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ABSTRACT:8

Abundance and space use are key population-level parameters used to inform management and conservation decisions9

of rare and elusive species, for which monitoring resources can be limited, potentially affecting quality of10

model-based inference. Recently-developed methods that integrate multiple data sources arising from the same11

ecological process have typically been focused on data from well-defined sampling protocols, i.e. structured data sets.12

Despite a rapid increase in availability of large datasets, the value of unstructured or opportunistic data to improve13

inference about spatial ecological processes is, however, unclear. Using spatial capture-recapture (SCR) methods, we14

jointly analyze opportunistic recovery of biological samples, traditional SCR data resulting from systematic sampling15

of hair traps and rub trees, and satellite telemetry data, collected on a reintroduced brown bear population in the16

central Alps. We compared the precision of sex-specific estimates of density and space use derived from models17

using combinations of data sources ranging from traditional SCR to a fully integrated SCR model that includes both18

telemetry and opportunistic data. Estimates of density and space use were more precise when unstructured data were19

added compared to estimates from a classical SCR model. Our results demonstrate that citizen science data lend itself20

naturally to integration with in the SCR framework and highlight the value of opportunistic data for improving21

inference about space use, and in turn, of abundance and density. When individual identity and location can be22

obtained from opportunistic observations, such data are informative about space use and thus have the potential to23

improve estimates of movement and density using SCR methods. This is particularly relevant in studies of rare or24

elusive species, where the amount of SCR encounters is usually small, but also budget restrictions and the difficulty of25

collaring animals limit the number of individuals for which telemetry information is available. Spatially-referenced26

opportunistic data thus potentially increase both the geographic extent of a study and the number of individuals with27
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available spatial information, providing an improved understanding of how individuals are distributed and how they28

use space – fundamental components for calibrating conservation management actions.29

Key-words: Abundance, carnivore monitoring, density, opportunistic data, population estimation, space usage,30

spatial capture-recapture, telemetry.31

32

INTRODUCTION33

Obtaining precise estimates of population density and space use can lead to an increased understanding of the34

processes governing spatio-temporal ecological dynamics and, in turn, improve wildlife management and35

conservation practices. The task of estimating ecological state variables is, however, challenging, especially for rare36

and elusive species such as large carnivores, and requires analytical approaches that account for the fact not all37

individuals in a population can be observed (Williams et al. 2002). Regardless of methodology, the quality of38

model-based inference is directly related to data quality, which can be an issue for elusive species, especially when39

resources for monitoring are limited. This has led to an emphasis on developing methods that integrate multiple data40

sources (Schaub and Abadi 2010; Gimenez et al. 2014) and, importantly, to a realization that the vast amounts of data41

regularly collected outside of formal scientific studies, unstructured or opportunistic data, offer a potentially valuable42

data source (Dickinson et al. 2012; Newman et al. 2012). Although the majority of data integration methods have43

focussed on improving estimates of species distribution and temporal population trends, opportunistic data has great44

potential to improve inferences about spatial ecological processes.45

Integrated population models (IPMs: Besbeas et al. 2002; Schaub and Abadi 2010; Tenan et al. 2012) provide a46

statistical framework for jointly modeling count data and demographic data, typically resulting in improved inferences47

about the mechanisms regulating population dynamics. As a result, there has been continued development of more48

general ‘integrated data models’ that seek to combine any independent data sources that arise from the same49

ecological process (Gimenez et al. 2014). For example, occupancy and abundance are two directly related ecological50

state variables and joint analysis of capture-recapture and occupancy data has been shown to improve estimates of51

abundance (Conroy et al. 2008; Blanc et al. 2014), density (Chandler and Clark 2014), and even52

colonization-extinction dynamics and dispersal (Sutherland et al. 2014). A common feature of the majority of studies53
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that use multiple data sources, aside from improving parameter precision, is that each independent data set is54

collected according to a well-defined sampling protocol, i.e., it is an integration of structured data sets. The value of55

unstructured or opportunistic data, such as that collected by many citizen scientists, is yet unclear. For example, van56

Strien et al. (2013) argue that opportunistic data represents an important data source that, if analyzed appropriately,57

can yield improved inferences about temporal trends in occurrence, while Kamp et al. (2016) caution against its use,58

demonstrating that citizen science data were unable to detect significant species declines. Regardless, with the rapid59

increase in citizen science initiatives, finding innovative ways to utilize opportunistic data will broaden the scope of60

ecological enquiry that can be addressed within a single analytical framework (Gimenez et al. 2014).61

Spatial capture-recapture methods (SCR: Efford 2004; Royle et al. 2014) are now well-established in applied62

ecology and produce estimates of population density using spatial encounter history data, i.e., observation data on63

who was detected when, and importantly, where. Using spatial patterns of observations to account for heterogeneity64

in detection probabilities caused by individual differences in trap exposure, and treating space as an explicit model65

component, SCR produces unbiased estimates of density and space use across a range of conditions (e.g., Borchers66

and Efford 2008; Royle et al. 2014; Sollmann et al. 2012; Sutherland et al. 2015). Moreover, SCR has been used to67

estimate density for elusive species from data collected using a variety of field methodologies including camera traps68

(Royle et al. 2009), hair snares (Gardner et al. 2010), scat surveys (Fuller et al. 2016), and unstructured survey data69

(Kéry et al. 2011). A core component of SCR is an explicit model for space use that relates encounter probability to70

the distance between any location and an individual’s activity center via the estimation of a spatial scale parameter σ71

