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ABSTRACT 

   RNA molecules play vital biological roles, and understanding their structures 

gives us crucial insights into their biological functions. Model evaluation is a 

necessary step for better prediction and design of 3D RNA structures. 

Knowledge-based statistical potential has been proved to be a powerful approach for 

evaluating models of protein tertiary structures.	 In present, several knowledge-based 

potentials have also been proposed to assess models of RNA 3D structures. However, 

further amelioration is required to rank near-native structures and pick out the native 

structure from near-native structures, which is crucial in the prediction of RNA 

tertiary structures. In this work, we built a novel RNA knowledge-based potential—

PTRNAmark, which not only combines nucleotides’ mutual and self energies but also 

fully considers the specificity of every RNA. The benchmarks on different testing 

data sets all show that PTRNAmark are more efficient than existing evaluation 

methods in recognizing native state from a pool of near-native states of RNAs as well 

as in ranking near-native states of RNA models. 
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INTRODUCTION 
	 	 	 RNA	molecules play essential roles in living systems, and its catalytic prowess, 

biological importance and ability to form complex folds have recently come to 

prominence [1-3]. Like proteins, in order to understand the functions of RNAs deeply,   

we need to study the 3D structure. In recent years, several computational methods 

have been proposed for structural modeling or RNA tertiary structures prediction, for 

the number of available RNA experimental structures is finite at the present time 

[4-13]. For all the methods, a large set of decoys are generated when models predict 

RNA tertiary structures, so it is so significant to evaluate these candidates. 

  One of approach for evaluating models of protein tertiary structures is 

knowledge-based statistical potential, which has been proved to be an efficient 

method [14-16]. At the present, some of the knowledge-based potentials have also 

been proposed to evaluate models of RNA tertiary structures [17-21].	For instance, 

firstly Capriotti et al. has developed the Ribonucleic Acids Statistical Potential (RASP) 

in 2011[17,19]. Secondly the coarse-grained and all-atom KB potentials have been 

proposed by Bernauer et al. in 2011 [18]. Thirdly in 2015 Yi Xiao et al. has developed 

a novel all-atom knowledge-based statistical potential, 3dRNAscore [24]. The KB 

potential is a distance-dependent statistical potential, which used a Dirichlet process 

mixture model to obtain the distance distributions instead of bin counting, and the 

fully differentiable feature also makes it possible for molecular dynamics simulations 

[18,23]. RASP is also a distance-dependent statistical potential which is a detailed 

full-atom potential that includes a representation of local and non-local interactions in 

RNA structures and is trained on a non-redundant training set (randstr) generated by 

MODELLER [17,22]. Unlike the aforementioned two knowledge-based potentials 

that utilize the distances between atoms, 3dRNAscore uses not only 

distance-dependent potential, but also a dihedral-dependent potential, involving seven 

RNA dihedral angles [24]. The benchmark tests showed that the RASP, KB and 

3dRNAscore potentials could identify the native state structures effectively [17,18,24].  

What’s more, other statistical potentials which embedded in the RNA tertiary 



structure prediction programs have been proposed for evaluating RNA tertiary 

structures. For example, a full-atom RNA potential (FARFAR, fragment assembly of 

RNA with full-atom refinement) available within the ROSETTA suite is efficient to 

be used for the de novo prediction and design of non-canonical RNA 3D structures 

[6,11]. And MC-fold, which can predict RNA 3D structures, also use an all-atom 

score function that embedded in the RNA tertiary structure prediction programs to 

rank RNA tertiary structures [9]. However, for protein, it is the problem that it is the 

distinction on universality and pertinence that makes the potentials perform diversely 

in different decoy sets [25]. There is a problem which is the same as protein in RNA, 

which means that there is a contradiction between universality and pertinence. And it 

is essential that further enhancements are needed to rank near-native structures and 

pick out the structure closest to the native state from near-native structures.    

