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The Melting Snowball: A Test of the Snowball Model
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ABSTRACT Genetic incompatibilities can emerge as a by-product of genetic divergence. According to Dobzhansky
and Muller, alleles at different loci that have fixed in different genetic backgrounds may be incompatible when brought
together in a hybrid. Orr showed that the number of Dobzhansky–Muller incompatibilities (DMIs) should accumulate
faster than linearly—i.e., snowball—as two lineages diverge. Several studies have attempted to test the snowball model
using data from natural populations. One limitation of these studies is that they have focused on predictions of the
snowball model but not on its underlying assumptions. Here we use a computational model of RNA folding to test both
predictions and assumptions of the snowball model. In this model, two populations are allowed to evolve in allopatry
on a holey fitness landscape. We find that the number of DMIs involving pairs of loci (i.e., simple DMIs) does not
snowball—rather, it increases approximately linearly with divergence. We show that the probability of emergence of a
simple DMI is approximately constant, as assumed by the snowball model. However, simple DMIs can disappear after
they have arisen, contrary to the assumptions of the snowball model. This occurs because simple DMIs become complex
(i.e., involve alleles at three or more loci) as a result of later substitutions. We introduce a modified snowball model—the
melting snowball model—where simple DMIs can become complex after they appear. The melting snowball model can
account for the results of the RNA folding model. We also find that complex DMIs are common and, unlike simple ones,
do snowball. Reproductive isolation, however, does not snowball because DMIs do not act independently of each other.
We conclude that the RNA folding model supports the central prediction of the snowball model that the number of DMIs
snowballs, but challenges some of its underlying assumptions.
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“[It is not] surprising that the facility of effecting a first
cross, the fertility of the hybrids produced, and the
capacity of being grafted together . . . should all run,
to a certain extent, parallel with the systematic affinity
of the forms which are subjected to experiment . . . ”
Darwin (1859)

In the absence of gene flow, the gradual accumulation of diver-
gent genetically based characteristics in different populations

can bring new species into being. Some of these divergent char-
acteristics, known as reproducitve isolating barriers (Johnson
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2006), decrease the level of interbreeding between populations.
As populations diverge, isolating barriers accumulate, and the
level of reproductive isolation (RI) among populations increases
(Coyne and Orr 1989, 1997; Sasa et al. 1998; Edmands 2002; Fitz-
patrick 2002; Presgraves 2002; Lijtmaer et al. 2003; Mendelson
et al. 2004; Bolnick and Near 2005; Johnson 2006; Gourbière and
Mallet 2010; Giraud and Gourbière 2012). Eventually RI reaches
a point where two of these populations are considered distinct
species. Elucidating the precise nature of the relationship be-
tween divergence and RI remains one of the central challenges
in the study of speciation (Gavrilets 2004; The Marie Curie SPE-
CIATION Network 2012; Nosil and Feder 2012; Seehausen et al.
2014).

Dobzhansky (1937) and Muller (1942) proposed a general
mechanism through which genetic divergence can cause RI.
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They noted that, in the absence of gene flow between two pop-
ulations, new mutations that fix at different loci may interact
negatively with one another when brought together in hybrids.
This negative epistasis, or genetic incompatibility, causes the two
populations to become reproductively isolated. Dobzhansky-
Muller incompatibilities (DMIs) have been shown to cause in-
viability or sterility in hybrids between closely related species
(reviewed in Presgraves 2010b; Rieseberg and Blackman 2010;
Maheshwari and Barbash 2011).

Orr (1995) modeled the accumulation of DMIs as popula-
tions diverge. Consider two populations diverged at k loci and
showing Ik simple DMIs. A simple DMI is defined as a negative
epistatic interaction between an allele at one locus in one popu-
lation and an allele at a different locus in the other population.
Orr showed that when the next substitution takes place, the
expected number of simple DMIs is

Ik+1 = Ik + kp , (1)

where p is the probability that there is a simple DMI between
the latest derived allele and one of the k alleles at the loci that
have previously undergone substitutions (from the population
that did not undergo the latest substitution). Assuming I1 = 0,
the solution to Equation 1 is

Ik =
k(k− 1)p

2
. (2)

Equation 2 predicts that the number of simple DMIs will accu-
mulate faster than linearly as a function of divergence, a pattern
Orr (1995) described as “snowballing.” This prediction assumes
that p remains constant as populations diverge.

DMIs involving 3 or more loci, known as complex DMIs
(Cabot et al. 1994), are also expected to snowball but following
different relationships from that in Equation 2: DMIs of order n
are expected to accumulate at a rate approximately proportional
to kn (Orr 1995; Welch 2004).

Several studies have attempted to test the snowball model.
They have employed three different approaches. First, using
postzygotic RI as a proxy for the number of DMIs. For example,
Larcombe et al. (2015) measured the strength of hybrid incompat-
ibility between Eucalyptus globulus and 64 species of eucalypts.
They observed a faster than linear increase in RI with genetic
distance, consistent with the prediction of the snowball model.
Results from other studies using a similar approach have pro-
vided little support for the snowball model (Coyne and Orr
1989, 1997; Sasa et al. 1998; Fitzpatrick 2002; Presgraves 2002;
Lijtmaer et al. 2003; Mendelson et al. 2004; Bolnick and Near 2005;
Gourbière and Mallet 2010; Giraud and Gourbière 2012), lead-
ing some to pronounce the snowball “missing” (Johnson 2006;
Gourbière and Mallet 2010). However, this indirect approach
cannot provide a strong test of the snowball model because it
relies on the untested ancillary assumption of a linear relation-
ship between the number of DMIs and RI. This assumption will
not be met if, for example, DMIs do not act independently on RI
(Orr 1995; Welch 2004).