(Ch. 7 Royle et al. 2014). Estimating σ accounts for individual encounter heterogeneity so the effective sampling area72

is explicitly described and as a result, absolute density can be directly estimated. If follows that to estimate density73

well, σ must also be well estimated. As with other statistical methods, the precision of SCR-derived estimates of74

space use and density depend on sample sizes, specifically, but not solely, the number of unique spatial locations75

individuals are observed at (spatial recaptures). Thus, adding additional spatial information should, in theory, lead to76

improved inference about space use, and in turn, density. For example, Gopalaswamy et al. (2012) increased the77

number of spatial recaptures by integrating camera trap and scat collection data which resulted in more precise78

estimates of density, while Royle et al. (2013) and Sollmann et al. (2013c) demonstrated that space use (σ) and79

density are estimated with higher precision when telemetry data are used in addition to traditional capture-recapture80

data (See also Table 1).81

Interestingly, in an SCR model, telemetry data require no information about sampling effort because observed82
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locations provide representative information only about the spatial scale parameter (σ), and thus any amount of83

telemetry data are likely to be informative about space use. So, while the inability to quantify observer effort and bias84

is often cited as a major limitation of data collected by citizen scientists (Dickinson et al. 2010), it appears that such85

opportunistic data lends itself naturally to integration within the SCR modeling framework. Specifically, when86

opportunistic observations can be made of individuals, i.e., via direct or indirect recognition of naturally marked,87

collared or tagged individuals or the collection of DNA yielding biological samples such as hair of faeces, the88

locations of those observations are informative about space use and therefore have the potential to improve estimates89

of spatial parameters in SCR, and have the added benefit of potentially increase the geographic extent of monitoring90

studies significantly.91

Here we demonstrate how opportunistic data can be jointly analyzed using spatial capture-recapture methods to92

improve estimates of density and space use for a reintroduced brown bear Ursus arctos population in the central Alps.93

The area is one of the most populated regions to be occupied by brown bears (Chapron et al. 2014; De Barba et al.94

2010b) meaning bear-human interactions are highly probable and any perceived threat is considered a key factor in95

determining the success or failure of the reintroduction (Mustoni et al. 2003). It is important that any conservation96

management decisions are based on the best available information, and every effort must be made to improve97

estimates of bear density and space use.98

MATERIALS and METHODS99

Study area and population100

This study was conducted in 2013 in the Italian Alps, an area characterized by a mosaic of natural and101

human-modified habitats, with a landscape fragmented by urban areas and roads. Elevation ranges from 65 m to more102

than 3900 m a.s.l., with submontane, montane and subalpine vegetation covering areas below 2000 m, and human103

population density concentrated below 1000 m (Mustoni et al. 2003). Between 1999 and 2002, nine bears (three104

males and six females, 3-6 years old) were released in the area as part of a reintroduction project to establish a105

self-sustained population (Dupré et al. 2000; Mustoni et al. 2003). At the time, the original brown bear population106

consisted of at least three animals, which were assumed to have died without any genetic exchange with the107

translocated bears and their progeny (De Barba et al. 2010a).108
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Brown bear data109

Non-invasive genetic sampling110

Bear hair samples were collected form 99 hair traps and 89 rub trees. Hair traps consisted of a strand of barbed wired111

wound around trees at c. 50 cm above ground level enclosing an area of c. 25 m2 and scent lure was placed in the112

center (Woods et al. 1999). They were set from 15 May to 31 July, checked on five occasions and the number of days113

between occasions ranged from 3 to 10 days (Fig. 1). Rub trees, barbed wire wrapped around trees, were monitored114

during the same time period and were checked twice, first after six days and than after four days (Fig. 1). All hairs115

were collected during each visit to hair traps and rub trees so that only newly deposited hairs were collected in116

subsequent visits. Because the hair trap and rub tree data were collected according to a specific protocol, we refer to117

this structured data as traditional SCR data, or simply ‘SCR data’. In addition to the structured data collection, we118

also collected opportunistic hair and feces data (De Barba et al. 2010a,b; Groff et al. 2014; Tenan et al. 2016).119

Following notification by third parties (typically members of the public), opportunistic sampling of hair and feces was120

carried out by agency personnel at sites where bear damage occurred, e.g. depredation on livestock, beehives and/or121

crops (Tenan et al. 2016). We refer to this data as ‘opportunistic data’.122

Biological samples were genetically analyzed for individual identification using ten loci. For a detailed123

description of DNA extraction methods, PCR protocols, protocols for individual identification, and molecular sexing,124

see De Barba et al. (2010a,b). We considered only data belonging to the non-cub part of the population and125

successfully identified a total of n = 22 individuals (12 females and 10 males). Of the 22 individuals, 19 were126

detected using hair traps; two males and one female that were sampled only on rub trees. During the period of trap127

deployment, 11 of the 22 individuals (four females and seven males) were detected opportunistically resulting in an128

additional 30 unique spatial locations (Fig. 1, Fig. 2a, Fig. S1 in Appendix S1).129

Telemetry130

Two bears, a 5-year old male and a 15-year-old female, were monitored during the hair trap and rub tree sampling131

period using Global Positioning System (GPS) collars (Vectronic GPS-GSM collars, Vectronic Aerospace GmbH,132

Berlin, Germany). Collared bears were captured using culvert traps (female) and Aldrich snares (male) upon133

approved capture protocols (2003-DPR 357/97, Groff et al. 2014). GPS collars collected positions at different134

intervals ranging from 10 min to 1 h. For the analysis we selected one random record per day per individual, giving a135
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total of 143 unique telemetry locations (74 and 69 for the male and female respectively). The collared female was136

detected at a hair trap but never detected at rub trees or opportunistically (Fig. 2b). The collared male was never137

detected with hair traps, but was detected once at a rub tree and opportunistically observed in five occasions (Fig. 2c).138

