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ABSTRACT 

Natural visual behaviour entails explorative eye movements, saccades, that bring different 

parts of a visual scene into the central vision. The neural processes guiding the selection of 

saccade targets are still largely unknown. Therefore, in this study, we tracked with 

magnetoencephalography (MEG) cortical dynamics of viewers who were freely exploring 

novel natural scenes. Overall, the viewers were largely consistent in their gaze behaviour, 

especially if the scene contained any persons. We took a fresh approach to relate the eye-

gaze data to the MEG signals by characterizing dynamic cortical representations by means 

of representational distance matrices. Specifically, we compared the representational 

distances between the stimuli in the evoked MEG responses with predictions based (1) on 

the low-level visual similarity of the stimuli (as visually more similar stimuli evoke more 

similar responses in early visual areas) and (2) on the eye-gaze data. At 50–75 ms after the 

scene onset, the similarity of the occipital MEG patterns correlated with the low-level 

visual similarity of the scenes, and already at 75–100 ms the visual features attracting the 

first saccades predicted the similarity of the right parieto-occipital MEG responses. 

Thereafter, at 100–125 ms, the landing positions of the upcoming saccades explained 

MEG responses. These results indicate that MEG signals contain signatures of the rapid 

processing of natural visual scenes as well as of the initiation of the first saccades, with the 

processing of the saccade target preceding the processing of the landing position of the 

upcoming saccade. 
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SIGNIFICANCE STATEMENT 

Humans naturally make eye movements to bring different parts of a visual scene to the 

fovea where our visual acuity is the best. Tracking of eye gaze can reveal how we make 

inferences about the content of a scene by looking at different objects, or which visual 

cues automatically attract our attention and gaze. The brain dynamics governing natural 

gaze behaviour is still largely unknown. Here we suggest a novel approach to relate eye-

tracking results with brain activity, as measured with magnetoencephalography (MEG), 

and demonstrate signatures of natural gaze behaviour in the MEG data already before the 

eye movements occur. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 19, 2016. ; https://doi.org/10.1101/075929doi: bioRxiv preprint 

https://doi.org/10.1101/075929
http://creativecommons.org/licenses/by-nc-nd/4.0/


Author preprint, version 19/9/2016 

 

4 

 

INTRODUCTION 

Natural visual behaviour involves eye movements that bring different objects to the 

central retina where the visual acuity is the best. During viewing of real-world scenes, one 

fixation lasts a few hundred milliseconds, after which the eyes are moved to the next 

location by means of a saccade (Henderson, 2003). Much modelling work has aimed to 

explain eye-gaze behaviour by visual saliency—that is, by low-level feature 

representations in the early visual cortex, by defining visual saliency as feature contrast 

between an image patch and its surround (Itti et al., 1998). Although these models can 

successfully pinpoint gaze-attracting locations in some scenes, they fall short when the 

scenes include attention-capturing higher-level features, such as faces (Cerf et al., 2009). 

Faces, and people in general, are especially effective in attracting the gaze (Yarbus, 1967; 

Birmingham et al., 2008), which likely reflects the central role of social cues for human 

behaviour and brain function (Hari et al., 2015).  Moreover, the task given to the subject 

affects the gaze paths (Neider and Zelinsky, 2006; Torralba et al., 2006), and already the 

pioneering eye-tracking investigations by Buswell (1935) and Yarbus (1967) revealed that 

the fixations cluster on  informative scene regions (for a review, see Henderson and 

Hollingworth, 1999).  

The neural processes guiding gaze behaviour during natural vision have remained 

poorly understood. Moreover, brain activity associated with natural viewing can only be 

tracked with brain-imaging methods of high-enough temporal resolution. In this study, we 

used magnetoencephalography (MEG), which provides millisecond time resolution for 

noninvasive mapping of human cortical dynamics (for a review, see Hari and Salmelin, 

2012). Our subjects viewed natural scenes, including landscapes and scenes depicting 

people in social interaction, while their eye gaze and MEG signals were monitored. We 
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were especially interested in the initiation of the first saccade as an index of visual cues 

that likely are the most informative for scene understanding. By restricting our MEG 

analysis to the time-windows preceding the onset of the first saccade, we were able to 

avoid the contamination of the MEG data by oculomotor artifacts and to obtain 

information about brain processes that inform about the target of the first saccade. 

A challenge to the analysis of MEG responses to even elementary (low-level) visual 

stimuli is that the cortical visual areas show substantial inter-individual variability in their 

size and position relative to anatomical landmarks, especially sulci (Amunts et al., 2000; 

Van Essen and Dierker, 2007), inducing great variability in the waveforms and spatial 

patterns of the evoked electromagnetic responses (Ales et al., 2010; Inverso et al., 2016). 

We therefore took a novel approach by applying representational similarity analysis (RSA; 

Kriegeskorte et al., 2008; Nili et al., 2014) to MEG data. That is, instead of assuming any 

specific shape for the waveform or topography of the MEG response, we made predictions 

on the similarity of the MEG-response patterns elicited by the scenes.  