The second approach to testing the snowball model involves
estimating the number of DMIs directly. For example, Moyle
and Nakazato (2010) used a QTL mapping approach to test
the snowball model in species of Solanum. They introgressed
one or a few genomic segments from one species to another.
When an introgressed segment caused a reduction in fitness,
they concluded that it participated in a DMI. They found that
DMIs affecting seed sterility accumulated faster than linearly, in

agreement with the prediction of the snowball model. However,
DMIs affecting pollen sterility appeared to accumulate linearly,
contrary to the snowball model. Studies following this second
approach (Matute et al. 2010; Moyle and Nakazato 2010; Matute
and Gavin-Smyth 2014; Sherman et al. 2014; Wang et al. 2015) are
likely to underestimate the true number of DMIs for two reasons.
First, the introgressed genomic segments typically contain many
genetic differences. For example, the individual segments intro-
gressed in Moyle and Nakazato (2010) included approximately
2–4% of the genome, and likely contained hundreds of genes.
Second, individual alleles might participate in multiple DMIs,
specially if complex DMIs are common.

The third and final approach is ingenious because it does not
require the direct study of hybrids. Consider two species, 1 and
2, diverged at k loci. If an allele, X2, at one of these loci (X) is
known to be deleterious in species 1 but is fixed in species 2,
then species 2 must carry compensatory alleles at one or more
loci (Y2, Z2, . . .) that are not present in species 1 (which carries
alleles Y1, Z1, . . . at those loci). In other words, there must be a
DMI involving the X2 and Y1, Z1, . . . alleles.

Following Welch (2004), we define P1 as the proportion of
the k fixed differences between the species where the allele from
one species is deleterious in the other species. If each allele
participates at most in one DMI, then we have P1 = Ik/k. This
relationship assumes that p is low. If, in addition, P1 is entirely
based on simple DMIs, then it is expected to increase linearly
with genetic distance according to the snowball model (Equation
2; Welch 2004)

P1 =
(k− 1)p

2
. (3)

Kondrashov et al. (2002) and Kulathinal et al. (2004) estimated P1
in mammals and insects, respectively. Surprisingly, both studies
reported that P1 ≈ 10% and is constant over broad ranges of
genetic distances (e.g., human compared to either nonhuman
primates or fishes, Kondrashov et al. 2002). These results are
inconsistent with the prediction of the snowball model (Welch
2004; Fraïsse et al. 2016).

The tests of the snowball model outlined above give incon-
sistent results. Specifically, the most direct approaches (i.e., the
second and third) give opposite results, a paradox first noted by
Welch (2004). One common limitation to all approaches is that
they focus on testing predictions of the snowball model, without
testing its assumptions (e.g., constant p). Furthermore, each ap-
proach makes additional assumptions that also go untested (e.g.,
DMIs act independently on RI). Here we use a computational
model of RNA folding (Schuster et al. 1994) to test both predic-
tions and assumptions of the snowball model. The RNA folding
model has been used to study other evolutionary consequences
of epistasis, including robustness (van Nimwegen et al. 1999;
Ancel and Fontana 2000), evolvability (Wagner 2008; Draghi et al.
2010), and the rate of neutral substitution (Draghi et al. 2011).
We model populations evolving in allopatry on a holey fitness
landscape (Gavrilets 2004). Our results provide mixed support
for the snowball model.

Materials and Methods

Genotype and phenotype
The genotype is an RNA sequence. Unless otherwise stated we
used sequences with a length of 100 nucleotides. The phenotype
is the minimum free-energy secondary structure of the sequence
computed using the ViennaRNA package 2.1.9 (Lorenz et al.
2011) with default parameters.

2 Ata Kalirad et al.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2016. ; https://doi.org/10.1101/076232doi: bioRxiv preprint 

https://doi.org/10.1101/076232
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1 Evolution on a holey fitness landscape. Mutational network of RNA sequences. Lines connect sequences of 20 nucleotides
that can be reached by a single nucleotide substitution. Only a tiny fraction of the entire mutational network of ∼ 1012 sequences
is shown. Furthermore, only a few of the 60 mutational neighbors of each sequence are shown. A sequence is viable (yellow, blue
or gray circles) if its secondary structure both has more than α = 2 base pairs and is at most α = 2 base pairs away from the
reference structure (yellow circle); a sequence is inviable otherwise (red circles) (Equation 4). Each simulation starts with a burn-in
period where a sequence with the reference structure undergoes 3 neutral substitutions (dashed blue lines). After that, the resulting
sequence is used as the ancestor of two lineages that alternately accumulate neutral substitutions until they have diverged at k = 8
sites (solid blue lines).
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Fitness
The fitness of RNA sequence i is determined using the step
function:

wi =

 1 if βi > α and δi 6 α

0 otherwise
(4)

where βi is the number of base pairs in the secondary structure
of sequence i, δi is the base-pair distance between the structure
of sequence i and the reference structure, and α is an arbitrary
threshold. Unless otherwise stated we used α = 12. The fitness
function in Equation 4 specifies a neutral network (Schuster
et al. 1994; van Nimwegen et al. 1999), a type of holey fitness
landscape (Figure 1; Gavrilets 2004).

Evolution
Burn-in period: We begin by picking a random viable RNA se-
quence, define its secondary structure as the reference, and allow
it to accumulate 200 random neutral substitutions sequentially,
allowing multiple hits. The resulting sequence is used as the
ancestor. Table S1 shows summary statistics for the ancestral
sequences for α = 12.

The burn-in period is necessary because the initial sequence
is not representative for the fitness landscape. For example, it
has the reference structure (i.e., δi = 0 base pairs), whereas most
sequences in the fitness landscape are δi ≈ α base pairs away
from the reference structure (Table S1).

Divergence: The ancestor is used to found two identical haploid
lineages. The lineages evolve by alternately accumulating a
series of neutral substitutions without gene flow (allopatry) until
they differ at k = 40 sites. At a given step, one of the evolving
sequences is subjected to a random mutation. If the mutation
is neutral, it is allowed to substitute; if it is deleterious, it is
discarded and a new random mutation is tried. The process is
repeated until a neutral mutation is found. At the next step, the
other evolving lineage is subjected to the same process.

At each step, the only sites that are allowed to mutate are
those that have not yet undergone a substitution in either lineage
since the lineages have started to diverge from their common
ancestor. This constraint implies that no more than two alleles
are observed at each site during the course of evolution and that
substitutions are irreversible, in agreement with the assump-
tions of Orr’s (1995) model. All types of mutations have equal
probability.