Data analysis139

Spatial capture-recapture data140

Spatial capture recapture models are hierarchical models (Royle and Dorazio 2008) that describe distance-dependent141

encounter probabilities (the observation process), and the spatial distribution of individuals across the landscape142

(density, the ecological state process). We adopt a Bayesian analysis of the model (Royle and Young 2008; Gardner143

et al. 2010) and assume that individual encounter data, yi jk , representing whether or not individual i was detected in144

trap j in occasion k, are Bernoulli random variables with success probability pi jk , i.e., the encounter probability:145

yi jk ∼ Bernoulli(pi jk ). (1)

Encounter probabilities in SCR are assumed to decline with distance between a trap (x) and an individuals activity146

center (s) according to some decreasing function; here we use the commonly applied half-normal encounter model147

and allow for sex-specific variation in the parameters:148

pi jk = p0,i jk exp
(
−

1
2σ2

sex
d(x j, si)2

)
, (2)

where σsex is the sex-specific spatial scale parameter that determines the decrease in encounter probability as the149

distance between trap j and individual i’s activity center (d(x j, si)), increases. The parameter p0,i jk is the baseline150

encounter probability and can itself be modelled as a function of individual- (i), trap- ( j) and occasion- (k) specific151

covariates. Specifically, we modelled the baseline encounter probability as a function of sex, trap type (trap: hair trap152

or rub tree), and, to account for the different time elapsed between consecutive sample occasions in each trap, time153

since last check (time) using standard logistic regression:154

logit(p0,i jk ) = γ0 + γ1 sexi + γ2 trapj + γ3 timejk . (3)

The second component of the SCR model is a point process model that describes the distribution of individual155

activity centers, si , within a defined state-space S which should be large enough to contain all plausible activity156
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centers of all observed individuals (Royle et al. 2014). We were particularly interested in modelling density as a157

function of spatially varying covariates, i.e., an inhomogeneous point process model, and so we used a discrete158

representation of S defined as the center points of each pixel. In our case, where we are considering a population that159

was established from a single release point, we modelled variation in density as a function of the distance from the160

point that the founding population was released between 1999 and 2002 (d.release; see ‘Study area and population’).161

Using a binomial point process model, the per-pixel intensity, µ(s), is modelled as a log-linear function of ‘d.release’:162

log(µ(sg)) = β0 + β1 d.releaseg, (4)

and the probability that an individual activity center is located in a pixel, π(s) is given by:163

π(sg) =
µ(sg)∑
µ(sg)

. (5)

This is the standard formulation of a Bayesian SCR model with a sex-specific half-normal encounter probability164

model, an inhomogeneous point process density model, and the estimation of sex-specific total population size N165

using data augmentation (see Chapters 7 and 10 in Royle et al. 2014). Sex was known for all observed individuals but166

not for unobserved (augmented) individuals so was modelled as an individual random effect to be estimated:167

sexi ∼ Bern(ωsex ), where ωsex is the population-level sex ratio. We expected detectability to vary significantly168

between sexes and trap type, and to be positively related to the time since last check, expected space use to vary by169

sex, and thus that sex-specific σ values would differ, and finally we expected density to decline with distance from the170

release point.171

The spatial encounter histories for the standard SCR analysis were generated for detections from a J = 188-trap172

array consisting of hair traps and rub trees across K = 5 sampling occasions (Fig. 1 and Fig. 3). Data were formatted173

in a 3-dimensional M × J × K array, YSCR, where M is the number of augmented ‘all-zero’ encounter histories, a174

proportion of which are the estimated unobserved individuals. The additional data required to fit the model are: the175

coordinates of each hair trap and tree rub, a vector of sex determination of each individual, a J × K trap operation176

matrix which is a binary indicator denoting whether each trap was operational during sampling occasion, and the177

J × K matrix of ‘time since last check’ covariates, which were scaled to have zero mean and unit variance (Fig. 3).178
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Telemetry and opportunistic data179

Unlike the traditional SCR data described above, both telemetry locations, Itel and opportunistic data Iopp are not180

restricted to trap locations and therefore provide important additional information about individual movement, i.e.,181

they are both direct observations of space use (Royle et al. 2013). We combine the individual telemetry and182

opportunistic locations and refer to them collectively as Ii for individual i = 1, . . . , n. These additional locations can183

be modelled using a bivariate normal movement model (Sollmann et al. 2013b,a):184

Ii ∼ BV N (si, Σ) (6)

where,

Σ =



σ2 0

0 σ2



. (7)

The parameters of this bivariate normal model can be related directly to the SCR half-normal encounter probability185

model (Eq. 2) through the shared parameters s an σ, which means that telemetry data, opportunistic data and186

traditional SCR data can be jointly modelled, each contributing to the estimation of the latent activity center, si187

location and the spatial scale parameter σ.188

The telemetry and opportunistic data, for Rtel and Ropp locations, were formatted in two R × n × K arrays each,189

one containing x-coordinates and the other containing corresponding y-coordinates, for the n observed individuals190

and K occasions. This array structure allows the unstructured data (telemetry and opportunistic) to be related to the191

SCR data in the integrated model (Fig. 3). In addition, an M × K matrix denotes the number of unstructured locations192

for each individual in each occasion (Fig. 3).193

Model comparisons194

The main objective of this work was to investigate the value of integrating telemetry data and opportunistic sightings195

data into a traditional SCR model for estimating density and space use for the reintroduced brown bear population to196

inform future management. To do so we fitted the SCR models described above using four SCR data sets:197

1. Traditional SCR data only (data from hair traps and tree rubs)198
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2. SCR data + telemetry data199

