substitution can dramatically rearrange the
network of potential DMIs. (A) The 20 nucleotide long RNA
sequence on the left acquires a neutral U→A substitution at
position 18 (blue). The holey fitness landscape is defined by
α = 2 (Equation 4). The secondary structure of the sequence
on the left is the reference (δi = 0 base pairs). The structure
on the right is δi = 2 base pairs away from the reference. (B)
There is a potential simple DMI between positions 5 and 12
for the sequence on the left. A double mutant at those posi-
tions (5: A→G, 12: C→G, red) makes the structure inviable
(δi = 11 base pairs), even though the single mutations are
neutral (not shown). However, a single substitution causes
the potential simple DMI to disappear in the sequence on the
right, although the single mutations remain neutral in the new
background (not shown). In other words, the substitution
causes the simple DMI to become complex. (C) DMI networks
of the sequences in (A). Vertices correspond to positions in the
sequences. An edge in the network on the left indicates that
there is at least one potential simple DMI between the two
sites (positions 4, 13 and 15–17 have no potential DMIs in ei-
ther network and are not shown). Black edges in the network
on the right are shared between the two networks. Blue edges
exist only in the network on the right and indicate the appear-
ance of new potential simple DMIs between sites caused by
the substitution. Gray and red edges indicate disappearance
of potential simple DMIs in the network on the right. Gray
edges indicate disappearances due to the constituent alleles
no longer being neutral in the new background. Red edges
indicate disappearances caused by complexification; the DMI
discussed in (B) is an example (5–12 edge). The Jaccard index
(Equation 5) between the two networks is J = 0.205.

a potential simple DMI between positions 5 and 12. We refer to
these simple DMIs as potential because if two diverging lineages
each accumulate one of the substitutions underlying one of these
DMIs, a simple DMI between the lineages will appear.

The Orr model assumes that the DMI network is static: as
populations evolve they actualize potential DMIs (for an al-
ternative, but equivalent, interpretation of DMI networks see
Livingstone et al. 2012). However, DMI networks are not static
in the RNA folding model. After a single neutral substitution, 13
pairs of sites (62%) lost all potential simple DMIs, and potential
DMIs appeared between 18 new pairs of sites (Figure 6C).

The “disappearance” of a potential DMI can occur in one
of two ways. First, the substitution may cause the mutations
involved in the simple DMIs to become deleterious so that they
can no longer participate in potential simple DMIs. A disap-
pearance of this kind means that a potential simple DMI is no
longer accessible through independent substitution in two lin-
eages because one of the substitutions cannot take place. Thus,
such disappearances do not contradict assumption #4 of the Orr
model. The majority of disappearances in Figure 6C (gray lines)
are of this kind.

The second kind of disappearance occurs when the substitu-
tion modifies the interaction between previously incompatible
alleles (red lines in Figure 6C). In other words, the simple DMIs
become complex. The potential simple DMI between positions
5 and 12 shown in Figure 6B disappears in this way. This kind
of disappearance—complexification—implies that some simple
DMIs may not persist indefinitely. In other words, assumption
#4 is not always met in the RNA folding model.

The DMI networks corresponding to the evolving lineages
in the RNA folding simulations summarized in Figure 5 also
change dramatically relative to the ancestor as a result of succes-
sive substitutions (Figure S2). This indicates that complexifica-
tion may be occurring in these simulations as well. In the next
section we explore the consequences of the complexification of
simple DMIs for the snowball effect.

The modified Orr model
We incorporate the dynamic nature of simple DMIs by extending
the Orr (1995) model in Equation 1

Ik+1 = (1− q)Ik + kp , (8)

where q is the probability that a simple DMI present after k
substitutions becomes complex after the next substitution. As-
suming I1 = 0, the solution to Equation 8 is

Ik =
p
[
(1− q)k + kq− 1

]
q2 . (9)

This prediction assumes that both p and q remain constant as
populations diverge.