Detecting DMIs
In this section we use the general terms genotypes, loci and
alleles, instead of sequences, sites and nucleotides.

Two genotypes, 1 and 2, both have fitness w = 1 and differ
at k ≥ 2 loci. Loci are denoted by A, B, C, . . . The alleles of geno-
type 1 are indicated by a subscript 1 (A1, B1, C1, . . .); the alleles
of genotype 2 are indicated by a subscript 2 (A2, B2, C2, . . .). In-
trogression of the A1 and B1 alleles from genotype 1 to genotype

2 is denoted 1 A,B−−→ 2.

Simple DMIs: There is a simple DMI between the A1 and B2
alleles if all of the following 6 conditions are met.

1. The single introgression 1 A−→ 2 results in an inviable geno-
type (Figure 2, step I). On its own, this condition indi-
cates that there is a DMI between the A1 allele and one

Figure 2 Detecting DMIs. To find simple DMIs, we use an
introgression–rescue assay where we introgress one diverged

allele between the two lineages (step I: 1 A−→ 2), and if this
substitution results in an inviable genotype (red), we try to

rescue it with a second introgression (step II: 1 A,B−−→ 2). If the
second introgression rescues viability, we conclude that the
there is a DMI between the first introgressed allele (A1) and
the resident allele at the second locus (B2). The additional
criteria for establishing whether the DMI is simple or complex
are explained in the Materials and Methods.

or more alleles from genotype 2 at the remaining k− 1 loci
(B2, C2, . . .).

2. The single introgression 2 B−→ 1 results in an inviable geno-
type. On its own, this condition indicates that there is a
DMI between the B2 allele and one or more alleles from
genotype 1 at the remaining k− 1 loci (A1, C1, . . .). Taken
together, conditions #1–2 are not sufficient to indicate that
the A1 and B2 alleles participate in the same DMI.

3. The double introgressions 1 A,B−−→ 2 and 2 A,B−−→ 1 both result
in viable genotypes (Figure 2, step II). In other words, a
second introgression rescues viability. Taken together, con-
ditions #1–3 indicate that the A1 and B2 alleles participate
in the same DMI; the conditions do not, however, rule out
the possibility that the DMI involves additional alleles from
either genotype at the remaining k − 2 loci (C, D, . . .). In
other words, the DMI might be simple or complex.

4. A1 and B2 are not both ancestral (Orr 1995). If conditions
#1–3 are met but condition #4 is violated, then the DMI must
involve a derived allele at an additional locus—i.e., the DMI
is complex—because A1 and B2 were not incompatible in
the ancestor.

5. If both A1 and B2 are derived alleles, this condition is ig-
nored. If A1 is an ancestral allele, then the B2 substitution
occurred after the A2 substitution; if B2 is an ancestral allele,
then the A1 substitution occurred after the B1 substitution
(Orr 1995). If conditions #1–4 are met but condition #5 is
violated then the DMI is complex because A1 and B2 were
not incompatible in the background in which the derived
allele arose.

6. If the latest substitution at either the A or the B locus was
the i-th substitution, and i < k, then conditions #1–3 are
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also met in the genotypes present immediately after the i-th
substitution. If conditions #1–5 are met but condition #6
is violated then the DMI is complex because its expression
depends on the genetic background.

Complex DMIs: Imagine that condition #1 for a simple DMI is

met: a single introgression 1 A−→ 2 results in an inviable genotype.
As explained above, this is indicative of a DMI involving the A1
allele. This DMI is complex if any of the following 4 conditions
are met.

7. It satisfies conditions #2–3 for a simple DMI but violates
one or more of conditions #4–6.

8. The double introgression 1 A,B−−→ 2 rescues viability, but the

single introgression 2 B−→ 1 results in a viable genotype (i.e.,
condition #2 is violated).

9. The double introgression 1 A,B−−→ 2 rescues viability, but

the double introgression 2 A,B−−→ 1 results in an inviable
genotype (i.e., condition #3 is violated).

10. There is no double introgression of the form 1 A,B−−→ 2 that
rescues viability (i.e., condition #3 is violated).

A DMI is also complex if it satisfies the following condition:

11. The introgression of 1 < i < k alleles (e.g., 1 A,B,...−−−→ 2)
results in an inviable genotype, but all the introgressions of
each individual allele and of any combination of between
2 and i− 1 of the alleles result in a viable genotype. This
condition indicates that the i alleles participate in a DMI of
order n > i + 1.

Assays
Number of simple DMIs: To count simple DMIs in our simula-
tions, we introgress nucleotides between the two sequences at
each of the k divergent sites, in both directions. Every time an
introgression results in an inviable genotype (condition #1), we
look for another introgression in the opposite direction that also
results in an inviable genotype (condition #2). We then test both
double introgressions involving these alleles to test for condition
#3. If we find a pair of alleles satisfying conditions #1–3, we test
for conditions #4–6 directly. We count simple DMIs after every
substitution when k > 2.

Proportion of single introgressions involved in a DMI: We use
the single introgression data to calculate P1, the proportion of
the 2k single introgressions at diverged sites (in both directions)
that result in an inviable sequence (Welch 2004).

Number of complex DMIs: The criteria described above (condi-
tions #7–11) allow us to detect complex DMIs. However, count-
ing them for highly diverged sequences (high k) is virtually
impossible for two reasons. First, the number of high-order in-
trogressions required is enormous. Second, as the conditions
#1–3 for detecting simple DMIs highlight, establishing that alle-
les participate in the same DMI requires additional introgressions.
For example, if alleles A1 and B1 from population 1 are incom-
patible with allele C2 from population 2, then both the double

introgression 1 A,B−−→ 2 and the single introgression 2 C−→ 1 result
in an inviable genotype. However, showing that the 3 alleles are

involved in the same DMI of order n = 3 would require demon-

strating that the triple introgressions 1 A,B,C−−−→ 2 and 2 A,B,C−−−→ 1
both result in viable genotypes.