Figure 1 illustrates the analysis framework using simulated data. Random sources in 

the occipital poles (“early visual cortex”) had a correlation structure matching a 

categorical stimulus representation (Fig. 1A). The question is how this categorical 

response-geometry is reflected to the signals picked up by the MEG sensors. We 

constructed representational dissimilarity matrices (RDMs) by calculating the 

representational distance (1 – Pearson linear correlation) between each pair of the 

simulated MEG-response patterns from a set of neighbouring gradiometer sensors. The 

simulated-MEG-RDMs were compared with the ground-truth categorical-model-RDM 

using Spearman’s rank correlation (Fig. 1B). The analysis was repeated at each sensor 

location and the results were collected to a topographic map (Fig. 1C). The resulting maps 
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were tested for significant correlation across subjects (Fig. 1D–E). As shown in Figure 1E, 

the occipital gradiometers correctly reflected the underlying categorical representation, 

thereby demonstrating the viability of the approach. 

In the present study, we looked for cortical signatures of the initiation of the first 

saccade. The representational distances between the MEG-response patterns elicited by 

the scenes were compared with predictions based either on the visual similarity of the 

stimuli or on the targets of the first saccades.  

 

Figure 1. Representational similarity analysis for MEG data: a simulated categorical 
stimulus representation in early visual cortex.  A) We demonstrate the idea of RSA for 
MEG using a simple simulation. We start by generating random patters in cortical nodes 
corresponding to the occipital poles in both hemispheres, with the correlation structure 
between the random patterns matching a categorical structure: 3 categories, 10 
exemplars in each category (maximal correlation between exemplars of the same 
category, no correlation between exemplars of different categories). We calculate the 
forward solutions for the random patterns and add realistic noise to all patterns. B) The 
simulated responses are extracted in local neighbourhoods of MEG channels to construct 
an RDMs. The RDMs constructed from the simulated MEG data are compared to the 
ground-truth model-RMD (categorical model) using Spearman’s rank correlation. C) The 
Spearman’s correlation values are collected to a topographic map, and D) the individual 
topographic maps are E) averaged and tested for significant correlation (here simulated 
data from 10 subjects). The correlation is significant in occipital channels, matching the 
topography of the simulated sources. 
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MATERIALS AND METHODS  

Subjects 

Eighteen healthy volunteers (10 males, 8 females; age range 18–39 yrs) with normal 

vision took part in this study. Ethics approval for the research had been obtained from the 

Ethics Committee of Hospital District of Helsinki and Uusimaa. Subjects gave written 

informed consent before participating in the study. 

Stimuli and experimental design 

The stimuli were 199 photographs of natural scenes, including landscapes, scenes 

with single persons, and cluttered scenes with many people. The photographs were 

obtained from Wikimedia Commons™. The original photographs were cropped to size 

1400 x 1050 pixels and converted to grayscale. The means and standard deviations of the 

grayscale values were matched across the stimulus set using the SHINE toolbox 

(Willenbockel et al., 2010). Figure 2 shows one stimulus image. 

  

Figure 2. Natural scene stimuli and stimulus presentation. A) A fixation cross at the 
centre of the screen informed the subject about the onset of a new trial. The duration of 
the fixation screen was varied between 1.3 and 2.1 seconds to avoid subjects’ 
anticipating the onset of the stimuli. When the stimulus image appeared, the subject had 
been instructed to freely look at the image. The stimulus image was shown for 1.0 
seconds, followed by a generic yes/no question about the content of the image. B) The 
stimuli were 199 photographs, converted to grayscale images. The diameter of a stimulus 
image was about 38 degrees. C) Each stimulus was manually annotated for features-of-
interest: face, hand, body, text, object and background scene. 
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The stimuli were presented with a 3-DMD DLP projector (Panasonic ET-

LAD7700/L) to a semitransparent screen at 105 cm viewing distance. The size of the 

stimulus image on the screen was 72 cm x 54 cm, giving a horizontal viewing angle of 

approximately 38 degrees. The timing of stimulus presentation (Fig. 2A) was controlled 

by PsychoPy (Peirce, 2007). Each trial begun with the fixation cross presented at the 

centre of the mid-gray screen for a random period of 1.3–2.1 s, followed by 1–0-s display 

of the stimulus image. The fixation cross was overlaid on the stimulus image but the 

subjects were instructed to freely move their eyes after the onset of the image. Stimulus 

offset was followed by a yes/no question in Finnish about the image (e.g., ‘Näkyikö 

kuvassa vettä?’ = ‘Was there water in the image?’; altogether 26 different questions). The 

questions were answered using an MEG-compatible response pad.  

Altogether 199 different stimuli were shown in different random order for each 

subject. The images were divided to four experimental runs, separated with short breaks, 

with 50 of the 199 stimulus images presented in each run (49 in the last run). In addition, a 

set of 25 images, randomly selected of the 50 images of each run, was presented also 

upside-down in random order interleaved with the other stimuli. The data obtained for the 

inverted stimulus images are not analysed here. 

The stimulus images were annotated for six features of interest: face, hand, body, 

text, object, and background scene (Fig. 2C). The annotations were manually drawn using 

the Matlab-based Object Labeling Tool from Derek Hoiem 

(http://dhoiem.cs.illinois.edu/software/).  