The original Orr model is a special case of the modified model
when q = 0. When q > 0, the increase in the number of simple
DMIs is given by

∆I = Ik+1 − Ik =
p
q

[
1− (1− q)k

]
. (10)

This equation has two consequences. First, the increase in the
number of simple DMIs eventually becomes linear with a slope
of approximately p/q when k is sufficiently large. Second, if q is
larger, the “linearization” of Equation 9 occurs for lower values
of k. Both patterns are illustrated in Figure 7A, which compares

8 Ata Kalirad et al.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2016. ; https://doi.org/10.1101/076232doi: bioRxiv preprint 

https://doi.org/10.1101/076232
http://creativecommons.org/licenses/by-nc-nd/4.0/


the accumulation of simple DMIs under the Orr model with
p = 0.04 (q = 0), and that under the modified Orr model with
the same value of p and increasing values of q.

Figure 7 The RNA folding simulations agree with the modi-
fied Orr model. (A) Evolution of the number of simple DMIs
under the modified Orr model. Responses for p = 0.04 and
different values of q. The dashed line shows a slope of p/q for
q = 0.3. (B) Mean responses of 103 runs of four different kinds
of stochastic simulations: “RNA,” simulations of the RNA
folding model (blue circles, same data as in Figure 5A); “Orr,”
direct simulations of the Orr model with with constant values
of p estimated directly from each RNA folding simulation (Fig-
ure 8) (red); “modified,” direct simulations of the modified Orr
model with constant values of p and q estimated directly from
each RNA folding simulation (Figure 8) (orange); “modified
(evolving),” direct simulations of the modified Orr model with
evolving trajectories of pk and qk estimated directly from each
RNA folding simulation (yellow, dashed). Shaded regions
indicate 95% CIs.

The RNA folding simulations agree with the modified Orr
model
To test whether the complexification of simple DMIs explains the
results of the RNA folding simulations we measured q directly
in our simulations as qk = 1− I′k/Ik, where Ik is the number
of simple DMIs present after the k-th substitution, and I′k is the
number of simple DMIs present after the (k + 1)-th substitution
that do not involve the latest derived allele.

The modified Orr model predicts that simple DMIs will ac-
cumulate approximately linearly when q is large relative to p
(Equation 10). The values of q were, on average, 3-fold higher
than the values of p (Figure 8). Furthermore, the q/p ratio

Figure 8 Distributions of the parameters of the modified Orr
model in the RNA folding simulations: p, the probability that
a simple DMI arises, and q, the probability that a simple DMI
becomes complex. One- and two-dimensional kernel density
estimates based on 103 stochastic simulations. For each sim-
ulation we calculated pk and qk after every substitution (k).
We then estimated an overall value of p and q as weighted av-
erages; values of pk and qk were weighted by k(k− 1) and Ik,
respectively. The means of each distribution were p̄ = 0.042
and q̄ = 0.107.

was a good predictor of whether RNA folding simulations sup-
ported the linear or the snowball model (Figure 4). When the
∆AIC threshold was set at 2, q/p was 3.36± 0.22 (mean and 95%
confidence intervals, CIs) in runs that provided stronger sup-
port for the linear model, and 2.41± 0.12 in runs that provided
stronger support for the snowball model (Wilcoxon rank sum
test, P < 10−6). Thus, the approximately linear response in the
number of simple DMIs in the RNA folding simulations can be
explained by the modified Orr model.

To evaluate the extent to which the modified Orr model can
account for the lack of support for a snowball effect in simple
DMIs in our RNA folding simulations, we conducted 103 direct
simulations of the modified Orr model over k = 40 substitutions
assuming values of p and q estimated directly from the RNA
folding data (Figure 8). The support for the snowball and linear
models provided by these direct simulations of the modified
Orr model was similar to that provided by the RNA folding
simulations (Figure S3). These results, in combination with
those on the q/p ratio, indicate that the complexification of
simple DMIs explains the RNA folding results.

Figure 7B shows that the modified Orr model (orange) ap-
proximates the RNA folding data better than the Orr model (red).
However, the fit is far from perfect. The lack of fit is caused by
the assumptions that both p and q are constant as populations
diverge. Neither assumption was strictly met by the RNA fold-
ing data: p decreased and q increased with k, specially when
k . 10 (Figures 5B and S4, respectively). When we allowed p
and q to vary as they did in the RNA folding simulations, direct
simulations of the modified Orr model matched the RNA fold-
ing data perfectly (Figure 7B). We conclude that the modified
Orr model explains the RNA folding results for simple DMIs,
provided we relax the assumptions that p and q are constant.
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Figure 9 Complex DMIs snowball in the RNA folding model.
(A) DMIs inferred through single, double, and triple intro-
gressions. (B) Total number of complex DMIs (green) com-
pared to number predicted if all complex DMIs originate from
the “complexification” of simple DMIs and p = 0.042 and
q = 0.107 (red). Values are means of 103 stochastic simulations.
Shaded regions indicate 95% CIs.