3. SCR data + opportunistic sightings200

4. SCR data + telemetry + opportunistic sightings201

For each model, we estimated sex-specifc total population size, Nsex and sex-specific σsex, and compared point202

estimates (posterior median) and precision (95% Bayesian Credible Interval width, BCI from here) of the estimated203

parameters.204

We adopted a Bayesian analysis of the SCR models using Markov chain Monte Carlo implemented using the205

program JAGS (Plummer 2003) executed from R (R Core Team 2012). For the parameters of the linear predictors (γ206

and β ), we used an uninformative Normal(0, 100) prior. We used a equally uninformative Normal(0, 10) prior for207

α1,sex, where α1,sex = 1/(2σ2
sex). After testing a range of resolution values for the state space, we used a resolution of208

4 × 4 km, a value that was small enough to yield stable parameter estimates, and large enough to ensure the model was209

computationally tractable. To ensure the state space was large enough to contain all plausible activity centers, we used210

a 21 km buffer around the most extreme coordinates of all the data (telemetry, opportunistic and trapping data, Fig.211

2a). Data were augmented with M − n ‘all-zero’ encounter histories, where M = 300. Summaries of the posterior212

distribution were calculated from 30, 000 post-burn-in posterior samples (burn-in = 3, 000 iterations). The code for213

the fully-integrated model is available as supporting information.214

RESULTS215

Overall, integrating all available sources of information (traditional SCR, telemetry and opportunistic data) produced216

more precise estimates of population size and spatial scale when compared to the use of either SCR data alone or217

integrated with only one additional source of data (Table 2-3, Fig. 4). In particular, the gain in precision achieved by218

jointly modeling all three data types was particularly relevant for sex-specific population size estimates (Nm and Nf ).219

In addition to the increase in precision, integrating additional sources of information resulted in a shift in the median220

abundance point estimates: from 15.679 (BCI: 7.994 – 30.349) under the SCR-only model to 12.629 (BCI: 6.840 –221

21.953) under the fully integrated model for the number of males, and from 58.008 (BCI: 24.285 – 147.788) to222

24.578 (BCI: 13.275 – 51.722) for females. Precision gains in estimates of σ were minimal when adding223

opportunistic data and highest when integrating telemetry information only, markedly so for males (Table 2-3, Fig. 4).224

As with the estimates of bear population size, the integration of additional information led to a change in the point225
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estimates of σ; compared to the SCR-only model, there was a noticeable increase in the scale of space use when any226

of the additional data was used. The female 95% home range size estimated from the half normal encounter model227

under the SCR-only model was 212 km2 whereas for the fully integrated model, the estimate was 1375 km2.228

Conversely, estimates of male space use, σm, were consistent across models (Fig. 4, Table 2), as were the229

corresponding 95% home range size estimates: 1800 km2 (SCR data only) and 2024 km2 (fully integrated model).230

Estimates of the parameter relating density to distance to the reintroduction point (β1) were negative under all231

models, and although there was some variation in the strength of the effect, this result supports the hypothesis that232

density decreased with distance from the point were founders were released (Table 2). The estimated sex ratio in the233

population, ωsex , did not vary significantly between the four model based on 95% Bayesian Credible Intervals and234

ranged from 0.22 (BCI: 0.09 – 0.41) in the fully integrated model, to 0.36 (BCI: 0.19 – 0.57) in the SCR + telemetry235

model (Table 2). Across all models, detectability was higher for males, higher at hair traps, and increased with236

increasing time between checks (Table 2).237

DISCUSSION238

We developed a formulation of a spatial capture-recapture model that integrates multiple data sources, and as a result,239

improves inferences about key ecological parameters, namely density and space use, which we demonstrate using data240

from a reintroduced population of brown bears in the Italian Alps. Specifically, we were able to jointly analyze241

traditional SCR data resulting from systematic sampling of hair traps and rub trees, satellite telemetry data, and242

opportunistic recovery of biological samples. Comparing estimates from models ranging from traditional SCR, to a243

fully integrated SCR model that includes both telemetry data and opportunistic sightings data, we demonstrated that244

the addition of unstructured data results in increased precision in estimates of population size and space usage for this245

species of conservation interest.246

Estimates of male population size were stable across all models and precision was highest for the fully integrated247

model, i.e., the model with most spatial data, and lowest for the SCR-only model, which had the fewest spatial248

locations (Fig. 4). For females, estimates of population size from models with additional data were comparable but249

were different from the SCR-only model estimates, both in terms of precision and point estimates. The addition of250

telemetry and opportunistic data reduced parameter uncertainty when compared to the SCR-only model but overall251

precision was lower for the females. Although the number of individuals observed for the two sexes was similar (12252
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females and 10 males), the number of SCR encounters at different sites (hair traps and rub trees) was smaller for253

females (mean 2.1, min 1, max 4) than males (mean 8.6, min 1, max 21) (Fig. S1 in Appendix S1). This suggests that254

smaller SCR data sets might benefit most from an integrated data approach, or conversely may be less stable and more255

sensitive to combining data. It is encouraging however, that population size estimates based on the two independent256

unstructured data sources produce similar estimates of abundance, suggesting the addition is beneficial rather than257

due to parameter sensitivity. The ability to model sex-specific effects on detectability, which in turn affect estimates258

of sex-specific abundance, can often be limited by insufficient observations of one sex or the other (Sollmann et al.259

2011; Tobler and Powell 2013). In cases like these, including in our study, even small amounts of unstructured data,260

like opportunistic sightings data, can resolve such limitations and increase the value of small SCR data sets.261