  In this work, we build an all-heavy-atom knowledge-based statistical potential 

called Precision Training RNA Mark (PTRNAmark). Unlike the aforementioned 

knowledge-based potentials that only consider non-bond interactions which 

belongmutual nucleotides, a new energy contribution based on the inside of 

nucleotide is involved in PTRNAmark. Furthermore, to consider the specificity of 

physical interaction, PTRNAmark is trained twice by two sorts of training sets, which 

is unchanging and changing respectively. For a decoy, firstly PTRNAmark is trained 

by a constant training set, like the aforementioned knowledge-based potentials, then 

PTRNAMark is trained by another training set which is some structures, originating 

from decoys, that are the lowest energy ranked by first time scoring. We think that 

this method could fully consider the characteristic of every RNA model and the 

specificity of physical interaction.	It turns out that PTRNAmark performs better than 

3DRNAScore, RASP, KB potentials and ROSETTA in ranking a tremendous amount 

of near-native RNA tertiary structures as well as recognizing native state from a pool 

of near-native states of RNAs. 

MATERIALS AND METHODS 



The steps for generating PTRNAmark are as follows. First, we design the 

functional form of PTRNAmark from Boltzmann distribution, which merges 

nucleotides’ mutual and self-energies. Second, in order to train the parameters of the 

scoring function, which have been used to score for the decoys firstly, we select a 

training set of non-redundant RNA tertiary structures in which the structure features 

are representative and the structures of high similarity and low quality are removed. 

Third, we use the two test sets, which are occurring now, to test the accomplishment 

of PTRNAmark. Here, for every decoy, PTRNAmark is trained by some structures of 

the lowest energy which are from decoys and are scored by the PTRNAmark that is 

building in the second step. And, we use different metrics to compare the performance 

of PTRNAmark with other scoring methods. The more point of each building step of 

PTRNAmark is described in the follows. 
 

 

Generation of RNA potential 

   Our knowledge-based potential PTRNAMark is made of two terms. The first term 

based on the distance between any two non-bonded heavy atoms located at different 

nucleotides in the molecule, and the second term based on distance between any two 

non-bonded heavy atoms located at inside nucleotides in the molecule. According to 

three assumptions which were pointed out by Samudrala [27], the total energy score 

of a given RNA sequence S!with conformation C! is calculated by 

Score S!,C! = u!!,!!!!!!!!!! r!,!                   (1) 

Where r!,!are the distance between mth and nth atoms, and i!and i!are the 

residue-specific atom types, respectively.  

The energy term of mutual nucleotide  

  The knowledge-based potentials were derived based on the Boltzmann or Bayesian 

formulations. For the atomic distance-specific contact potentials, the potential can be 

written as: 



 

u!,! r = −RTIn
!!,!
!"#(!)

!!,!
!"#(!)

                          (2) 

 

where R and T are Boltzmann constant and Kelvin temperature, respectively. f!,!!"#(r) 

is the observed probability of atomic pairs (i, j) within a distance bin r to r+dr in 

experimental RNA conformations. f!,!!"# r  is the expected probability of atomic pairs 

(i, j)  in the corresponding distance from random conformations without atomic 

interactions, which is so-called reference state. Here atomic pair (i, j) runs through 

all the atomic pairs in the RNA chain except for those pairs of the same nucleotides. 

Because of the reason that the equal size of datasets is used for calculating 

f!,!!"# r  and f!,!!"# r  in RNA statistical potentials at present, the probabilities in Eq. 

(2) can be replaced by the frequency counts of atomic pairs: 
 

u!,! r = −RTIn

!!,!
!"# !

!!,!
!"#

!!.!
!"# !

!!.!
!"#
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!!.!
!"#(!)

!!.!
!"# !