Complex incompatibilities snowball in the RNA folding model
So far we have focused exclusively on simple DMIs. The modi-
fied Orr model predicts that complex DMIs should exist if q > 0
because they will be generated continuously from simple DMIs.
Furthermore, if q is high, the number of complex DMIs should
also be high. We tested this prediction in the RNA folding model
and found that complex DMIs accumulated in much higher num-
bers than simple ones: after k = 40 substitutions there were ap-
proximately 5-fold more complex DMIs than simple ones (Figure
9).

The Orr model predicts that DMIs of order n are expected to
accumulate at a rate approximately proportional to kn (predic-
tion #2: Orr 1995; Welch 2004). Complex DMIs inferred through
single introgressions, like simple DMIs, did not show strong sup-
port for a snowball effect (Figures 9A and S5; Table S2). However,
complex DMIs inferred through double and triple introgressions
did snowball, in broad agreement with prediction #2 of the Orr
model (Figures 9A and S5; Table S2).

DMIs detected by introgressing i alleles will have order
n > i + 1. Thus, prediction #2 of the Orr model leads to the
prediction that DMIs inferred by introgressing more alleles are
expected to accumulate according to a higher exponent. Our
data confirm this prediction qualitatively but not quantitatively:
the exponent (c2) increased with the number of introgressed al-
leles (i), but c2 � i + 1 (Figure 9A; Table S2). Allowing multiple
substitutions to occur per site during divergence did not change
these results (Figure S6; Table S3). The modified Orr model sug-
gests a possible explanation for these results: complexification
affects the accumulation of DMIs of all orders.

Did the complex DMIs in the RNA folding simulations origi-
nate from the complexification of simple ones or did they appear
de novo? If all complex DMIs arise through complexification,
then we would expect their number to increase according to the
difference between Equations 2 and 9. Figure 9B shows that, al-
though some complex DMIs likely arose from complexification,
many complex DMIs must have arisen de novo.

Figure 10 Reproductive isolation (RI) does not snowball in
the RNA folding model. Values are means of 103 stochastic
simulations. Shaded regions indicate 95% CIs.

Reproductive isolation does not snowball in the RNA folding
model
Since most DMIs were complex and complex DMIs snowballed,
RI would be expected to snowball in the RNA model (prediction
#3). However, we found that RI showed a kind of inverse snow-
ball effect—a “slowdown” with divergence. This pattern has
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been found in many organisms (e.g., Gourbière and Mallet 2010;
Giraud and Gourbière 2012). The slowdown was caused by the
fact that RI increased slower than linearly with the number of
both simple and complex DMIs (Figure S7). Thus, DMIs did
not act independently of each other on RI. One likely reason for
this non-independence is that the total number of DMIs (simple
and complex) among highly diverged sequences is high enough
that a substantial fraction of individual sites must participate in
multiple DMIs (Figure 9).

The structure of the fitness landscape influences the accumu-
lation of DMIs
Figure 8 shows two striking patterns about the parameters of
the modified Orr model. First, p and q were strongly positively
correlated with each other (Spearman’s rank correlation coeffi-
cient: ρ = 0.466, P < 10−6), indicating that the origination and
complexification of simple DMIs are not independent. Second,
the parameters varied extensively between simulations. What
caused this variation? All simulations took place on the same
sequence space, but with different fitness landscapes. Since all
fitness landscapes were “holey” (Gavrilets 2004), it follows that
the exact pattern of “holeyness” might have had an effect on
the evolutionary dynamics. One component of the holeyness of
a fitness landscape is the proportion of inviable single mutant
neighbors of all the sequences generated during the course of
evolution. This measure of the local holeyness of the fitness
landscape was strongly positively correlated with both p and q
(ρ = 0.338 and 0.210, respectively; both, P < 10−6) (Figures S8A
and S8C).