As with abundance, estimates of sex-specific σ were more precise when more data were used, such that σ under262

the fully integrated model had higher precision compared to the SCR-only model (Fig. 4). The most notable difference263

was between point estimates of female space use from the SCR-only model and the three comparable data integration264

models. The change in the point estimates is due to the marked difference in the spatial distribution of telemetry265

locations compared to the SCR data (hair traps and tree rubs) which is likely related to the link between detector type266

and behavior. SCR data was represented by a few spatially clustered encounters which may mostly reflect female hair267

deposition patterns related to territoriality potentially at the core of a home range, telemetry and opportunistic data268

reflect overall space use (Fig. 2b). Estimates of abundance are explicitly linked to estimates of space use because σ269

controls overall expected encounter probabilities. Here, with the integration of added spatial information, estimates of270

σ are higher compared to SCR-only data, and as a result, estimates of abundance are reduced (Fig. 4). Again, this271

points to the value of added spatial information to refine estimates of space use, and in turn, of abundance and density.272

The integration of additional spatially-referenced information with traditional SCR data ameliorate inference273

accuracy, and even a small amount of opportunistic data yields improvements, meaning that citizen science type data274

are potentially high value data sets in SCR regardless of whether survey effort is known. In some cases, like for the275

male movement parameter σm, incorporation of opportunistic information may counterbalance the possible276

inconsistency between spatial information provided by telemetry and SCR data (Fig. 4). This is particularly relevant277

in studies of rare or elusive species, where the amount of SCR encounters is usually small but also budget restrictions278

and the difficulty in collaring animals limit the number of individuals for which telemetry information is available.279

Opportunistic data provide additional information not limited to the extent of a trap array, like telemetry, but which280

can also be available for larger number of individuals than those equipped with devices. Unsurprisingly, the addition281
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of telemetry data alone generally results in more precision gains than adding opportunistic data alone because the282

former is more information rich (Fig. 4). However, the addition relatively few opportunistic locations acted to283

increase precision relative to inference from the SCR-only model (Fig. 4), suggesting that even in the absence of284

telemetry data, opportunistic data are important sources of spatial information.285

When the number of collared individuals is very low (e.g. 3 individuals in Royle et al. 2013 and Sollmann et al.286

2013a, or two in our study) telemetry information may be more or less representative of population space use, with a287

variable degree of concordance between spatial information provided by telemetry and SCR data. On the other hand,288

information mismatch can also arise in the presence of sparse SCR data as a consequence of inappropriate trap289

spacing, variation in group-specific (e.g. age or sex) exposure to traps, or when the trap array is small relative to290

individual movement, inducing a geographic bias for the most mobile component of the population. Opportunistic291

information may also not be representative of the entire population, as in the case of records collected at sites where a292

damage occurred (e.g. depredation on livestock, beehives and crops) where individuals more prone to commit damage293

can be sampled more times than others. Finally, as suggested above, the encounter data may reflect altogether different294

behavioral states depending on the particular method used to detect individuals. This suggests that the process of data295

integration requires more that simply the development of integrated data models, but rather that those models take296

into consideration the variation in behavior that might be reflected in the independent data sets being used.297

We provide evidence that incorporating unstructured opportunistic data to SCR and telemetry information, by298

conceptually treating opportunistic records as thinned telemetry data, improves inference on abundance and space299

usage, which are key population-level parameters to inform conservation decisions of elusive and difficult-to-study300

species. However, care must be taken to assess the potential mismatch in spatial information provided by the different301

data sets, where telemetry is both the most informative source of space use but also often available only for a few302

individuals, whose movement may not be representative of population space use. Understanding how animal density303

changes in space and how the latter is used is crucial when addressing practical issues in population management and304

conservation (Bischof et al. 2009). For this aim, the use of opportunistic information increases availability of305

spatially-referenced individual information, that can be suitably modelled along with other data within a unified306

framework, thus reducing the need for additional invasive methods.307

12

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2016. ; https://doi.org/10.1101/075945doi: bioRxiv preprint 

https://doi.org/10.1101/075945
http://creativecommons.org/licenses/by-nc-nd/4.0/


ACKNOWLEDGEMENTS308

This research was partially funded by the Autonomous Province of Trento and the MUSE - Museo delle Scienze. We309

would like to thank the Autonomous Province of Bolzano, the ISPRA, the personnel of the Servizio Foreste e Fauna310

of the Autonomous Province of Trento, of the Adamello Brenta Natural Park, and of the Stelvio National Park. We311

also thank the many forestry wardens and volunteers for field support, and Aaron Iemma for IT assistance.312

References313

Besbeas, P., S. N. Freeman, B. J. T. Morgan, and E. A. Catchpole, 2002. Integrating mark-recapture-recovery and314

census data to estimate animal abundance and demographic parameters. Biometrics 58:540–547.315

Bischof, R., J. E. Swenson, N. G. Yoccoz, A. Mysterud, and O. Gimenez, 2009. The magnitude and selectivity of316

natural and multiple anthropogenic mortality causes in hunted brown bears. Journal of Animal Ecology317

78:656–665.318

Blanc, L., E. Marboutin, S. Gatti, F. Zimmermann, and O. Gimenez, 2014. Improving abundance estimation by319

combining capture–recapture and occupancy data: example with a large carnivore. Journal of Applied Ecology320

51:1733–1739.321

Borchers, D. L. and M. Efford, 2008. Spatially explicit maximum likelihood methods for capture–recapture studies.322

Biometrics 64:377–385.323

Chandler, R. B. and J. D. Clark, 2014. Spatially explicit integrated population models. Methods in Ecology and324