                (3)    

Here, N!.!!"# r  is the observed number of atom pairs i, j at the distance r  in 

experimental RNA structures. N!.!!"# r  is the expected number of atomic pairs (i, j) if 

there were no interactions between atoms. N!,!!"# ≡ N!.!!"# = N!,!!"# r
!!"#
!   is the total 

number of atomic pairs  (i, j)  in thestructure samples, where   r!"#  is the cutoff 

distance. Cut off distance means the maximum value of the distance d in the process 

of statistics, and we find that when cut off distance is 20 Å, the number of atom pair 

observed is maxed, so we take 20 Å to be cut off distance in PTRNAmark. The counts 

of  N!.!!"# r  could not be compiled from experimental structures directly. It relies on 

which reference state we choose. The RASP and 3DRNAScore potentials both used 

averaged (RAPDF) reference states [27] and the KB potentials used quasi-chemical 

(KBP) [29] approximation reference states [30]. Our statistical potential chooses the 

averaged reference state, which ignores the type of atom. In averaged reference state, 

N!.!!!" r  can be calculated as follows [27]:  



 

N!.!!"# r = f!"# r N!,!!"# =
!!.!
!"# !!,!

!!.!
!"# !!!,!

N!.!!"# r = !!"#(!)
!!"!#$
!"#! N!.!!"#          (4) 

 

Here N!"#(r) is the counts of observed contacts between all pairs of atom types at a 

particular distance r. N!.!!"#is the number of the occurrence of atom pairs of types i 

and j in whole distance region. N!"!#$!"#  is the total number of contacts between all 

pairs of atom types summed over all distance r, it means the total counts. So the first 

term of functional form of PTRNAmark can be written as: 
 

u!,! r = −RTIn 
!!.!
!"# ! !!"!#$

!"#

!!"# ! !!.!
!"#                            (5)     

The energy term of nucleotide’s inside  

   We use not only mutual nucleotide potential, but also the inside potential of 

nucleotide, involving all atom pairs excluding these atom pairs which belong to bond 

stretching and angle bending in four RNA nucleotide inside. First, we calculated their 

statistical distribution over the training set. Once we get their statistical distributions, 

just like the mutual nucleotide potential, the potential can be written as: 

u!,! r = −RTIn !!,!!"#(!)
!!,!!"#(!)

                    (6) 

where R and T are Boltzmann constant and Kelvin temperature, respectively. f!,!!"#(r) 

is the observed probability of atomic pairs (q,w) within a distance bin r to r+dr in 

experimental RNA conformations.	 f!,!!"# r  is the expected probability of atomic 

pairs (q,w) within a distance bin r to r+dr in a reference state. Here atomic pair 

(q,w) runs through all the atom-pairs precluding these atom pairs which belong to 

bond stretching and angle bending in four RNA nucleotide inside. Then we could also 

get the second term of functional form of PTRNAmark in the same way as the mutual 

nucleotide potential energy, it can be written :  

u!,! r = −RTIn !!,!!"# ! !!"!#$
!"#

!!"# ! !!,!!"#
                   (7) 

Combination of the two energy terms 



  In PTRNAMark the two energy terms are combined together to get the final total 

energy: 

u!"!#$ = u!"#"$% + εu!"#!$%                    (8) 

where u!"!#$ is the total energy, u!"#"$%  is the energy of mutual nucleotide  

u!"#!$%  is the energy of nucleotide’s inside, and 𝜀  is the weight.	 To get an 

appropriate value for  𝜀 , first we generate five decoy sets by using EFOLD 

program[31](PDBID:1MSY, 1ZIH, 1KKA, 1Q9A, 255D), then we calculated each 

decoy’s RMSD and the energy score, after that we maximize the ES by trying using a 

series of 𝜀  value. In the end, we find the optimized 𝜀  value is 0.15(see 

supplementary data VIII). 

  Our all-heavy-atom distance-dependent potential utilizes all the 85 atom types in 

the four nucleotides: 22 atom types in adenine (A), 20 atom types in cytosine (C), 23 

atom types in guanine (G) and 20 atom types in uracil (U). In general, the 

distance-dependent statistical potential just considers nonbonding interactions 

between the different nucleotide. For PTRNAmark, the first term considers the 

nonbonding interaction between different nucleotide, and the second term includes all 

interactions of nucleotide inside except for bond stretching and angle bending 

interaction. so the atom pair in which the two atoms belong to the homogeneous 

nucleotide would not be considered in the first term and the second term only 

considers the atom pair which belongs to nucleotide’s inside except for bond 

stretching and angle bending.   