What determines holeyness? The fitness landscapes in our
RNA folding model have two determinants: the reference struc-
ture and the value of α (Equation 4). RNA secondary structures
can differ in many ways, such as the number and size of base pair
stacks, interior loops, and hairpin loops (Schuster et al. 1994). The
relationship between these structural features and holeyness is
difficult to predict a priori. For a given reference structure, lower
values of α are expected to specify fitness landscapes with more
inviable sequences (i.e., holes) in them. To evaluate the extent
to which these determinants of the fitness landscape influence
holeyness, we ran 103 independent evolutionary simulations
at each of another four values of α. We found that holeyness
was influenced by both determinants of the fitness landscape: it
was negatively correlated with α (ρ = −0.583; P < 10−6; Figure
S9A), and positively correlated with the number of base pairs in
the reference sequence, β (ρ = 0.184; P < 10−6; Figure S9B).

The value of α also influenced both the origination and com-
plexification of simple DMIs independently of holeyness. Al-
though α was negatively correlated with holeyness (Figure S9A),
which in turn was positively correlated with both p and q (Fig-
ures S8A and S8C), α was positively correlated with both p and
q (Figures S8B and S8D; ρ = 0.101 and ρ = 0.203 for p and q,
respectively; both, P < 10−6). The correlations became stronger
when we corrected for the effect of holeyness (partial rank cor-
relation coefficients: ρ = 0.290 and ρ = 0.302 for p and q, re-
spectively; both, P < 10−6). Interestingly, changing the value
of α had only small effects on the accumulation of simple and
complex DMIs (Figure S10).

Discussion

We have tested both predictions and assumptions of the Orr
model using a computational model of RNA folding. Our re-
sults provide mixed support for the snowball effect (Table 1).

Simple DMIs accumulated linearly, contrary to prediction #1
of the Orr model. To elucidate why the snowball appeared to
be “missing” from the RNA folding simulations we tested two
assumptions of the Orr model. First, that simple DMIs arise
with constant probability, p (assumption #1). Although we did
detect a decline in p, it was not sufficient to account for the
approximately linear pattern of accumulation of simple DMIs.
Second, we tested assumption #4 that simple DMIs, once they
have arisen, persist indefinitely. We found that this assumption
was violated in the RNA folding model. Instead, simple DMIs
had a tendency to become more complex as further substitutions
took place. We proposed a modified Orr model incorporating
the complexification of simple DMIs. The pattern of accumula-
tion of simple DMIs in the RNA folding simulations agrees with
this model.

In contrast to simple DMIs, the number of complex DMIs did
snowball in the RNA folding simulations, in qualitative agree-
ment with prediction #2 of the Orr model. However, the pattern
of accumulation of complex DMIs did not agree with the predic-
tion quantitatively. Despite the snowballing of complex DMIs,
RI did not snowball (prediction #3 of the Orr model) because
DMIs did not act independently of each other on RI (assumption
#3). These results indicate that RI is a poor indicator for the
number of DMIs in our model. Thus, the pattern of change in RI
with divergence is unsuitable to test the Orr model (Mendelson
et al. 2004; Johnson 2006; Gourbière and Mallet 2010; Presgraves
2010a). In conclusion, the RNA folding model provided qualita-
tive support for the central prediction of the Orr model that the
total number of DMIs snowballs. However, our results failed to
confirm certain predictions of the Orr model, as well as some of
its assumptions.

An earlier test of the Orr model using a computational model
of gene networks also found no evidence for a snowball effect in
RI (prediction #3), and concluded that some assumptions of the
Orr model were not met (Palmer and Feldman 2009). However,
the extent to which the complexification of DMIs influenced their
results is unclear because they did not attempt to investigate the
dynamics of the DMIs underlying RI.

In one direct empirical test of the snowball effect, DMIs affect-
ing pollen sterility were found to accumulate linearly, whereas
DMIs affecting seed sterility were found to accumulate faster
than linearly (Moyle and Nakazato 2010). Our results suggest a
possible explanation for the discrepancy: faster complexification
(i.e., higher q) of pollen sterility DMIs. Sherman et al. (2014)
found evidence of greater complexity of the DMIs involved in
pollen sterility.