Evolution 5:1351–1360.325

Chapron, G., P. Kaczensky, J. D. Linnell, M. Von Arx, D. Huber, H. Andrén, J. V. López-Bao, M. Adamec,326

F. Álvares, O. Anders, et al., 2014. Recovery of large carnivores in Europe’s modern human-dominated327

landscapes. Science 346:1517–1519.328

Conroy, M. J., J. P. Runge, R. J. Barker, M. R. Schofield, and C. J. Fonnesbeck, 2008. Efficient estimation of329

abundance for patchily distributed populations vias two-phase, adaptive sampling. Ecology 89:3362–3370.330

13

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2016. ; https://doi.org/10.1101/075945doi: bioRxiv preprint 

https://doi.org/10.1101/075945
http://creativecommons.org/licenses/by-nc-nd/4.0/


De Barba, M., L. Waits, E. Garton, P. Genovesi, E. Randi, A. Mustoni, and C. Groff, 2010a. The power of genetic331

monitoring for studying demography, ecology and genetics of a reintroduced brown bear population. Molecular332

Ecology 19:3938–3951.333

De Barba, M., L. P. Waits, P. Genovesi, E. Randi, R. Chirichella, and E. Cetto, 2010b. Comparing opportunistic and334

systematic sampling methods for non-invasive genetic monitoring of a small translocated brown bear population.335

Journal of Applied Ecology 47:172–181.336

Dickinson, J. L., J. Shirk, D. Bonter, R. Bonney, R. L. Crain, J. Martin, T. Phillips, and K. Purcell, 2012. The current337

state of citizen science as a tool for ecological research and public engagement. Frontiers in Ecology and the338

Environment 10:291–297.339

Dickinson, J. L., B. Zuckerberg, and D. N. Bonter, 2010. Citizen science as an ecological research tool: challenges340

and benefits. Annual review of ecology, evolution and systematics 41:149–72.341

Dupré, E., P. Genovesi, and L. Pedrotti, 2000. Studio di fattibilità per la reintroduzione dell’Orso bruno (Ursus342

arctos) sulle Alpi centrali. Istituto nazionale per la fauna selvatica ‘Alessandro Ghigi’.343

Efford, M., 2004. Density estimation in live-trapping studies. Oikos 106:598–610.344

Fuller, A. K., C. S. Sutherland, J. A. Royle, and M. P. Hare, 2016. Estimating population density and connectivity of345

american mink using spatial capture–recapture. Ecological Applications 26:1125–1135.346

Gardner, B., J. A. Royle, M. T. Wegan, R. E. Rainbolt, and P. D. Curtis, 2010. Estimating black bear density using347

DNA data from hair snares. The Journal of Wildlife Management 74:318–325.348

Gimenez, O., S. T. Buckland, B. J. Morgan, N. Bez, S. Bertrand, R. Choquet, S. Dray, M.-P. Etienne, R. Fewster,349

F. Gosselin, et al., 2014. Statistical ecology comes of age. Biology letters 10:20140698.350

Gopalaswamy, A. M., J. A. Royle, M. Delampady, J. D. Nichols, K. U. Karanth, and D. W. Macdonald, 2012. Density351

estimation in tiger populations: combining information for strong inference. Ecology 93:1741–1751.352

Groff, C., N. Bragalanti, R. Rizzoli, and P. Zanghellini, 2014. 2013 Bear report. Technical report, Forestry and353

Wildlife Department of the Autonomous Province of Trento.354

14

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2016. ; https://doi.org/10.1101/075945doi: bioRxiv preprint 

https://doi.org/10.1101/075945
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kamp, J., S. Oppel, H. Heldbjerg, T. Nyegaard, and P. F. Donald, 2016. Unstructured citizen science data fail to355

detect long-term population declines of common birds in denmark. Diversity and Distributions Early View, DOI:356

10.1111/ddi.12463.357

Kéry, M., B. Gardner, T. Stoeckle, D. Weber, and J. A. Royle, 2011. Use of spatial capture-recapture modeling and358

DNA data to estimate densities of elusive animals. Conservation Biology 25:356–364.359

Mustoni, A., E. Carlini, B. Chiarenzi, S. Chiozzini, E. Lattuada, E. Dupré, P. Genovesi, L. Pedrotti, A. Martinoli,360

D. Preatoni, et al., 2003. Planning the Brown Bear Ursus arctos reintroduction in the Adamello Brenta Natural361

Park. a tool to establish a metapopulation in the Central-Eastern Alps. Hystrix 14:3–27.362

Newman, G., A. Wiggins, A. Crall, E. Graham, S. Newman, and K. Crowston, 2012. The future of citizen science:363

emerging technologies and shifting paradigms. Frontiers in Ecology and the Environment 10:298–304.364

Plummer, M., 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In365

Proceedings of the 3rd International Workshop on Distributed Statistical Computing.366

R Core Team, 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical367

Computing, Vienna, Austria. ISBN 3-900051-07-0.368

Royle, J. A., R. B. Chandler, R. Sollmann, and B. Gardner, 2014. Spatial Capture-Recapture. Academic Press,369

Waltham, MA.370

Royle, J. A., R. B. Chandler, C. C. Sun, and A. K. Fuller, 2013. Integrating resource selection information with spatial371

capture–recapture. Methods in Ecology and Evolution 4:520–530.372

Royle, J. A. and R. Dorazio, 2008. Hierarchical modeling and inference in ecology: the analysis of data from373

populations, metapopulations and communities. Academic Press, San Diego.374

Royle, J. A., K. U. Karanth, A. M. Gopalaswamy, and N. S. Kumar, 2009. Bayesian inference in camera trapping375

studies for a class of spatial capture-recapture models. Ecology 90:3233–3244.376