Thus, without conducting “rescue” introgressions, the intro-
gressions in both directions will tend to overestimate the num-
ber of complex DMIs. To avoid this problem, we estimate the
number of complex DMIs through all single, double and triple
introgressions in one direction only (e.g., from population 1 to
population 2). For the single introgressions, we count complex
DMIs using conditions #7–10 (these conditions require perform-
ing introgressions in both directions, but only DMIs detected
from an introgression in one direction are counted). For double
and triple introgressions, we use condition #11.

The resulting count of complex DMIs will still underestimate
the true number for two reasons. First, if the introgressed alleles
participate in more than one complex DMI, an introgression test
can only detect a single DMI (this limitation does not apply to
simple DMIs). Second, complex DMIs that can only be detected
by introgressing four or more alleles will not be detected.

DMI network: The simple DMIs that might, potentially, affect
a sequence can be computed exhaustively by measuring the
fitness of all possible single and double mutants derived from
the sequence. For every pair of sites, there are 9 combinations
of double mutants. A potential simple DMI is defined as an
inviable double mutant between mutations that are individually
neutral. We summarize the pattern of interactions between sites
using an undirected network where the vertices are sites and
the edges represent the existence of at least one potential simple
DMI between them. The resulting network is an example of the
networks of interactions described by Orr and Turelli (2001) and
Livingstone et al. (2012).

We measure the degree of similarity between two DMI net-
works X and Y using the Jaccard index

J =
|X ∩Y|
|X ∪Y| , (5)

where |X ∩ Y| is the number of edges shared between the two
networks, |X ∪ Y| is the sum of |X ∩ Y| and the numbers of
edges unique to X and to Y, and there is a one-to-one correspon-
dence between the vertices of X and Y (i.e., between the sites
in the corresponding sequences). J varies between 0 (the two
networks have no edges in common) and 1 (the two networks
are identical).

Reproductive isolation: The degree of RI between the sequences
is defined as

RI = 1− wR ,

where wR is the mean fitness (Equation 4) of all possible 198
recombinants resulting from a single crossover between the two
sequences.

“Holeyness” of the fitness landscape: For each simulation, we
took the ancestor and each of the k = 40 genotypes generated
during the course of evolution and measured the proportion
of their single mutant neighbors (300 per sequence) that are
inviable, excluding the 41 original sequences. This estimates
the local holeyness of the fitness landscape traversed by the
diverging lineages.
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Direct simulation of the snowball model
We also simulate the accumulation of DMIs following the snow-
ball model (Orr 1995). An ancestral genotype has multiple loci
and is used to found two identical haploid lineages. The lin-
eages are allowed to evolve by alternately accumulating neutral
substitutions (Figure 3).

Lineage 1 Lineage 2

k = 0 A0 B0 C0 D0 . . . A0 B0 C0 D0 . . .

k = 1 A1 B0 C0 D0 . . . A0 B0 C0 D0 . . .

k = 2 A1 B0 C0 D0 . . . A0 B2 C0 D0 . . .

k = 3 A1 B0 C1 D0 . . . A0 B2 C0 D0 . . .

k = 4 A1 B0 C1 D0 . . . A0 B2 C0 D2 . . .

Figure 3 Sequence evolution in a direct simulation of the
snowball model showing the first k = 4 substitutions. Only
4 loci are shown, denoted by A–D. Ancestral alleles are indi-
cated by subscript 0. Derived alleles are shown in bold and
indicated by subscripts 1 or 2 depending on the lineage.

After the k-th substitution, simple DMIs are sampled at ran-
dom with probability p from all pairs of alleles consisting of
the latest derived allele paired with any of the k− 1 ancestral
or derived alleles from the other population at loci that have
previously undergone substitutions in either population. For
example, when k = 4 the new possible simple DMIs are: D2/A1,
D2/B0, and D2/C1 (Figure 3).

Statistical analyses
All statistical analyses were conducted with R version 3.3.0 (R
Core Team 2016). Semi-partial rank correlations were calculated
using the “ppcor” package (Kim 2015).

Data availability
The software used to run all simulations was written in Python
2.7 and will be made available at the time of publication at
https://github.com/. The authors state that all data necessary
for confirming the conclusions presented in the article are repre-
sented fully within the article.

Results

Simple DMIs do not snowball in the RNA folding model
The snowball model predicts that the number of simple DMIs,
Ik, should increase faster than linearly with the number of sub-
stitutions, k. We tested this prediction using 103 evolutionary
simulations with the RNA folding model. For each simulation,
we fitted two models: the snowball model in Equation 2 and a
linear model of the form

Ik = (k− 1)b , (6)

where b is the slope. The k− 1 term ensures that I1 = 0, as in the
snowball model. Both models have a single parameter that we
estimated using the method of least squares.

We compared the level of support for each model using
Akaike’s Information Criterion (AIC). If the difference in the
AIC values (∆AIC) was greater than a threshold, we concluded

Figure 4 Simple DMIs do not snowball in the RNA folding
model. We fitted the snowball model (Equation 2) and a linear
model (Equation 6) to each run from two kinds of simulations:
simulations of the RNA folding model, and direct simulations
of the snowball process with values of p estimated by fitting
the model in Equation 2 to each RNA folding simulation (Fig-
ure S1A). Bars above (below) the x-axis show the proportions
of runs providing stronger support for the snowball (linear)
model; the proportions of runs providing approximately equal
support for both models are not shown. Each proportion is
based on 103 stochastic simulations. Different colors indicate
the ∆AIC thresholds used in evaluating the level of support
for the two models.
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that there was stronger support for the model with the lower
AIC. Setting the ∆AIC threshold at 2, 41.9% of RNA folding
simulations provided stronger support for the snowball model,
49.1% provided stronger support for the linear model, and 9.0%
provided approximately equal support for both models (Fig-
ure 4). Increasing the ∆AIC threshold did not affect this result
qualitatively (Figure 4). The average response in the number of
DMIs in the RNA folding simulations was approximately linear
(Figure 5A), in agreement with the AIC analysis.

To evaluate the extent to which the lack of support for the
snowball model was caused by random noise in the simulations
we conducted 103 direct simulations of the snowball process
over k = 40 substitutions assuming values of p estimated by
fitting the snowball model in Equation 2 to the RNA folding data
(Figure S1A). As expected, these direct snowball simulations
provided much stronger support for the snowball model than
the RNA simulations (Figure 4). We conclude that simple DMIs
do not snowball in at least some RNA folding simulations.