If all DMIs are simple and individual loci are at most involved
in one DMI, then the proportion of the fixed differences between
species where an allele from one species is deleterious in an-
other species, P1, is expected to increase linearly with genetic
distance (Equation 3; Welch 2004). This prediction is contra-
dicted by the observation that P1 is approximately constant over
large genetic distances (Kondrashov et al. 2002; Kulathinal et al.
2004)—a result we call Welch’s paradox. Our results contradict
both assumptions behind the prediction that P1 should increase
linearly with genetic distance (Welch 2004): most DMIs are com-
plex, and individual loci are involved in multiple DMIs. These
effects are expected to act in opposite directions: the former
would cause P1 to increase faster than linearly with k, whereas
the latter would cause P1 to increase slower than linearly with k.
In the RNA folding simulations, P1 increased with divergence
but did so slower than linearly (Figure S11), indicating that the
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Table 1 The RNA folding model provides mixed support for the Orr model

Test Confirmed? (Data)

Assumption

1. p constant with divergence Yes, roughly (Figure 5B)

2. DMIs have small effects on RI Yes (Figure 10)

3. DMIs have independent effects on RI No (Figure S7)

4. Simple DMIs persist indefinitely No (Figures 6, 7B and S2)

Prediction

1. Simple DMIs snowball No (Figures 4 and 5A, Table S2)

2. Complex DMIs snowball Yes, roughly (Figure 9, Table S2)

3. RI snowballs No (Figure 10)

lack of independence between DMIs dominates the evolution of
P1. These results suggest a possible resolution for Welch’s para-
dox: P1 can be constant even if DMIs snowball if individual loci
participate in multiple DMIs. Alternative resolutions of Welch’s
paradox have been proposed (e.g., Fraïsse et al. 2016).

We found that complex DMIs are more abundant than simple
DMIs in the RNA folding model. Complex DMIs have been
discovered in many introgression studies (reviewed in Wu and
Palopoli 1994; Fraïsse et al. 2014). For example, Orr and Irving
(2001) investigated the sterility of male F1 hybrids between the
USA and Bogota subspecies of D. pseudoobscura and found that
it is caused by an DMI between loci in both chromosomes 2
and 3 of USA and loci in at least three different regions of the X
chromosome of Bogota—a DMI of order n > 5. More generally,
high-order epistasis appears to be common (Weinreich et al. 2013;
Kondrashov and Kondrashov 2015; Taylor and Ehrenreich 2015).
However, the relative prevalence of simple and complex DMIs
in nature is unclear because complex DMIs are more difficult to
detect.

Two explanations for the abundance of complex DMIs have
been proposed. First, that more complex DMIs evolve more
easily than simpler DMIs because they allow a greater propor-
tion of the possible evolutionary paths between the common
ancestor and the evolved genotypes containing the DMI (Cabot
et al. 1994; Orr 1995). Fraïsse et al. (2014) tested this mechanism
using simulations and concluded that it is unlikely to be effec-
tive. Second, that the number of combinations of n loci increases
with n (Orr 1995). This explanation is difficult to evaluate in the
absence of more information on the probability of origination of
complex DMIs. Our results indicate that that probability could
be higher than previously thought because complex DMIs are
continuously generated from simple DMIs. Indeed, our results
suggest a new explanation for the abundance of complex DMIs:
that DMIs have a tendency to become increasingly complex with
divergence.

Our study has identified one determinant of the origination
and complexification of DMIs: the holeyness of the fitness land-
scape. In a holey fitness landscape, our measure of holeyness is
inversely related to the mutational robustness of the genotypes
assayed (van Nimwegen et al. 1999; Ancel and Fontana 2000). In
our model (as in Orr’s) “populations” are assumed to contain a
single genotype; periodically, a mutant genotype arises and ei-
ther goes to fixation or disappears. In such a model, mutational
robustness is not expected to evolve (van Nimwegen et al. 1999).

Individual-based simulations would allow us to investigate the
intriguing possibility that factors that influence the evolution of
mutational robustness (e.g., mutation rate, recombination rate:
Wilke et al. 2001; Gardner and Kalinka 2006; Azevedo et al. 2006)
may influence the accumulation of DMIs.