  For discrete statistics of data, the size of the bin has a great influence on the 

probability distribution. If the bin width is oversized, the result would be not truly 

precise. When the bin width is undersized, an unsuitable and artificial discontinuity of 

the result will occur, because of none or little samples located in certain bins .For 

protein potential, Sippl [26] used a bin width of 1 Å, Samudrala used a bin width of 1 

Å and then carried out spline fitting [27]. For RNA potential, Capriotti (RASP) also 

used a bin width of 1 Å, Bernauer (KB) used a Dirichlet process mixture model, 

which leads to analytically differentiable potential functions, rather than fixed binning 

and spline fitting. Yi Xiao’s group (3DRNAScore), used a bin width of 0.3 Å, 



studying Scott’s work [32] in 1979 and extracting the bin width for 3dRNAscore from 

experimental structure. Here, considering that there is an observed diversity of the 

number of atom pairs in different bin width, we use the varying bin width. When the 

distance of atom pair < 3 Å, the bin width is 1 Å. If the distance of atom pair >= 3 Å, 

the bin width is 0.3 Å.     

   As for the problem of sparse data, in 1990, Sippl developed a method to address 

this problem. He approximated the genuine frequency by the sum of the total densities 

and the statistical frequencies [26]. Yi Xiao’s group (3DRNAScore) utilize a penalty 

to solve this problem, giving a penalty to the total energy score when the distance 

between two atoms is < 3 Å. In our PTRNAmark, we use a constant value to solve 

this problem. 
 

 

Training sets 

  Since the performance of scoring function depends on training sets in some degree, 

it is considerable for a statistical potential to train the parameters of the scoring 

function. Here, in order to score a decoy, PTRNAmark needs to score a decoy two 

times. It means that PTRNAmark uses two sets of parameters, ones of which are 

trained by a certain training sets, the other of which are depended on some structures 

which are the lowest energy and originate from decoys, ranked by the first time score 

whose parameters is trained by a certain training sets. The detail of each scoring step 

of PTRNAmark is described in the following figure1.   

   In first scoring, PTRNAmark uses a certain training sets like the aforementioned 

knowledge-based potentials. To generate the training set, firstly we gathered 1369 

structures by RNA 3D Hub non-redundant RNA set. RNA 3D Hub hosts the 

non-redundant set of RNA-containing 3D structures extracted from experimental 

RNA structures [33]. Then we discard all the RNAs with identity > 80% and coverage 

greater than 80% by using blastn[34]. Furthermore, we remove low-quality structures 

whose resolution >3.5 Å. After that some typical representative structures which 



respectively contain internal loop, hairpin loop, double helix, triple helix, junction, 

bugle, non-Waston-Crick base pairing, mismatch base pairing are selected by using a 

visual conformation software PYMOL(http://www.pymol.org/). Finally, 380 

structures selected are used to be a training set ( PDB ID see supplementary data VI).                          

   In second scoring, when you hope to rank the near-native structures for a decoy 

set, PTRNAmark uses N structures with energies in the lowest N of the energy range 

to be a training set, which are scored by the first time scoring. For most decoy sets, 

when the energy gap of adjacent structures with energies in the lowest 10 of the 

energy range is less than 1KbT, the N=10. However, if the energy gap of adjacent 

structures with energies in the lowest 10 of the energy range is large (>1 KbT), in this 

moment N<10, and we select those structures, whose energy gap is small, with 

energies in the lowest N of the energy range to be a training set(see supplementary 

data VII). That means that parameters in PTRNAmark are changed for every decoy: if 

you score a new decoy, the parameters in PTRNAmark should have needed to be 

trained again.     

 

Test Sets	

  We tested our knowledge-based potential using two different decoy sets available at 

present. Test set I is a randstr decoy set [17], which is the largest decoy dataset in the 

benchmark. This is generated by MODELLER [35] with a set of Gaussian restraints 

for dihedral angles and atom distances from 85 native structures. It can be 

downloaded from http://melolab.org/supmat/RNApot/Home.html. 