MEG data acquisition and pre-processing 

MEG was recorded in a magnetically shielded room with a whole-scalp 306-channel 

MEG device (Elekta Oy, Helsinki, Finland) in the MEG Core, Aalto NeuroImaging, Aalto 
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University, Finland. The device comprises 102 triple-sensor elements, with one 

magnetometer and two orthogonal planar gradiometers at each location. Only the 

gradiometer data (from 204 channels) were used in the analysis. The recording passband 

was 0.03–330 Hz, and the signals were sampled at 1000 Hz. The position of the subject’s 

head with respect to the MEG sensors was tracked throughout the experiment using four 

head position indicator (HPI) coils. In addition to the separate eye tracking (see below), 

horizontal and vertical electro-oculograms (EOGs) were recorded with the same recording 

passband and sampling rate as applied for the MEG. 

The continuous MEG data were preprocessed using spatiotemporal signal-space 

separation (Taulu and Simola, 2006) implemented in MaxFilter software (Elekta Oy, 

Helsinki, Finland). This step included suppression of magnetic interference of external 

sources, compensation for head movement, and transformation of each individual’s data 

into a common head position. Single-trial MEG responses to stimulus images were 

extracted from the continuous MEG recording, baseline-corrected from –200 ms to 0 ms 

and low-pass filtered at 45 Hz using tools provided by the MNE and Fieldtrip software 

packages (Oostenveld et al., 2010; Gramfort et al., 2014).  

For the representational similarity analysis, the signals were normalized by dividing 

the single-trial responses by the standard deviation of the response in a 200 ms time-

window before the stimulus onset (baseline). Trials with blinks or poor fixation were 

rejected based on the eye-tracking data. 

Eye-gaze recording and data pre-processing 

Eye gaze was tracked using an SR Research EyeLink1000 system (SR-Research 

Ltd., Ontario, Canada; sampling rate 500 Hz, average accuracy of gaze position better than 

0.5 deg). The eye tracker was placed on a table in front of the subject. A 9-point 
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calibration was performed at the start of the experiment and at the midpoint of the 

experiment. Fixations, saccades, and blinks were extracted from the continuous eye-

tracking data during data collection using the software provided by the eye-tracker 

manufacturer. The extracted events were further processed in Matlab. 

For each trial (stimulus), we extracted the onset of the first saccade and the position 

of the fixation before and after the first saccade. A trial was rejected if the fixation was not 

at the fixation cross at the onset of the trial, if the saccade amplitude was less than 0.5 deg, 

or if the subject had blinked. In addition, the data analysis was restricted to trials where the 

latency of the first saccade was between 125 ms and 350 ms. The eye-tracking data were 

drift-corrected based on the fixation locations at the onset of the trials. 

Representational-similarity analysis 

The MEG responses to the different stimuli were compared with each other using 

correlation distance (1 – Pearson linear correlation). We applied a spatiotemporal 

searchlight approach, where the correlations were calculated between signals in 

overlapping sets of neighbouring MEG channels in time-windows of 25 ms (Fig. 3A, left 

panel). Channel neighbourhoods were defined using Fieldtrip (Oostenveld et al., 2010) 

and included on average 15 gradiometer pairs (channels at the edge of the MEG helmet, 

for example, had fewer neighbors than channels at the centre of the helmet). All pairwise 

comparisons between the stimuli were assembled in a representational dissimilarity matrix 

(RDM; Kriegeskorte et al., 2008; Nili et al., 2014) which, by definition, is symmetric and 

has a zero diagonal. The MEG-RDMs were calculated separately for each subject. 
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Figure 3. Representational similarity analysis. A) The MEG responses evoked by the 
different scenes were extracted in local spatiotemporal searchlights and compared to 
each other using correlation distance (1 – Pearson linear correlation). All pairwise 
comparisons between the MEG responses to the different scenes were collected to a 
representational dissimilarity matrix (RDM). The MEG-RDM was compared to a model-
RDM using Spearman’s rank correlation (rS). The analysis was repeated for all channel 
locations (overlapping neighbourhoods) and for four non-overlapping time-windows.  B) 
The stimulus images were convolved with Gabor wavelets to obtain a prediction of the 
low-level visual similarity of the stimuli. The convolution outputs were concatenated to 
have one feature vector for each image. All pairwise comparisons of the feature vectors 
were computed using correlation distance (rP) and the results were collected to an RDM. 
C) The saccade targets were characterized by extracting the features-of-interest (Fig. 2C) 
from spotlights around the endpoint of the first saccade for each image. The similarity of 
saccade targets was estimated by calculating the Earth Mover’s Distance between the 
feature histograms.  