Perhaps the central insight from our study is that simple
DMIs have a tendency to become complex. At first glance this
claim might seem absurd. Surely a DMI cannot be simple one
moment and complex the next. The solution to this puzzle
rests, we believe, on the difference between a DMI having a
certain order n and our ability to infer that it has order n through
genetic crosses. Consider the evolving sequences depicted in
Figure 3. Now, imagine that there is a complex DMI of order
n = 3 between the alleles A1, B2, and C0, and that there are
no simple DMIs between pairs of the three alleles (i.e., A1/B2,
A1/C0, and B2/C0). For simplicity, we also assume that none
of the other alleles at the A, B and C loci are involved in DMIs.
The existence of a DMI is defined in the strict sense that any
conceivable genotype containing all alleles involved in the DMI
is inviable (conversely, the absence of a DMI indicates that at
least one of the genotypes containing all alleles involved in the
DMI are viable). Despite the A1/B2/C0 DMI being complex,
after two substitutions (k = 2), our introgression and rescue
tests would detect a nonexistent simple DMI between alleles A1
and B2. Only after the third substitution (k = 3) would the true
complex DMI be inferred. In the language we have been using
so far, the simple DMI would appear to become more complex.

The Orr model assumes that it is possible to tell whether a
DMI is simple or not. However, a strict definition of “DMI of
order n” cannot be applied in practice because the number of
genotypes that would have to be tested is astronomically large
and would have to include mutations that have not even oc-
curred yet. Our protocol for inferring a simple DMI is, as far as
we know, the most exhaustive ever devised (the data summa-
rized in Figure 9A required the construction of approximately
6× 104 introgression genotypes for each individual simulation),
but it cannot infer strict-sense simple DMIs. Strict-sense simple
DMIs may not even exist in reality. The idea of complexifica-
tion of DMIs is a natural consequence of using a more practical,
broad-sense definition of simple DMI.

We believe that our central finding that simple DMIs have a
tendency to become complex is independent of the details of our
model. Other results, such as the rate of accumulation of DMIs,
are likely to be influenced by the details of our model. The extent
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to which the RNA folding model is representative of other types
of epistatic interactions (e.g., in gene networks) is unclear. One
possible criticism is that we used very short sequences and that
these are likely to experience unusually strong epistatic interac-
tions. Orr and Turelli (2001) estimated p ≈ 10−7 in Drosophila,
a much lower value than found in our simulations. However,
an evolution experiment in S. cerevisiae detected a simple DMI
between two lineages that had only accumulated 6 unique muta-
tions each (k = 12) (Anderson et al. 2010). This indicates a value
of p ≈ 0.015, within the range of what we observed in the RNA
folding model (Figure 8). Our approach to testing the Orr model
can be applied to other computational models of biological sys-
tems, such as, transcription-factor binding (Tulchinsky et al. 2014;
Khatri and Goldstein 2015), gene networks (ten Tusscher and
Hogeweg 2009; Palmer and Feldman 2009), and metabolic net-
works (Barve and Wagner 2013).

Our results were robust to a broad range of holey fitness
landscapes defined in the RNA folding model. However, the
holey landscape model makes two strong assumptions about
the fitness landscape: all viable genotypes had the same fitness,
and all low fitness genotypes were completely inviable. Neither
assumption is met universally: many alleles involved in DMIs
appear to have experienced positive selection during their evolu-
tionary history (Presgraves 2010b; Rieseberg and Blackman 2010;
Maheshwari and Barbash 2011), and some DMIs are only mildly
deleterious rather than lethal (Presgraves 2003; Schumer et al.
2014). These assumptions can be relaxed in the RNA folding
model (e.g., Cowperthwaite et al. 2005; Draghi et al. 2011) and in
other models (e.g., Palmer and Feldman 2009; Tulchinsky et al.
2014; Khatri and Goldstein 2015).

Studies like ours can test whether the snowball effect occurs
under well-defined circumstances. However, they cannot test
the reality of the snowball effect; introgression studies remain
the only way to do so (Matute et al. 2010; Moyle and Nakazato
2010; Matute and Gavin-Smyth 2014; Sherman et al. 2014; Wang
et al. 2015).
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