  Test set II is made up of two parts. The first part are the decoys established by 

Bernauer group [18], which is generated by position restrained dynamics, 

normal-mode perturbation approach and REMD simulation[36,37]. In the 

normal-mode perturbation approach, the structures possess stereochemically correct 

bond lengths and angles but without correct contacts [38]. In the REMD simulation 

whose temperature is roughly distributed RNA structures from 285 to 592 K for 50 

different temperatures, each RNA structure was generated by 1ns REMD simulations. 

This decoys can be downloaded form http://csb.stanford.edu/rna/. Second part are the 



FARNA decoys which consist of lots of near-native tertiary models [11]. It can be 

downloaded from https://daslab.stanford.edu/resources/. 
   
 

Metrics of measuring RNA structures 

  It is significant for comparing any two RNA structures quantitatively to make use of 

some metrics to assess their tertiary structures. RMSD (root mean square deviation) is 

the most universal, which depicts the global geometry differences between two RNA 

3D structures but it is usually difficult to describe the hydrogen bond networks of 

RNA molecules. Hence, accounting for hydrogen-bonding networks intra-molecular 

in RNA some metrics have been proposed to assess RNA structures. One of the 

commonly used metrics specifically devised for RNA is DI (deformation index) 

proposed by Parisien [39]. The DI is defined as 
 

DI A,B = !"#$(!,!)
!"#(!,!)

                          （6） 

 

Here, for comparing hydrogen-bonding networks intramolecular between two RNA 

structures firstly let Sr be the set of interactions in a reference structure (usually an 

experimentally resolved structure) and Sm the set of interactions of a modeled 

structure. The interactions found in the intersection of both sets are true 

positives, TP = s! s!. The interactions in Sm that are not present in Sr are false 

positives, FP = s!\s! . The interactions absent in Sm but present in Sr are false 

negatives, FN =  Sr \Sm. Then Parisien defines the interaction network fidelity (INF) 

between structures A and B as the MCC, and INF(A,B)  =  MCC(A,B),  which is 

estimated by[40,41]: 
 

 
 

MCC = PPV×STY 

PPV =
|TP|

TP + |FP| 



   STY = |!"|
!" !|!"|

                             （7） 

 

In this work, we use both RMSD and DI to measure how well an RNA model 

recapitulates the corresponding experimental structure in the benchmark of the 

performance of PTRNAmark and other scoring functions. 
 

Metrics of measuring scoring function	  

  To describe the ranking near-native RNA structures performance of a scoring 

function, the ES (enrichment score [18,44] is employed, which based on identifying 

the top 10% scoring (E!"#$%%) and best 10% RMSD values (R!"#$%%), then evaluating 

their degree of overlap (this choice percentage is somewhat arbitrary). The 

Enrichment Score is defined as 
 
 

ES = |!!"#$%% !!"#$%%|
!.!×!.!×!!"#$%&

                         （8） 

 
where Etop10% is the number of structures with energies (scores given by scoring 

function) in the lowest 10% of the energy range. For RMSD-based ES, R!"#$%% is the 

number of structures with RMSD in the lowest 10%. For DI-based ES, R!"#$%% is the 

number of structures with DI in the lowest 10%. |Etop10%  ∩  Rtop10%| is the 

intersection of E!"#$%%and R!"#$%%. If the relationship between the scores and RMSD 

or DI is completely linear, then ES is equal to 10. If the relationship is random, ES is 

equal to 1, so  

 

ES =
10    perfect scoring   
1    perfectly random
< 1     bad scoring     

   

 

In this work, we use ES, which based on DI and RMSD receptively, to measure 

scoring function in ranking near-native RNA structures performances. 
 
 



RESULTS 
 

The performances of selecting native structure from decoys 

   It is essential function for the statistical potential to identify the native-like tertiary 

structure of target RNA in a pool of structural decoys correctly. In order to illustrate 

the performances of selecting native structures from decoys of PTRNAmark, we 

compare three existing RNA knowledge-based potentials: RASP [17], KB [18] and 

Rosetta [6], using an all-heavy-atom representation for all the potentials and 

evaluating them over the same decoy sets for the purpose of equity.  