The similarity of the RDMs across the group of subjects was studied to evaluate the 

amount of stimulus-related information in the RDMs, constructed from single-trial MEG 

responses. Using a leave-one-out approach, an RDM of one subject was compared with an 

RDM, where the RDMs of the other 17 subjects had been averaged. The comparison was 

based on Spearman’s rank correlation distance of the values in the upper triangle of the 

single-subject (left-out) RDM and the group-average (leave-one-out) RDM. The leave-

one-out procedure was done for each subject, and the results were averaged and tested for 

significant deviation from zero. The analysis was repeated for all channel locations and in 

four time windows (25–50 ms, 50–75 ms, 75–100 ms, 100–125 ms). 
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Next, the MEG-RDMs were compared with different predictions on the 

representational similarity structure (model-RDMs): Gabor wavelet pyramid model (low-

level visual similarity), similarity of saccade-target features, spatial distance between 

saccade end-point locations, and similarity of gaze scanpaths. In a model-RDM (Fig. 3B 

and 3C), each cell reflects the predicted dissimilarity of a stimulus pair. The native 

dimensions of an RDM were 199 x 199 (number of stimulus images). However, for each 

subject, some trials were excluded based on the eye-tracking data, and thus, the size of the 

RDMs differed between subjects. Note, however, that one benefit of the RSA approach is 

that exactly the same set of stimuli is not required for all subjects. The comparison 

between an MEG-RDM and a model-RDM was based on Spearman’s rank correlation 

distance of the values in the upper triangles of the RDMs (Kriegeskorte et al., 2008).  

All comparisons were done on individual data and tested for statistically significant 

deviation from zero across the subjects.  The multiple-comparisons problem was 

addressed by using a cluster-based permutation approach to test the statistical significance 

of the spatial cluster of significant sensors (sum of T-values; Maris and Oostenveld, 2007). 

The sensors showing statistically significant positive correlation (one-tailed t-test across 

subjects; p < 0.01) that survived the cluster-based permutation test (10 000 random 

permutations; p < 0.05) were visualized in topography plots. 

Gabor-wavelet pyramid 

A Gabor-wavelet pyramid model was adapted from the phase-congruency model 

provided by Kovesi ( www.peterkovesi.com/matlabfns; Kovesi, 1999). Each stimulus 

image was represented with a set of Gabor wavelets of three spatial frequencies and four 

orientations at a regular grid over the image. The images were resized to 10% of the 

original size before the computation. The outputs of convolving the image with each of the 
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Gabor wavelets were concatenated to have a representational vector for each image (Fig. 

3B). The pairwise dissimilarities (1 – Pearson’s linear correlation) of these vectors were 

computed to obtain the Gabor-wavelet model-RDM for the stimuli.  

Saccade targets 

To characterize the target of the first saccade for each image in each subject, we 

defined a spotlight with a diameter of 5.2 deg (about the size of fovea; Wandell, 1995) to 

extract the features around the landing position of a saccade. The features were extracted 

from the annotated stimulus images (Fig. 2C). The similarity of the feature histograms 

between two targets was estimated using Earth Mover’s Distance. The distances were 

collected to an RDM (Fig. 3C). Because the RDMs were based on individual eye-tracking 

data, we had a unique reference RDM for each subject based on their saccade targets.  

Saccade landing positions 

The distances between saccade landing positions between each pair of stimulus 

images were calculated from saccade vectors, that is vectors from the start point of the 

saccade (fixation at stimulus onset) to the endpoint of the first saccade. The distances were 

collected to an RDM, separately for each subject.  

Scanpaths 

The full gaze scanpath for each image was characterized using the ScanMatch 

toolbox (Cristino et al., 2010). Each stimulus image was divided into 11 bin x 9 bin and 

the temporal binning was set to 50 ms. The similarity of two scanpaths was quantified 

using the Needleman-Wunsch sequence alignment algorithm implemented in the 

ScanMatch toolbox (Cristino et al., 2010). The scanpath similarities between all pairs of 

images were computed and collected to an RDM. The scanpath similarities were 

characterized separately for each subject. 
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RESULTS 

The first saccade is typically directed to people—especially to their faces 

Figure 4 shows the landing positions of the first saccades in all stimulus images, 

with one point for each individual subject. The gaze was typically drawn to faces or bodies 

of the persons in the scene. If the scene contained no persons, a salient object (such as a 

football or a boat) often attracted the first saccade. Although the landing positions of the 

first saccades were largely consistent across the subjects, for some scenes the first saccade 

clearly diverged between individuals; see, for example, the scene depicting a woman 

putting a book on a shelf (Fig. 4, seventh row, last image), where the viewers’ gaze was 

drawn either to the woman’s face or to the acting hand. Hence, we used the individual 

instead of group-average results for the analysis where we related the eye-gaze and MEG 

data. 

To characterize the saccade targets in each image, we defined a gaze-spotlight 

around the landing position of each saccade to match the size of the fovea in the visual 

field (diameter 5.2 deg). Figure 5 shows the group-average gaze-spotlights, separately for 

each of the 199 scenes. The midpoint of each group-average gaze-spotlight was defined 

from the individual eye-gaze data by convolving the individual saccade landing positions 

with a Gaussian kernel and finding the peak of the resulting heatmap. The group-average 

spotlights are shown to visualize the most common features in the scenes that attracted the 

gaze. Figure 6 shows the same gaze-spotlights with annotated features-of-interests; the 

predominance of the red color indicates that most of the saccade targets contained faces, 

and a minor part objects (blue color). The annotations were based on previous studies 