The probability that a DMI appears is approximately constant
in the RNA folding model
What explains the lack of support for the snowball model in
the RNA folding simulations? One possibility is that p itself
evolved, contrary to the assumption of the snowball model (Orr
1995).

If p declines with divergence according to the relationship

pk =
b
k

, (7)

where b is a positive constant, and we substitute p by pk in
Equation 1, the linear model in Equation 6 is a solution to the
resulting difference equation (assuming I1 = 0). To test whether
p changed as described by Equation 7, we measured it directly
in each simulation as pk = ∆I/k, where ∆I is the number of new
simple DMIs appearing as a result of the (k + 1)-th substitution
that involve the latest derived allele (see Equation 1). We found
that, although pk declined with k, the trend did not follow Equa-
tion 7. Indeed, when k & 10, pk was approximately constant
(Figure 5B).

Simple DMIs do not persist indefinitely in the RNA folding
model
The previous analysis also revealed that fitting the snowball
model to the RNA folding data underestimated the true value
of p by approximately 3-fold (Figure 5B). This discrepancy in-
dicates that a more fundamental assumption of the snowball
model may be violated in the RNA folding model: that simple
DMIs, once they have arisen, persist indefinitely. This assump-
tion is implicit in the original description of the snowball model
(Orr 1995) and, to our knowledge, has never been called into
question.

To test this assumption, we estimated the DMI networks of
sequences as they evolved in our RNA folding model. Figure 6A
shows an example of an RNA sequence evolving on a holey fit-
ness landscape. Initially the sequence displays potential simple
DMIs between 21 pairs of sites (Figure 6C). Figure 6B illustrates
a potential simple DMI between positions 5 and 12. We refer to
these simple DMIs as potential because if two diverging lineages
each accumulate one of the substitutions underlying one of these
DMIs, a simple DMI between the lineages will appear.

The snowball model assumes that the DMI network is static:
as populations evolve they actualize potential DMIs (for an

Figure 5 Simple DMIs do not snowball in the RNA folding
model. (A) Evolution of the number of simple DMIs, Ik, as two
populations diverge by accumulating substitutions, k. Values
are means of 103 runs of three different kinds of stochastic
simulations: “RNA,” simulations of the RNA folding model
(blue); “snowball,” direct simulations of the snowball process
with constant p estimated as explained in (B) (red); “linear,”
direct simulations of the snowball process with declining p
estimated as explained in (B) (yellow). (B) Evolution of the
probability, pk, that there is a simple DMI between the latest
derived allele after the (k + 1)-th substitution and one of the
k alleles at the loci that have previously undergone substitu-
tions. The blue line (“RNA”) shows the values of pk estimated
at each substitution directly from the RNA folding simulations.
The red line (“snowball”) shows the values of p estimated by
fitting the model in Equation 2 to each RNA folding simula-
tion (Figure S1A). The yellow line (“linear”) shows the values
of pk from Equation 7 based on estimates of b obtained by fit-
ting the model in Equation 6 to each RNA folding simulation
(Figure S1B). Values are means of 103 simulations. Shaded
regions indicate 95% confidence intervals, CIs.
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Figure 6 A single substitution can dramatically rearrange the
network of potential DMIs. (A) The 20 nucleotide long RNA
sequence on the left acquires a neutral U→A substitution at
position 18 (blue). The holey fitness landscape is defined by
α = 2 (Equation 4). The secondary structure of the sequence
on the left is the reference (δi = 0 base pairs). The structure
on the right is δi = 2 base pairs away from the reference. (B)
There is a potential simple DMI between positions 5 and 12
for the sequence on the left. A double mutant at those posi-
tions (5: A→G, 12: C→G, red) makes the structure inviable
(δi = 11 base pairs), even though the single mutations are
neutral (not shown). However, a single substitution causes
the potential simple DMI to disappear in the sequence on the
right, although the single mutations remain neutral in the new
background (not shown). In other words, the substitution
causes the simple DMI to become complex. (C) DMI networks
of the sequences in (A). Vertices correspond to positions in the
sequences. An edge in the network on the left indicates that
there is at least one potential simple DMI between the two
sites (positions 4, 13 and 15–17 have no potential DMIs in ei-
ther network and are not shown). Black edges in the network
on the right are shared between the two networks. Blue edges
exist only in the network on the right and indicate the appear-
ance of new potential simple DMIs between sites caused by
the substitution. Gray and red edges indicate losses of po-
tential simple DMIs in the network on the right. Gray edges
indicate losses due to the constituent alleles no longer being
neutral in the new background. Red edges indicate losses
caused by complexification; the DMI discussed in (B) is an ex-
ample (5–12 edge). The Jaccard index (Equation 5) between the
two networks is J = 0.205.

alternative, but equivalent, interpretation of DMI networks see
Livingstone et al. 2012). However, DMI networks are not static
in the RNA folding model. After a single neutral substitution, 13
pairs of sites (62%) lost all potential simple DMIs, and potential
DMIs appeared between 18 new pairs of sites (Figure 6C).

The “loss” of a potential DMI can occur in one of two ways.
First, the substitution may cause the mutations involved in the
simple DMIs to become deleterious so that they can no longer
participate in potential simple DMIs. A loss of this kind means
that a potential simple DMI is no longer accessible through
independent substitution in two lineages because one of the
substitutions cannot take place. Thus, such losses do not imply
that DMIs cannot persist indefinitely. However, if there is a bias
towards such losses of potential DMIs relative to gains of the
same kind then p is expected to decline with divergence. The
majority of losses in Figure 6C (gray lines) are of this kind.

The second kind of loss occurs when the substitution mod-
ifies the interaction between previously incompatible alleles
(red lines in Figure 6C). In other words, the simple DMIs be-
come complex. The potential simple DMI between positions
5 and 12 shown in Figure 6B is lost in this way. This kind of
loss—complexification—implies that some simple DMIs may
not persist indefinitely.