   We use two test sets which are test set I and test set II respectively for all 

potentials. (see Figure 2)When using PTRNAmark, 83 out of 85 native structures are 

identified in test set I, and 34 out of 39 in test set II. RASP could identify 77 out of 85 

native structures in test set I, 34 out of 39 in test set II. For KB potential , the former 

is 80 out of 85 native structures and the latter is 33 out of 39 in test set II. For Rosetta 

53 out of 85 native structure are identified in test set I, and 26 out of 39 in test set II. It 

is worth nothing that that RASP has a better performance than NAST [42] and the 

molecular force field energy function: AMBER pseudo-energies [43] has been proved 

by Capriotti’s group. These results show that PTRNAmark has a better performance 

than other methods on identifying native RNA structures. A more detailed table than 

figure 2 and energy-RMSD plots are provided in the supplementary data I and II.  

   

The performances of ranking near-native RNA structures 

Ranking near-native structures within reason is another essential function of a 

scoring function. In the RNA structure prediction, how to confirm that a predicted 

structure is closer than others to the native state is a natural and significant problem 

which we have to face spontaneously. For RNA, to evaluate structure distinction, 

RMSD and DI which represent geometrical and topological unlikeness are common 

and useful metrics. In this work, we have benchmarked the performance of ranking 

near-native RNA structures of PTRNAmark, 3dRNAscore, RASP, KB and Rosetta on 



test set II, using both RMSD and DI metrics. Figure3 shows that five different RNA 

decoys from test set II were used to make figures with RMSD and energy. In all five 

cases, PTRNAmark was very effective than others in identifying near-native decoys. 

what’s more, table1 shows that when we are using ES of RMSD, both PTRNAmark 

(ES=5.1) outperforms other four scoring function on the overall average 

level:3DRNAscore (ES=4.5), KB (ES=3.7), RASP (ES=3.8) and Rosetta (ES=2.7). 

PTRNAmark also outperforms them on the REMD decoys, normal mode decoys and 

FARNA decoys of test set II. The result is the same for PTRNAmark when the test set 

II is divided into two parts: NMR and X-ray. Besides when we are using ES of DI, the 

average value of FARNA decoys is lower a little than 3DRNAscore—ES of DI of 

PTRNAmark is 2.6, ES of DI of 3DRNAscore is 2.8—and another result is similar as 

ES of RMSD. These results suggest that PTRNAmark is better than other methods 

when it’s used to rank near-native structures. A more detailed table than table 1 and 

energy-RMSD (DI) plots are provided in the supplementary data III and V.    

 

The contribution of nucleotides’ self-energy and retraining process 

   For PTRNAmark, on the one hand, unlike most potential for RNA which only 

consider the non-bond interaction between different nucleotides, PTRNAmark 

combines the energy of mutual nucleotides and nucleotides’ inside. On the other hand, 

most statistical potentials for RNA are based on a constant training set. PTRNAmark 

uses two training sets, one of which is constant, and the others are varying. To verify 

the contribution of the term of nucleotides’ self-energy and retraining process, we 

respectively tested the performance of energy of mutual nucleotides, total energy, and 

total energy including retraining process, using ES of RMSD on test set II. The results 

are shown in Table 2. On average, on the REMD decoys, normal mode decoys, 

FARNA decoys and overall average level, total energy without retraining process all 

performs better than mutual nucleotides’ energy. For retraining process, the result is 

similar and the promotion of ES is stronger. And on average, on the REMD decoys, 

FARNA decoys and overall average level, total energy without retraining process all 



performs better than other scoring function (See table 1). However, in some case, the 

method of retraining process cut ES down. If ten structures which are selected to be 

retraining set is ideal, the method of retraining process could promote statistical 

potential’s precise (see supplementary data XI). But when the selecting ten structures 

are unsatisfactory, the case is reverse. That means that if the general method of score 

function is a little bit precise, the method of retraining process could enhance it to be 

stronger. But if the common method of score function is terrible, the method make it 

get worse. These results indicate that for most decoys nucleotides’ self-energy and 

retraining process can further improve the accuracy of the distance-dependent energy 

on average.   
 