suggesting that faces, people, and text attract the gaze (Yarbus, 1967; Cerf et al., 2009).  
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Figure 4. Natural scene stimuli overlaid with the eye-gaze results. Subjects were 
instructed to look freely at the scenes. The red dots indicate the locations of the first 
saccade for indivudual subjects. The fixation cross is shown as a green cross (a black 
fixation cross was used in the experiments, Fig. 2A). Note the clustering of the first 
saccades to similar targets across the group of subjects.  
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Figure 5. Average targets of the first saccades. For each scene, we defined a spotlight 
around the endpoint of the first saccade. The size of the spotlight was about the size of 
the fovea in the visual field (diameter 5.2 degrees). Here the group-average spotlights are 
shown for all 199 scenes. 
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Figure 6. Annotations of the saccade targets. To quantify the features within the 
saccade targets, all images were annotated for features-of-interest (Fig. 2C). Here the 
annotated group-average saccade targets are shown for all 199 scenes (red = face, 
orange = hand, dar red = body, white = text, blue = object, dark blue = background 
scene). 
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The features-of-interest were quantified from the gaze-spotlights around the landing 

positions of the first saccades, separately for each subject. Figure 7 shows that the 

amounts of features-of-interests were greater in the saccade spotlights (coloured bars) than 

in the whole stimulus images (gray bars), except for the pixels depicting background scene 

which were less pronounced within the saccade spotlights. The proportional increases of 

the feature-of-interest pixels in the gaze spotlights compared with the whole images were 

greatest for faces and text, which only occupied a small portion of the stimulus images but 

large proportions of the gaze-spotlights of the first saccades.  

Figure 7 
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Figure 7. Features-of-interest within saccade targets and whole stimulus images. 
Results on the proportion of different features-of-interest (see also Figs. 2C and 6) within 
the saccade targets and in the whole stimulus images are shown. Each coloured bar 
indicates the mean proportion of each of the features-of-interest (face, hand, body, text, 
object, background scene) within the spotlights of the first saccades. The error bars 
indicate the standard deviation across the 18 subjects. The gray bars indicate the 
proportion of each of the features-of-interest in the whole stimulus image. The asterisks 
indicate statistically significant difference (two-tailed t-test; ***p<0.001, **p<0.01, 
*p<0.05). 

Single-trial MEG responses carry information about natural-scene stimuli 

While the subjects were viewing the scenes, we followed their brain dynamics using 

MEG. The dynamic cortical representations were characterized by means of 

representational distance matrices constructed from the single-trial MEG data (for an 

overview of the analysis, see Fig. 3A). To construct an MEG-RDM, we extracted signals 

from a set of neighbouring gradiometers in a 25-ms time-window and calculated all pair-
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wise correlations between the signals elicited by the different scenes. The MEG-RDMs 

were constructed separately for each channel location and in four different time-windows.  

The RDMs can be directly compared between different individuals (without any need for 

matching the MEG response shapes between individuals), or an MEG-RDM can be 

directly compared with an RDM describing the representational geometry of a 

computational model (Kriegeskorte et al., 2008; Kriegeskorte and Kievit, 2013). 

First to confirm the suitability of the single-trial MEG data for representational 

similarity analysis, we studied the similarity of the RDMs across the group of subjects 

(Fig. 8A). We would hypothesize that all stimulus images do not evoke equally distinct 

responses but that some stimuli evoke more similar responses, and thus, the ranking from 

the least to the most similar stimulus pair would be correlated across subjects. The RDM 

of a single subject was compared to the group-average RDM of the other subjects by 

calculating the Spearman’s rank correlation between the RDMs. To avoid contamination 

of the MEG signals by oculomotor activity and to learn about brain activity supporting the 

selection of the first saccade target, we restricted the analysis to the part of the MEG 

response before the onset of the first saccade. RDMs showed similarity across the group of 

subjects starting from the time-window of 50–75 ms, first in the occipital cortex (Fig. 8A). 

That is, the MEG-RDMs showed replicable structure across the group of subjects from the 

onset of the stimulus-related response. At later time-windows,  the subjects’ RDMs are 

continuously correlated, with peaks in the occipital cortex but extending also to temporal 

and parietal regions, with right-hemisphere dominance. 
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Figure 8. Representational similarity of single-trial MEG-RDMs across subjects and 
comparison with low-level image features. A) The upper row shows the mean 
Spearman’s rank correlation between the RDM of a leave-one-out-subject and the 
average RDM of the other 17 subjects, calculated separately within a spatiotemporal 
searchlight at each channel location. The analysis was done separately in four time-
windows: 25–50 ms, 50–75 ms, 75–100 ms, and 100–125 ms. The bottom row shows the 
corresponding p-values (one-tailed t-test, n = 18; the significance of a spatial cluster 
tested by permutation, p < 0.05). The MEG-RDMs showed similar structure across 
subjects from the time-window 50–75 ms from stimulus onset, first above the occipital 
cortex. B) The upper row shows the mean Spearman’s rank correlation between the RDM 
constructed based on the low-level visual similarity of the stimulus images (Fig. 3B) and 
the MEG-RDMs, calculated separately within a spatiotemporal searchlight at each 
channel location and in four time-windows: 25–50 ms, 50–75 ms, 75–100 ms, and 100–
125 ms. The bottom row shows the corresponding p-values (one-tailed t-test, n = 18; the 
significance of a spatial cluster tested by permutation, p < 0.05). The low-level visual 
similarity of the stimuli explained structure in the MEG-RDMs from the time-window 50–
75 ms onwards. 