The DMI networks corresponding to the evolving lineages
in the RNA folding simulations summarized in Figure 5 also
change dramatically relative to the ancestor as a result of succes-
sive substitutions (Figure S2). This indicates that complexifica-
tion may be occurring in these simulations as well. In the next
section we explore the consequences of the complexification of
simple DMIs for snowballing.

The melting snowball model
We incorporate the dynamic nature of simple DMIs by extending
the snowball model in Equation 1

Ik+1 = (1− q)Ik + kp , (8)

where q is the probability that a simple DMI present after k
substitutions becomes complex after the next substitution. As-
suming I1 = 0, the solution to Equation 8 is

Ik =
p
[
(1− q)k + kq− 1

]
q2 . (9)

This prediction assumes that both p and q remain constant as
populations diverge.

The original metaphor evokes a snowball rolling down a
hillside, picking up snow (appearance of simple DMIs) as it rolls,
causing it to increase in size. To stretch the metaphor, we call
the new model the melting snowball: as the snowball rolls it also
melts (complexification of simple DMIs), causing it to decrease
in size. Neither metaphor should be taken too literally, though.
For example, both metaphors give the mistaken impression that
the accumulation of DMIs itself causes the emergence of new
DMIs, which is not part of either model.

The snowball model is a special case of the melting snowball
model when q = 0. When q > 0, the increase in the number of
simple DMIs is given by

∆I = Ik+1 − Ik =
p
q

[
1− (1− q)k

]
. (10)

This equation has two consequences (Figure 7A). First, the in-
crease in the number of simple DMIs eventually becomes linear
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with a slope of approximately p/q when k is sufficiently large.
Second, if q is larger, the “linearization” of Equation 9 occurs for
lower values of k.

Figure 7 The RNA folding simulations agree with the melting
snowball model. (A) Evolution of the number of simple DMIs
under the melting snowball model. Responses for p = 0.04
and different values of q. The dashed line shows a slope of
p/q for q = 0.3. (B) Mean responses of 103 runs of four dif-
ferent kinds of stochastic simulations: “RNA,” simulations
of the RNA folding model (blue, same data as in Figure 5A);
“snowball,” direct simulations of the snowball process with
with constant values of p estimated directly from each RNA
folding simulation (Figure 8) (red); “melting,” direct simula-
tions of the melting snowball process with constant values of
p and q estimated directly from each RNA folding simulation
(Figure 8) (orange); “melting (evolving),” direct simulations of
the melting snowball process with evolving trajectories of pk
and qk estimated directly from each RNA folding simulation
(yellow, dashed). Shaded regions indicate 95% CIs.

The RNA folding simulations agree with the melting snowball
model
To test whether the complexification of simple DMIs explains the
results of the RNA folding simulations we measured q directly
in our simulations as qk = 1− I′k/Ik, where Ik is the number
of simple DMIs present after the k-th substitution, and I′k is the
number of simple DMIs present after the (k + 1)-th substitution
that do not involve the latest derived allele.

The melting snowball model predicts that simple DMIs will
accumulate approximately linearly when q is large relative to p
(Equation 10). The values of q were, on average, 3-fold higher
than the values of p (Figure 8). Furthermore, the q/p ratio

Figure 8 Distributions of the parameters of the melting snow-
ball model in the RNA folding simulations: p, the probability
that a simple DMI arises, and q, the probability that a simple
DMI becomes complex. One- and two-dimensional kernel den-
sity estimates based on 103 stochastic simulations. For each
simulation we calculated pk and qk after every substitution
(k). We then estimated an overall value of p and q as weighted
averages. Values of pk and qk were weighted by k(k− 1) and
Ik, respectively. The means of each distribution were p̄ = 0.042
and q̄ = 0.107.

was a good predictor of whether RNA folding simulations sup-
ported the linear or the snowball model (Figure 4). When the
∆AIC threshold was set at 2, q/p was 3.36± 0.22 (mean and
95% confidence intervals, CIs) in runs that provided stronger
support for the linear model, and 2.41± 0.12 in runs that pro-
vided stronger support for the snowball model (Wilcoxon rank
sum test, P < 10−6). Thus, the linear response in the number of
simple DMIs in the RNA folding simulations can be explained
by the melting snowball model.

To evaluate the extent to which the melting snowball model
can account for the lack of support for the snowball model in
our RNA folding simulations, we conducted 103 direct simula-
tions of the melting snowball process over k = 40 substitutions
assuming values of p and q estimated directly from the RNA
folding data (Figure 8). The support for the snowball and linear
models provided by these direct melting snowball simulations
was similar to that provided by the RNA folding simulations
(Figure S3). These results, in combination with those on the
q/p ratio, indicate that the melting snowball model explains the
RNA folding results.

Figure 7B shows that the melting snowball model (orange)
approximates the RNA folding data better than the snowball
model (red). However, the fit is far from perfect. The lack of fit
is caused by the assumptions that both p and q are constant as
populations diverge. Neither assumption was met by the RNA
folding data: p decreased and q increased with k, specially when
k . 10 (Figures 5B and S4, respectively). When we allowed p
and q to vary as they did in the RNA folding simulations, direct
simulations of the melting snowball process matched the RNA
folding data perfectly (Figure 7B). We conclude that the melting
snowball model explains the results of the RNA folding model,
provided we relax the assumptions that p and q are constant.
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Figure 9 Complex DMIs snowball in the RNA folding model.
(A) DMIs inferred through single, double, and triple introgres-
sions. (B) Total number of complex DMIs (green) compared
to number predicted if all complex DMIs originate from the
“melting” of simple DMIs and p = 0.042 and q = 0.107 (red).
Values are means of 103 stochastic simulations. Shaded regions
indicate 95% CIs.

Complex incompatibilities snowball in the RNA folding model
So far we have focused exclusively on simple DMIs. The melting
snowball model predicts that complex DMIs should exist if q > 0
because they will be generated continuously from simple DMIs.
Furthermore, if q is high the number of DMIs should also be high.
We tested this prediction in the RNA folding model and found
that complex DMIs accumulated in much higher numbers than
simple ones: after k = 40 substitutions there were approximately
5-fold more complex DMIs than simple ones (Figure 9).