Royle, J. A. and K. V. Young, 2008. A hierarchical model for spatial capture-recapture data. Ecology 89:2281–2289.377

15

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2016. ; https://doi.org/10.1101/075945doi: bioRxiv preprint 

https://doi.org/10.1101/075945
http://creativecommons.org/licenses/by-nc-nd/4.0/


Schaub, M. and F. Abadi, 2010. Integrated population models: a novel analysis framework for deeper insights into378

population dynamics. Journal of Ornithology 152:227–237.379

Sollmann, R., M. M. Furtado, B. Gardner, H. Hofer, A. T. Jácomo, N. M. Tôrres, and L. Silveira, 2011. Improving380

density estimates for elusive carnivores: accounting for sex-specific detection and movements using spatial381

capture–recapture models for jaguars in central brazil. Biological Conservation 144:1017–1024.382

Sollmann, R., B. Gardner, and J. L. Belant, 2012. How does spatial study design influence density estimates from383

spatial capture-recapture models? PloS one 7:e34575.384

Sollmann, R., B. Gardner, R. B. Chandler, D. B. Shindle, D. P. Onorato, J. A. Royle, and A. F. O’Connell, 2013a.385

Using multiple data sources provides density estimates for endangered florida panther. Journal of Applied Ecology386

50:961–968.387

Sollmann, R., B. Gardner, A. W. Parsons, J. J. Stocking, B. T. McClintock, T. R. Simons, K. H. Pollock, and A. F.388

O’Connell, 2013b. A spatial mark–resight model augmented with telemetry data. Ecology 94:553–559.389

Sollmann, R., N. M. Tôrres, M. M. Furtado, A. T. de Almeida Jácomo, F. Palomares, S. Roques, and L. Silveira,390

2013c. Combining camera-trapping and noninvasive genetic data in a spatial capture–recapture framework391

improves density estimates for the jaguar. Biological Conservation 167:242–247.392

Sutherland, C., D. Elston, and X. Lambin, 2014. A demographic, spatially explicit patch occupancy model of393

metapopulation dynamics and persistence. Ecology 95:3149–3160.394

Sutherland, C., A. K. Fuller, and J. A. Royle, 2015. Modelling non-euclidean movement and landscape connectivity395

in highly structured ecological networks. Methods in Ecology and Evolution 6:169–177.396

Tenan, S., J. Adrover, A. M. Navarro, F. Sergio, and G. Tavecchia, 2012. Demographic consequences of397

poison-related mortality in a threatened bird of prey. PloS ONE 7:e49187.398

Tenan, S., A. Iemma, N. Bragalanti, P. Pedrini, M. Barba, E. Randi, C. Groff, and M. Genovart, 2016. Evaluating399

mortality rates with a novel integrated framework for non-monogamous species. Conservation Biology Early400

View, DOI: 10.1111/cobi.12736.401

16

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2016. ; https://doi.org/10.1101/075945doi: bioRxiv preprint 

https://doi.org/10.1101/075945
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tobler, M. W. and G. V. Powell, 2013. Estimating jaguar densities with camera traps: problems with current designs402

and recommendations for future studies. Biological Conservation 159:109–118.403

van Strien, A. J., C. A. Swaay, and T. Termaat, 2013. Opportunistic citizen science data of animal species produce404

reliable estimates of distribution trends if analysed with occupancy models. Journal of Applied Ecology405

50:1450–1458.406

Williams, B. K., J. D. Nichols, and M. J. Conroy, 2002. Analysis and management of animal populations. Academic407

Press, San Diego.408

Woods, J. G., D. Paetkau, D. Lewis, B. N. McLellan, M. Proctor, and C. Strobeck, 1999. Genetic tagging of409

free-ranging black and brown bears. Wildlife Society Bulletin 27:616–627.410

17

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2016. ; https://doi.org/10.1101/075945doi: bioRxiv preprint 

https://doi.org/10.1101/075945
http://creativecommons.org/licenses/by-nc-nd/4.0/


TABLES411

Table 1: Summary of contributions that provide an integrated framework for spatially-referenced
individual data. Systematic data are collected under specific study designs: spatial capture-
recapture (SCR), telemetry, and counts or binary detections (survey). Parameter shared: ψ, Data
Augmentation parameter; σ, scale parameter of the observation model ; φ, survival probability; δ,
individual-level recruitment probability.

Systematic Opportunistic
Paper SCR Telemetry Survey Parameter Study species
Sollmann et al. (2013c) •1 σ jaguar
Gopalaswamy et al. (2012) •1 ψ, σ tiger
Sollmann et al. (2013b) •2 • σ raccoon
Sollmann et al. (2013a) •2 • σ Florida panther
Royle et al. (2013) • •3 σ black bear
Chandler and Clark (2014) • • φ, δ black bear
Present study • • • σ brown bear

1 camera trapping and scat collection;
2 extended to mark-resight;
3 resource selection function data
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Table 2: Posterior parameter estimates achieved using SCR data alone or integrated with other
systematic (telemetry) and opportunistic (opp) information available for the brown bear population
in the Italian Alps. Parameters are denoted as follows: number of males and females, Nm and N f ,
respectively; scale parameter of the Gaussian kernel, which relates to space usage of females and
males, σ f and σm, respectively; baseline encounter probability (p0) intercept, γ0; effect of being
male on p0, γ1; effect of trap type on p0, γ2; effect of time since last check on p0, γ3; density
intercept, β0; effect of distance from the release point on density, β1; data augmentation parameter,
ψ; probability of being a male, ωsex . Estimates are reported for a 4-km resolution of the state space
grid.