Similarity of low-level image features explains similarity of early MEG responses 

The Gabor wavelet model is commonly considered as the standard model of visual 

representations of area V1 (Carandini et al., 2005), and has been shown to explain 

stimulus representations in areas V1–3 when characterized using functional magnetic 

resonance imaging (Kay et al., 2008; Henriksson et al., 2015). Figure 8B shows the results 

when the MEG-RDMs were compared with an RDM constructed based on the Gabor 
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wavelet pyramid model of the stimuli, reflecting the representation of low-level image 

features. The comparison was based on the rank correlation between model-RDM and the 

MEG-RDMs. The results in Figure 8B resemble the results shown in Figure 8A, where we 

assessed the similarity of the RDMs across the group of subjects. Thus, from the early 

time-window (50–75 ms), the similarity of the low-level image features of the stimuli 

explained similarity of MEG responses (Fig. 8B).  

Saccade targets explain MEG response-pattern similarity at 75–100 ms 

Our main objective was to combine MEG and eye-tracking data to uncover cortical 

dynamics of saccade-target selection during free-viewing of scenes. The eye-tracking 

results revealed the features in the stimulus images that captured the subjects’ attention. 

The features-of-interest were extracted from the annotated images for the first saccades, 

separately for each subject. The similarity of each pair of feature histograms (number of 

pixels for each feature-of-interest within a saccade spotlight) was estimated and collected 

to an RDM (for an example, see Fig. 3C). The RDMs were constructed separately for each 

subject based on the individual eye tracking results and compared with the MEG-RDMs. 

Figure 9A shows that the similarity of visual features within the saccade targets explained 

the similarity of the MEG responses starting 75–100 ms after stimulus onset, first in the 

right-hemisphere parieto-occipital cortex (Fig. 9A). 
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Figure 9. Comparisons of MEG-RDMs with targets and locations of the upcoming 
saccades. A) The saccade target similarity between two stimuli was characterized from 
the features-of-interest within the saccade spotlights (see also Figs. 2C, 3C and 6). The 
upper row shows the mean Spearman’s rank correlation between the RDMs constructed 
based on the similarity of the features within the individual saccade targets and the 
individual MEG-RDMs, calculated separately within a spatiotemporal searchlight at each 
channel location and in four time-windows: 25–50 ms, 50–75 ms, 75–100 ms, and 100–
125 ms. The bottom row shows the corresponding p-values (one-tailed t-test, n = 18; the 
significance of a spatial cluster tested by permutation, p < 0.05). The similarity of the 
saccade targets explained structure in the MEG-RDMs from the time-window 75–100 ms 
onwards. B) RDMs were constructed based on the distance between saccade landing 
positions, and correlated with the MEG-RDMs. Upper row shows the mean Spearman’s 
rank correlation and bottom row the corresponding p-values. C) RDMs were constructed 
based on the similarity of the full scanpaths of the eye movements between the different 
scenes, and correlated with the MEG-RDMs. Upper row shows the mean Spearman’s 
rank correlation and bottom row the corresponding p-values. Scanpath similarity 
explained structure in the MEG-RDMs first in time-window 100–125 ms after stimulus 
onset, in right-lateralized sensors. 
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Next, we built an RDM for each subject based on the landing positions of the first 

saccades. The MEG-RDMs from a cluster of right-lateralized sensors correlated with the 

saccade-location RDMs in the time-window 100–125 ms after stimulus onset (Fig. 9B). 

Finally, we constructed RDMs based on, not only on the first saccade, but on the 

similarity of the full scanpaths of eye movements for each scene. The similarity between 

each pair of eye-movement sequences was quantified using the ScanMatch toolbox 

(Cristino et al., 2010). The scanpath similarity explained similarity in the MEG responses 

in the time-window 100–125 ms after stimulus onset, over right-lateralized sensors (Fig. 

9C).  

Stimulus- vs. saccade-aligned analysis 

Thus far, results are presented from analyses of MEG signals time-locked to the 

stimulus onset, thus ignoring variability in saccade latencies. Can we see any effects of 

saccade latency in the MEG signals? Figure 10A shows grand-average MEG responses 

from occipital (top panels), right temporal (middle panels) and frontal (bottom panels) 

channels (root-mean-square amplitudes of signals in gradiometer pairs averaged across the 

channels and subjects) time-locked both to the stimulus onset (left column) and to the 

saccade onset (right column). The responses were binned to eight equal-sized groups 

based on saccade latency (shown in different colours). Responses time-locked to the 

stimulus onset show no clear evidence for saccade-latency-related effects on amplitude or 

latency before the onset of the saccade. Similarly, when the responses were time-locked to 

the onset of the saccade, the post-saccadic responses show no clear saccade-latency-

related effects (Fig 10A, right column). Figure 10B shows also the grand-average EOG 

responses (root-mean-square amplitudes of signals in vertical EOG pair averaged across 
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subjects) to compare with the MEG responses, and to evaluate whether the oculomotor 

artefact interferes with the interpretation of the MEG response.  