Captured structural features 

    Common RNA base interactions typically explicitly represented in RNA 

potentials or force-fields are base-pairing interactions and base-stacking interactions. 

Figure 4 depicts the distance distribution of the atom pair between N1 of adenine and 

N3 of uracil. Two apparent peaks appear on the distance distribution. The first peak is 

at the distance of 3 Å, and it results from the base pairing interaction between adenine 

and uracil. The second peak is at the distance of 5.1 Å, and it stems from the 

base-stacking interaction between adjacent residues along the nucleotide residues 

chain. Figure5(A) shows the secondary structure and 3D structure of 434d, and figure 

5(B) shows the base-stacking and base-pairing energies analyzed by PTRNAscore in 

RNA 434d. Besides the base-pairing energies between the nucleotides 1-14, 2-13, 

3-12, 4-11, 6-9 and 5-6 are the six lowest energies, which exactly represent the four 

Watson–Crick base-pairing in 434d. What’ more, for base-stacking energies between 

adjacent two nucleotides, the lower energy, the stronger base-stacking.   

DISCUSSION 
   According to the thermodynamic hypothesis proposed by Anfinsen, the native 

structure tends to have the lowest free energy [28]. So accurately to say, using free 

energy to evaluate a structure is necessary. For classical molecular force fields, it is 



light to calculate the enthalpy of a structure but for its entropy, it needs to consume 

too much time. In contrast, to force fields, both enthalpy and entropy information are 

contained statistical potentials extracted from experimental data of known RNA 

structures. Although they are not directly equal to free energy, they in principle 

correlate with the latter. Furthermore, it is easy and fast to calculation the energy.so it 

is useful, effective and efficient for RNA and protein structure scoring comparing 

with molecular force fields. 

   One of the considerable differences between PTRNAmark and other RNA 

statistical potentials is the association of the traditional different nucleotides’ energy 

with the energy of nucleotides’ inside. So PTRNAmark gives thought to both 

different nucleotides’ non-bond interaction and the interaction of nucleotides’ inside. 

It is common knowledge that molecular force fields are the basis of molecular 

dynamics simulation to study conformations of biomolecules. Many force fields 

consist of four components: bond stretching, angle bending, the rotation of bonds and 

non-bonded interactions. Furthermore, non-bonded interaction is made up two 

components: the interaction of different nucleotides and nucleotides’ inside. The 

potential of mutual nucleotides corresponds to non-bonded interactions originating 

from different nucleotides, besides the potential of nucleotides’ inside corresponds to 

non-bonded interactions being from nucleotides’ inside and the rotation of bonds. 

Initially, we plan to consider all interaction of nucleotides’ inside, but we find 

atom-pairs corresponding to bond stretching and angle bending have no significant 

impression. Yi Xiao’s group found similar result too when they built 

3DRNAscore[24]. What’s more, the reason that the weight of energy of nucleotides’ 

inside is too small may be that for RNA non-bonded interaction being from different 

nucleotides is stronger, and the diversity of conformation for a decoy set depends on 

this interaction in a large part.                

   For an ideal scoring function, it is very important that physical interactions are 

implicitly contained in distance-dependent statistical potential in RNA. The 

distance-dependent statistical potential corresponds to non-bonded interactions part of 

a force field. And for an atom-pairs, statistical potential energy implicitly contains not 



only this atomic pair’s non-bonded interactions but also other atoms’ non-bond 

interactions being around this atom-pair. However, since the structural features of 

every RNA molecules are different, furthermore the frequency of structural features 

of every RNA molecules—like the frequency of the base pairing UN3 and AN1— is 

diverse for statistical process, so the non-bonded interactions which are implicitly 

contained in distance-dependent statistical potential should be of specificity(see 

supplementary data X). Figure6 shows that for base-pairing GO6-CN4 and 

base-stacking GC4-GC4, we have benchmarked the performance of phase matching 

between distance and energy of PTRNAmark, 3DRNAscore, KB, and RASP, 

comparing the native structure 1duq. Besides because of constant training sets for 