The snowball model predicts that the number of complex
DMIs should snowball (Orr 1995; Welch 2004). Complex DMIs,
unlike simple ones, did snowball (Figures 9 and S5). In addition,
complex DMIs detected by introgressing more alleles accumu-
lated faster (Figure 9B). Allowing multiple substitutions to occur
per site during divergence did not change this pattern (Figure
S6). These results indicate that higher-order DMIs accumulated
faster than lower-order DMIs.

Did the complex DMIs originate from the “melting” of simple
ones or did they appear de novo? If all complex DMIs arise
through melting, then we would expect their number to increase
according to the difference between Equations 2 and 9. Figure
9B shows that, although some complex DMIs likely arose from
melting, many complex DMIs must have arisen de novo.

Figure 10 Reproductive isolation (RI) does not snowball in
the RNA folding model. Values are means of 103 stochastic
simulations. Shaded regions indicate 95% CIs.

Reproductive isolation does not snowball in the RNA folding
model
Since most DMIs were complex and complex DMIs snowballed,
RI would be expected to snowball in the RNA model. How-
ever, we found that RI showed a kind of inverse snowball—a
“slowdown” with divergence. This pattern has been found in
many organisms (e.g., Gourbière and Mallet 2010; Giraud and
Gourbière 2012). This slowdown was caused by the fact that
RI increased slower than linearly with the number of both sim-
ple and complex DMIs (Figure S7). Thus, DMIs did not act
independently of each other on RI. One likely reason for this
non-independence is that the total number of DMIs (simple
and complex) among highly diverged sequences is high enough
that a substantial fraction of individual sites must participate in
multiple DMIs (Figure 9).

The fitness landscape influences the parameters of the melt-
ing snowball model
Figure 8 shows two striking patterns about the parameters of the
melting snowball model. First, p and q were strongly positively
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correlated with each other (Spearman’s rank correlation coeffi-
cient: ρ = 0.466, P < 10−6), indicating that the origination and
complexification of simple DMIs are not independent. Second,
the parameters varied extensively between simulations. What
caused this variation? All simulations took place on the same
sequence space, but with different fitness landscapes. Since all
fitness landscapes were “holey” (Gavrilets 2004), it follows that
the exact pattern of “holeyness” might have had an effect on
the evolutionary dynamics. One component of the holeyness of
a fitness landscape is the proportion of inviable single mutant
neighbors of all the sequences generated during the course of
evolution. This measure of the local holeyness of the fitness
landscape was strongly positively correlated with both p and q
(ρ = 0.338 and 0.210, respectively; both, P < 10−6) (Figures S8A
and S8C).

What determines holeyness? Fitness landscapes in our RNA
folding model have two determinants: the reference structure
and the value of α (Equation 4). RNA secondary structures
can differ in many ways, such as the number and size of base
pair stacks, interior loops, and hairpin loops (Schuster et al.
1994). For a given reference structure, lower values of α are
expected to specify fitness landscapes with more inviable se-
quences (i.e., holes) in them. To test whether these determinants
of the fitness landscape influence holeyness, we ran 103 inde-
pendent evolutionary simulations at each of another four values
of α. We found that holeyness was influenced by both deter-
minants of the fitness landscape (Figure S9): it was positively
correlated with the number of base pairs in the reference se-
quence (ρ = 0.184; P < 10−6) and negatively correlated with α
(ρ = −0.583; P < 10−6).

Changing α did not affect the patterns of accumulation of sim-
ple and complex DMIs qualitatively (Figure S10). Interestingly,
α was strongly positively correlated with both p and q (Figures
S8B and S8D): the semi-partial rank correlation coefficient when
the effect of holeyness was removed from α were ρ = 0.282 for
p and ρ = 0.301 for q (both, P < 10−6). This result is counter-
intuitive because α was negatively correlated with holeyness,
which in turn was positively correlated with both p and q. We
conclude that the parameters of the melting snowball model
were influenced independently by both holeyness and α.

Table 1 The RNA folding model provides mixed support for
the snowball model

Test Confirmed?

Prediction

Simple DMIs snowball No

Complex DMIs snowball Yes

RI snowballs No

Assumption

Constant p with divergence Yes, roughly

Simple DMIs persist indefinitely No

Linear relationship between

number of DMIs and RI No

Discussion

We have tested both predictions and assumptions of the snow-
ball model using a computational model of RNA folding. Our
results provide mixed support for the snowball model (Table
1). Simple DMIs accumulated linearly, contrary to one of the
main quantitative predictions of the snowball model (Orr 1995)
(Figures 4 and 5A). To elucidate why the snowball appeared to
be “missing” from the RNA folding simulations we tested two
assumptions of the snowball model. First, that simple DMIs
arise with constant probability, p. Although we did detect a
decline in p (Figure 5B), it was not sufficient to account for the
approximately linear pattern of accumulation of simple DMIs.
Second, we tested the assumption that simple DMIs, once they
have arisen, persist indefinitely. We found that this assumption
was violated in the RNA folding model. Instead, simple DMIs
had a tendency to become more complex as further substitutions
took place. We conclude that the snowball was “melting” for
simple DMIs, not missing.

We proposed an extended snowball model incorporating the
complexification of simple DMIs—the melting snowball. The
RNA folding simulations agree with this model. In contrast to
simple DMIs, the number of complex DMIs did snowball, in
agreement with the prediction of the snowball model. In conclu-
sion, the RNA folding model supported the central prediction
of the snowball model that the number of DMIs snowballs, but
challenged some of its underlying assumptions.

Despite the snowballing of DMIs, RI did not snowball be-
cause DMIs did not act independently of each other on RI. These
results indicate that RI is a poor indicator for the number of
DMIs in our model. Thus, the pattern of change in RI with di-
vergence is unsuitable to test the snowball model (Johnson 2006;
Gourbière and Mallet 2010; Presgraves 2010a).