Parameter mean SD 2.5% 50% 97.5%

SCR + tel + opp
Nm 13.088 3.893 6.840 12.629 21.953
N f 26.587 10.249 13.275 24.578 51.722
σm 10.372 0.474 9.496 10.351 11.348
σf 8.548 0.481 7.669 8.523 9.558
γ0 -3.714 0.308 -4.335 -3.705 -3.125
γ1 1.623 0.312 1.024 1.618 2.246
γ2 -1.153 0.387 -1.899 -1.155 -0.384
γ3 0.619 0.185 0.248 0.621 0.976
β0 -3.245 0.670 -4.719 -3.192 -2.081
β1 -1.128 0.467 -2.125 -1.107 -0.276
ψ 0.198 0.064 0.109 0.186 0.351
ωsex 0.341 0.096 0.171 0.335 0.542

SCR + opp
Nm 13.687 4.297 6.965 13.166 23.675
N f 36.890 18.900 15.703 32.157 89.949
σm 11.800 0.905 10.207 11.741 13.743
σf 7.092 1.103 5.380 6.936 9.669
γ0 -3.414 0.345 -4.116 -3.406 -2.758
γ1 1.417 0.360 0.734 1.409 2.143
γ2 -1.160 0.392 -1.923 -1.164 -0.390
γ3 0.621 0.189 0.248 0.623 0.985
β0 -2.713 0.600 -3.960 -2.687 -1.562
β1 -0.739 0.435 -1.620 -0.731 0.113
ψ 0.252 0.106 0.124 0.227 0.542
ωsex 0.291 0.096 0.125 0.285 0.498

SCR + tel
Nm 15.514 5.297 7.747 14.684 28.297
N f 28.206 11.284 13.501 25.819 57.590
σm 8.556 0.425 7.773 8.538 9.441
σf 8.339 0.482 7.461 8.316 9.345
γ0 -3.479 0.332 -4.139 -3.478 -2.833
γ1 1.791 0.343 1.119 1.787 2.472
γ2 -1.207 0.402 -1.991 -1.207 -0.413
γ3 0.670 0.193 0.288 0.671 1.046
β0 -2.956 0.627 -4.313 -2.899 -1.869
β1 -0.890 0.460 -1.842 -0.866 -0.043
ψ 0.218 0.074 0.115 0.204 0.406
ωsex 0.364 0.098 0.187 0.359 0.569

SCR
Nm 16.574 5.766 7.994 15.679 30.349
N f 65.057 31.086 24.285 58.008 147.788
σf 3.355 0.582 2.460 3.274 4.729
σm 9.796 1.277 7.739 9.644 12.756
γ0 -2.220 0.407 -3.040 -2.213 -1.451
γ1 0.804 0.441 -0.046 0.799 1.683
γ2 -1.207 0.421 -2.037 -1.204 -0.389
γ3 0.658 0.203 0.263 0.656 1.060
β0 -2.076 0.549 -3.259 -2.032 -1.119
β1 -0.459 0.387 -1.267 -0.437 0.244
ψ 0.406 0.168 0.177 0.371 0.850
ωsex 0.223 0.084 0.090 0.212 0.414 19
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Table 3: Gain in precision of parameter estimates expressed as per cent reduction in the SD of the
posterior estimates achieved by integrating different data types, compared to those obtained using
classical SCR models. Population size (Nm and N f ) and the scale parameter of the observation
model (σm and σ f ) are reported for males and females respectively.

Nm N f σm σ f
SCR + telemetry 8% 63% 67% 17%
SCR + opportunistic 26% 39% 29% -90%
SCR + telemetry + opportunistic 33% 67% 63% 18%
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FIGURE LEGENDS412

Figure 1: Timeline of data collection during the period when SCR data were systematically collected using an array413

of hair traps checked on five occasions of variable length (black blocks), and from rub trees checked for hairs in two414

period (grey blocks). Telemetry data were thinned by randomly selecting on record per day, and opportunistic415

recovery of biological samples was performed in 23 days.416

Figure 2: (a) Distance from the point were founders were released (in km) and location of bear captures from417

systematic sampling with hair traps and rub trees (SCR), telemetry and opportunistic records. (b-c) Location of the418

records for the two collared individuals from which telemetry information was derived. Grey dots indicate the419

location of all observed individuals.420

Figure 3: Graphical representation of the data involved in the integrated analysis. Circles represent estimated421

parameters. Observed data for n individuals, detected during K visits and members of the population of size N , were422

augmented with M − n all-zero detections (YSCR matrix). SCR data were collected at J sites, consisting of Jh hair423

traps and Jr rub trees. Data set names in Courier font correspond to the names used in the model code. Coordinates,424

trap deployment, and (standardized) time since last check data sets for the J = Jh + Jr traps are denoted by425

SCR.traps, active, and time.elapsed.sc labels, respectively. Raster data contain information on the distance426

from the point were founders were released for each of the nG pixels (d2core) and was used to model density.427

Telemetry and opportunistic data were formatted in the same way, with an augmented matrix for number of records428

available for individual i in occasion k (n.obs.TEL and n.obs.OPP, respectively) and the x (TEL.y_x, OPP.y_x)429

and y (TEL.y_y, OPP.y_y) coordinates of those records for each individual in each of the Rtel or Ropp locations and430

occasion k.431

Figure 4: Posterior parameter estimates (mean and 95% Bayesian Credible Interval) achieved using SCR data only,432

or integrating them with telemetry (‘tel’) and opportunistic (‘opp’) data available for the brown bear population in the433

Italian Alps. Reported are the sex-specific population sizes (N) and scale parameters of the Gaussian kernel (σ).434
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