most statistical potential, the specificity of RNA structure features is not fully 

considered, Which means that there is a contradiction between universality and 

pertinence. And for a decoy set when you rank near-native structures, PTRNAmark 

uses a varying training set in second time scoring where structures belong to decoy set, 

furthermore we test the performance of PTRNAmark when we select the different 

counts of decoys to be a training set using a decoy set generated by EFOLD, we find 

that when we choose ten structures which are the lowest energy ranking by the first 

time scoring, PTRNAmark outperforms the other situation(see supplementary data). 

PTRNAmark fully considers the specificity of physical interactions in RNA by using 

this method, so the performance of phase matching of PTRNAmark is better than 

other statistical potential (see Figure6). And the specificity of RNA may be 

considered by using another method, and we still study the problem.  

As for statistical potential, on the one hand, although knowledge-based statistical 

potential has been proved to be an efficient method,	there exists an inherent limitation 

for the knowledge-based scoring function because it involves calculation of a 

reference state. An ideal reference states are not achievable, and the current methods 

to construct reference states are normally based on randomizing disconnected atoms 

and implicitly ignore excluded volume, sequences, and connectivity [45]. Therefore, 

the extracted potentials by these methods are not equal to the true potentials. Thomas 

and Dill built an iterative method to circumvent the calculation of the reference state 



[46] and Xiao-Qin Zou et al. proposed	 a new, efficient iterative method to extract 

effective interaction potentials from a database of protein–ligand complex structures, 

which circumvents the calculation of the reference state [47，48]. And for RNA model 

this iterative method which circumvents the calculation of the reference state may be 

a more accurate method to assess RNA structures. On the other hand, since RNA 

backbone is highly (negatively) charged, the formation of the compact tertiary 

structure requires the polyanionic chain to overcome the massive charge repulsion 

from the backbone.so precisely to say, it is sensitive to electrostatic interactions for 

RNAs. And when RNAs are short of positive ions, it perhaps can be unable to form 

the functional folds [49-51]. The knowledge-based potentials only implicitly consider 

this effect by counting the experimental structures. And we do not know whether we 

more consider focusing electrostatic interactions for RNAs, we will study these 

problems in future.    
 

 

CONCLUSION 
  In this work, we build a novel RNA knowledge-based potential for identifying 

native RNA structures and ranking near-native structures. We not only combine 

nucleotides’ mutual and self energies but also fully consider the specificity of every 

RNA by using retraining process to retrain the parameters. Although some limitations, 

the benchmark tests show that our method could outperform existing methods in 

selecting native RNA structures and ranking near-native structures.      
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Figure1. Flow chart of training steps of PTRNAmark 

 
Figure 2. Counts of native states identified correctly from test set I and test set II by 
PTRNAmark, RASP, KB and Rosetta, respectively. 
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Figure3.Energy as a function of RMSD for decoys generated using MD decoys and 
NM decoys for five different systems. PTRNAscore, 3DRNAscore, KB, RASP and 
Rosetta are shown in turns respectively 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Figure4. (A) Energy distribution of the distance between N1 of adenine and N3 of 
uracil. (B) Diagram of the four representative distance between N1 of adenine and N3 
of uracil. 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 5. (A) Secondary structure and 3D structure of 434D.(B) Base-stacking and 
base-pairing energies between each possible base-pair in 434D calculated by 
PTRNAscore. The lower the energy, the stronger interaction. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Figure6. Energy as a function of distance for base stacking GC4-GC4 and base 
pairing GO6-CN4, compaing the native structure in RNA 1DUQ. PTRNAmark, 
3DRNAscore,KB, and RASP are shown in turns respectively. 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Table1. Comparison of the performance of ranking near native structures of 
PTRNAmark, 3DRNAscore, KB potential and Rosetta methods in test set II 
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Table2. Comparison of performance of mutual nucleotides’ energy, total energy, and 
total energy with retraining process of PTRNAmark in test set II. 
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