In one direct test of the snowball model, DMIs affecting
pollen sterility were found to accumulate linearly (Moyle and
Nakazato 2010). However, the extent to which those results
might be explained by the melting snowball model is unclear for
two reasons. First, the order of the DMIs detected in that study
is unknown. Second, DMIs may have been missed if individual
alleles participated in multiple DMIs. Our study avoided these
problems for simple DMIs. A linear accumulation of simple
DMIs can occur in the presence of gene flow (Kondrashov 2003),
which was not incorporated in our model.

If all DMIs are simple and individual loci are at most involved
in one DMI, then the proportion of the fixed differences between
species where an allele from one species is deleterious in another
species, P1, is expected to increase linearly with genetic distance
(Equation 3; Welch 2004). This prediction is contradicted by the
observation that P1 is approximately constant over large genetic
distances (Kondrashov et al. 2002; Kulathinal et al. 2004)—a result
we call Welch’s paradox (Welch 2004). Our results contradict
both assumptions behind the prediction that P1 should increase
linearly with genetic distance: most DMIs are complex, and
individual loci are involved in multiple DMIs. These effects
are expected to act in opposite directions: the former would
cause P1 to increase faster than linearly with k, whereas the
latter would cause P1 to increase slower than linearly with k.
In the RNA folding simulations, P1 increased with divergence
but did so slower than linearly (Figure S11), indicating that the
lack of independence between DMIs dominates the evolution
of P1. These results suggest a possible resolution for Welch’s
paradox: P1 can be constant even if DMIs snowball if individual
loci participate in multiple DMIs. Alternative resolutions of
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Welch’s paradox have been proposed (e.g., Fraïsse et al. 2016).
We found that complex DMIs are more abundant than simple

DMIs in the RNA folding model. Complex DMIs have been
discovered in many introgression studies (reviewed in Fraïsse
et al. 2014). For example, Orr and Irving (2001) investigated
the sterility of male F1 hybrids between the USA and Bogota
subspecies of D. pseudoobscura and found that it is caused by an
DMI between loci in both chromosomes 2 and 3 of USA and loci
in at least three different regions of the X chromosome of Bogota—
a DMI of order n > 5. More generally, high-order epistasis
appears to be common (Weinreich et al. 2013; Kondrashov and
Kondrashov 2015; Taylor and Ehrenreich 2015). However, the
relative prevalence of simple and complex DMIs in nature is
unclear because complex DMIs are more difficult to detect.

Two explanations for the abundance of complex DMIs have
been proposed. First, that more complex DMIs evolve more
easily than simpler DMIs because they allow a greater propor-
tion of the possible evolutionary paths between the common
ancestor and the evolved genotypes containing the DMI (Cabot
et al. 1994; Orr 1995). Fraïsse et al. (2014) tested this mechanism
using simulations and concluded that it is unlikely to be effec-
tive. Second, that the number of combinations of n loci increases
with n (Orr 1995). This explanation is difficult to evaluate in the
absence of more information on the probability of origination of
complex DMIs. Our results indicate that that probability could
be higher than previously thought because complex DMIs are
continuously generated from simple DMIs.

Perhaps the central insight from our study is that simple
DMIs have a tendency to become complex. At first glance this
claim might seem absurd. Surely a DMI cannot be simple one
moment and complex the next. The solution to this puzzle
rests, we believe, on the difference between a DMI having a
certain order n and our ability to infer that it has order n through
genetic crosses. Consider the evolving sequences depicted in
Figure 3. Now, imagine that there is a complex DMI of order
n = 3 between the alleles A1, B2, and C0, and that there are
no simple DMIs between pairs of the three alleles (i.e., A1/B2,
A1/C0, and B2/C0). For simplicity, we also assume that none
of the other alleles at the A, B and C loci are involved in DMIs.
The existence of a DMI is defined in the strict sense that any
conceivable genotype containing all alleles involved in the DMI
is inviable (conversely, the absence of a DMI indicates that at
least one of the genotypes containing all alleles involved in the
DMI are viable). Despite the A1/B2/C0 DMI being complex,
after two substitutions (k = 2), our introgression and rescue
tests would detect a nonexistent simple DMI between alleles A1
and B2. Only after the third substitution (k = 3) would the true
complex DMI be inferred. In the language we have been using
so far, the simple DMI would appear to become more complex.

The snowball model (Orr 1995) assumes that it is possible to
tell whether a DMI is simple or not. However, a strict definition
of “DMI of order n” cannot be applied in practice because the
number of genotypes that would have to be tested is astronomi-
cally large and would have to include mutations that have not
even occurred yet. Our protocol for inferring a simple DMI
is, as far as we know, the most exhaustive ever devised (the
data summarized in Figure 9A required the construction of ap-
proximately 6× 104 introgression genotypes for each individual
simulation), but it cannot infer simple DMIs in the strict sense.
Simple DMIs in the strict sense may not even exist. The idea of
complexification of DMIs is a natural consequence of using a
more practical, broad-sense definition of simple DMI.

The extent to which the RNA folding model is representative
of other types of epistatic interactions is unclear. One possible
criticism is that we used very short sequences and that these
are likely to experience unusually strong epistatic interactions.
Orr and Turelli (2001) estimated p ≈ 10−7 in Drosophila a much
lower value than found in our simulations. However, an evo-
lution experiment in Saccharomyces cerevisiae detected a simple
DMI between two lineages that had only accumulated 6 unique
mutations each (k = 12) (Anderson et al. 2010). This indicates a
value of p = 0.015, within the range of what we observed in the
RNA folding model (Figure 8).

We found that our results were robust to a broad range of ho-
ley fitness landscapes defined in the RNA folding model. How-
ever, the holey landscape model makes two strong assumptions
about the fitness landscape: all viable genotypes had the same
fitness, and all low fitness genotypes were completely inviable.
Neither assumption is met universally: many alleles involved in
DMIs appear to have experienced positive selection during their
evolutionary history (Presgraves 2010b; Rieseberg and Blackman
2010; Maheshwari and Barbash 2011), and some DMIs are only
mildly deleterious rather than lethal (Presgraves 2003; Schumer
et al. 2014). Other fitness landscapes can be implemented readily
within the RNA folding model (e.g., Cowperthwaite et al. 2005;
Draghi et al. 2011). The extent to which relaxing the assumptions
of the holey landscape model will affect our results is a question
for future research.
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