We also performed the RSA analysis on the MEG responses time-locked to the 

saccade-onsets instead of stimulus-onset. Figure 10C shows the time-resolved results on 

the comparisons between the MEG-RDMs and the model-RDMs, both time-locked to the 

stimulus (left column) and saccade onset (right column). The MEG-RDMs were 

constructed from signals from all gradiometers, separately for each time-point. When 

time-locked to the stimulus onset, the MEG-RDMs and model-RDMs in the pre-saccadic 

time-window (< 125 ms) exhibit the same behaviour as shown in Figures 8–9. Moreover, 

the sustained post-saccade (> 200 ms) correlation between the MEG-RDMs and the 

saccade-target-RDMs (red curve) suggests sustained information about the saccade targets 

in the brain activity. The comparison of the MEG-RDMs with the scanpath-RDM (blue 

curve), on the other hand, is likely contaminated by oculomotor (and not brain) signals in 

the post-saccadic time-window. When time-locked to the saccade onsets (Fig. 10C, right 

panel), the MEG signals show little evidence for any saccade-related effects before the 

saccade onset. After the saccade onset, oculomotor signals likely explain the high 

correlation between the MEG-RDMs and scanpath-RDMs. On the other hand, the 

sustained correlation between the MEG-RDMs and the saccade-target-RDMs (red curve) 

suggests sustained information about the identity of the saccade targets in the post-

saccadic brain responses. In addition, the peak in the correlation with the low-level visual 

features coincides with the peak in the MEG responses from the occipital sensors (Fig. 

10A, top row, right column). Taken together, signatures of saccade planning are evident in 

the MEG responses aligned to the stimulus-onset (Fig. 9 and Fig. 10, left column) but not 

in the responses aligned to the saccade-onset (Fig. 10, right column). 
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Figure 10
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Figure 10. Stimulus- vs. saccade-aligned analysis. A) Grand-average MEG responses 
from occipital (top-row), right temporal (middle row) and frontal channels (bottom-row) 
time-locked both to the stimulus onset (left column) and to the saccade onset (right 
column) are shown. The grand-average responses were calculated as the root-mean-
square amplitudes of signals in gradiometer pairs averaged across the channels and 
subjects. The responses were binned to eight equal-sized groups based on saccade 
latency (shown in different colours). B) Grand-average EOG signals are shown aligned to 
stimulus onset (left column) and saccade onset (right column). The signals were binned 
to eight categories based on the saccade latency before averaging (shown in different 
colours). C) An MEG-RDM was constructed from all gradiometer signals, separately for 
each time-point, and compared with model-RDMs: low-level visual similarity of the 
stimulus images (shown in black), saccade target similarity (shown in red), and scanpath 
similarity (shown in blue). The results are shown as Spearman’s rank correlation between 
the MEG-RDM and model-RDMs averaged across subjects (lines indicate significant 
correlation; one-tailed t-test, FDR < 0.01). 

DISCUSSION 

What are the neural mechanisms underlying guidance of saccades during natural 

visual behaviour? What attracts our gaze in the absence of explicit instructions what to 

look at? In this study, we presented natural visual scenes to healthy humans whose brain 

responses and eye gaze were simultaneously tracked. Although the subjects were not 

given instruction on where to look at in the images, they were remarkably consistent in 

where they made the first saccade in each scene. Moreover, we were able to relate the 

evoked single-trial MEG responses to the natural-scene stimuli, starting at time-window 

50–75 ms, and more interestingly, to the target of the upcoming first saccade at 75–100 ms 

from stimulus onset, in other words, before the saccade onset.  
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Combination of eye-tracking and MEG data enabled us to follow the cortical 

dynamics leading to saccade initiation, and thus, to address questions on saccade-target 

selection during natural visual behaviour. MEG with its millisecond time-resolution is 

better suited to be combined with eye tracking than is functional magnetic resonance 

imaging (fMRI), which is inherently limited in its temporal resolution by the sluggish 

hemodynamic response. To relate the complex MEG responses to the eye-tracking results, 

we applied representational similarity analysis. RSA of fMRI data has proven powerful in 

unraveling visual activation patterns across the hierarchy of visual processing pathways 

and in relating cortical activations with computational models and behaviour 

(Kriegeskorte et al., 2008; Kriegeskorte and Kievit, 2013; Khaligh-Razavi and 

Kriegeskorte, 2014). Instead, only few previous studies have used RSA together with 

MEG data (see, e.g., Carlson et al., 2013; Cichy et al., 2014), and ours is the first study to 

apply RSA to combined eye-gaze and MEG data. Another novel feature in our analysis is 

that instead of using all MEG channels, we performed the RSA analysis in local 

neighbourhoods of gradiometer channels, hence preserving some spatial information in the 

resulting topographic maps. This approach was inspired by the searchlight approach 

widely used together with fMRI data, where the whole brain-volume is scanned using a 

local searchlight at each location in the brain to perform multivariate analysis on the local 

brain-activity patterns (Kriegeskorte et al., 2006). Our results on the early visual feature-

representations in the occipital cortex match well with previous fMRI findings on low-

level feature representations in visual areas V1–3 (Kay et al., 2008; Henriksson et al., 

2015). Furthermore, our right-hemisphere-lateralized results on saccade-planning are 

consistent with activation in fronto-parietal brain regions, predominantly in the right 

hemisphere during stimulus-driven attention (Corbetta and Shulman, 2002). Fom the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 19, 2016. ; https://doi.org/10.1101/075929doi: bioRxiv preprint 

https://doi.org/10.1101/075929
http://creativecommons.org/licenses/by-nc-nd/4.0/


Author preprint, version 19/9/2016 

 

27 

 

channel-level analysis of the MEG responses, we are, however, unable to make precise 

conclusions about the underlying cortical sources. A promising approach for future studies 

is to combine MEG with fMRI data though the RSA framework (Cichy et al., 2016). 

We restricted our MEG analysis to the early responses (up to 125 ms) leading to 

saccade initiation; in only a few cases was the latency of the first saccade shorter than 125 

ms, and these traces were rejected from the analysis. An intriguing question for future 

research will be the neural origins of the within- and between-individual variability in 

saccade latencies during natural gaze behaviour. Our results that the brain signatures of 

saccade planning are evident in MEG traces aligned to stimulus onset, but not in traces 

aligned to saccade onset, support previous findings suggesting that saccade-latency 

variability is related to motor planning of the saccades instead of perceptual processes 

based on sensory information that starts to accumulate immediately after the scene onset 

(Thompson et al., 1996). However, some of the saccade-latency variability could also be 

related to the content of the stimulus scenes, especially to the eccentricity of the saccade-

target, and thus to cortical processing of the obtained sensory information.  

Visual acuity, and therefore the effective sampling of visual information, is by far 

the highest in the central retina, which is the very reason why saccades are made during 

natural visual exploration. Ensemble representations have recently been suggested to 

explain our subjectively rich percept of the visual world and also to provide a foundation 

for guiding eye gaze (Cohen et al., 2016). What can we then perceive with the low-acuity 

peripheral vision to guide our saccades? The present results, together with previous 

findings (Henriksson and Hari, in press; Birmingham et al., 2008; Fletcher-Watson et al., 

2008; Crouzet et al., 2010), suggest that social cues, such as faces and people, capture the 

attention and eye-gaze even in the peripheral visual field. Using a saccadic forced-choice 
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task, a recent study demonstrated that faces can be categorized even in the far-periphery 

(up-to 80 deg), with an advantage in terms of categorisation speed in comparison to other 

target categories, including animals and vehicles (Boucart et al., 2016). A saccade toward 

a face can even be difficult to suppress when the task has been to look at something else 

(Crouzet et al., 2010). Overall, eye movements in natural behaviour are dominated by 

contextual and high-level features, including social cues (Henriksson and Hari, in press; 

Cerf et al., 2009), instead of low-level visual saliency (Itti and Koch, 2001). 

Given that our stimuli were natural scenes, they were shown only for one second, 

and that other objects within the scene might have been more informative when answering 

the generic question asked after the stimulus, it could be considered surprising how 

consistent our subjects were when making the first saccade toward the people within the 

scenes. Instead of merely confirming the attention-capturing power of the faces, our result 

suggest that the contents of a scene are best understood by observing the actors within the 

scene. That is, whereas the rapid gist of a scene might be perceived without any analysis 

of the individual objects within the scene (Oliva and Torralba, 2006; Cohen et al., 2016), 

the more detailed understanding of the scene might be provided not from the objects but 

from the people acting within the scene. This consideration is consistent with the recent 

finding that human scene categorization is better explained by the function of a scene, 

such as potential for shopping or hiking, than by the individual objects within the scene 

(Greene et al., 2016). Furthermore, semantic consistency between a foreground object and 

a background scene can facilitate the perception of both the object and the scene 

(Davenport and Potter, 2004). Although some of the object–scene pairs in the study by 

Davenport and Potter (2004) were actor–scene pairs (e.g., a priest/footballer and a 

church/football field), the study did not address any possible difference between the actor–
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scene and object–scene pairs, thus leaving open the question of the superiority effect of 

consistent actor–scene pairs as compared with object–scene pairs for scene understanding. 

Recent modelling work has also been motivated by the idea that modelling the people 

within the scene facilitates scene understanding. The extraction of the 3D layout of a scene 

can be improved by identifying also the people within the scene (Fouhey et al., 2014). To 

interpret the behaviour of the persons within a scene might require an approach that 

follows the gaze of the persons (Recasens et al., 2015). Whereas humans are naturally 

cued to follow others’ gaze and to orient attention to the same object that the others are 

looking at (joint attention), this is not an easy task for computer vision.  

In conclusion, we have introduced a novel approach for combining MEG and eye-

tracking data and demonstrated that single-trial MEG responses can be related to the 

upcoming saccades during free-viewing of natural scenes. We believe that the initiation of 

the first saccade is informative about the rapid cortical processing leading to scene 

understanding, and that the proposed data-analysis approach can be applied to address 

various other questions related to natural visual behaviour. Moreover, the finding that the 

viewers automatically directed their gaze towards any people in a scene leads to ask 

whether an actor within a scene would provide the best cues for scene understanding.   
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