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Single particle cryo-EM emerges as a powerful and versatile method to characterize the 11 
structure and function of macromolecules, revealing the structural details of critical 12 

molecular machinery inside the cells. RELION is a widely used EM image processing 13 
software, and most of the recently published single particle cryo-EM structures were 14 
generated by using RELION. Due to the massive computational loads and the growing 15 
demands for processing much larger cryo-EM data sets, there is a pressing need to speed 16 
up image processing. Here we present GeRelion (https://github.com/gpu-pdl-17 
nudt/GeRelion), an efficient parallel implementation of RELION on GPU system. In the 18 
performance tests using two cryo-EM data sets, GeRelion on 4 or 8 GPU cards 19 
outperformed RELION on 256 CPU cores, demonstrating dramatically improved speed 20 
and superb scalability. By greatly accelerating single particle cryo-EM structural analysis, 21 
GeRelion will facilitate both high resolution structure determination and dissection of 22 
mixed conformations of dynamic molecular machines. 23 
 24 

Single particle cryo-EM has become a game-changing technique in structural biology, gaining 25 
unprecedented insights into many macromolecular machines in fundamental life processes1,2. By 26 
directly imaging the biological samples frozen in buffer solutions, cryo-EM circumvents the 27 
need to obtain well-ordered crystals, a major bottleneck in traditional crystallographic methods 28 
for high resolution structure determination. Single particle cryo-EM is also capable of 29 
computationally separating mixed conformations in a single sample, greatly facilitating the 30 
determination of high resolution structures and the analysis of dynamic molecular machines3. 31 

In single particle cryo-EM, the molecules embedded in vitreous ice adopt different 32 
orientations, and generate various two dimensional (2D) projection images, so called particles. A 33 

three dimensional (3D) reconstruction is generated by averaging a large number of particles 34 
according to their rotation angles and in-plane shifts. The resolution of 3D reconstruction is 35 
gradually improved by iteratively refining the geometric parameters of each particle4. 36 

Furthermore, sophisticated computation methods enable the selection of the most homogeneous 37 
particles to achieve high-resolution 3D reconstructions, as well as the separation of different 38 

conformations within one sample. Particularly, RELION implements a Bayesian approach and 39 
the maximum a posteriori (MAP) algorithm, and demonstrates outstanding performance in 3D 40 
classification and 3D refinement5,6. In fact, most of the recently published single particle cryo-41 
EM structures were generated using RELION. However, the computational cost of RELION is 42 
very high, and the enormous computational loads practically limit the number of cryo-EM 43 

particles that can be routinely analyzed. With the development of automatic EM data collection 44 
and the ever-growing demands for analyzing more particles to achieve higher resolution and to 45 
dissect mixed conformations, there is a pressing need to speed up the image processing1,7. 46 
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To accelerate the computation, many EM software packages, such as SPIDER8, 47 

FREALIGN9, EMAN10, and RELION6, implement parallel computation based on Central 48 
Processing Units (CPUs), and the speed increase depends on the number of available CPUs. In 49 
the last decade, due to the progress of hardware architecture and high-level programming model, 50 
the Graphic Processing Unit (GPU) has been widely used to accelerate time-consuming scientific 51 
applications such as medical image processing11, bioinformatics12 and machine learning13. 52 
Equipped with thousands of processing units in one processor, modern GPUs provide massive 53 
computation power, with significantly higher memory bandwidth than multi-core CPUs. In 54 
addition, the performance-price ratio of GPU is usually higher than that of CPU. Thus, GPU 55 
offers an attractive alternative for parallel implementation of the computation-intensive EM 56 
image processing applications. GPU implementation has been reported for EMAN, FREALIGN, 57 
and other programs10,14,15. Despite being extremely popular in the field for several years, the 58 
computationally expensive RELION has not been implemented in GPU system, probably due to 59 

the challenges to restructure the complicated work flow to map GPU computation. First, 60 
RELION uses coarse parallelization, which is not compatible with fine-grained parallelization of 61 
GPU. Second, the data structure in RELION is designed for individual images, resulting in 62 
discontinuous processing of multiple images. Third, RELION introduces two sampling methods, 63 
and the second sampling is sparse and sometimes with uncertainty, which makes it difficult for 64 
GPU implementation.  65 

Here we present GeRelion, an efficient parallel implementation of RELION using GPU-66 
enhanced system. Our tests on the two single particle cryo-EM data sets demonstrate that 67 
GeRelion with 4 or 8 NVIDIA GPUs outperforms RELION running on a modern CPU cluster 68 
with 256 CPU cores. GeRelion displays essentially linear scalability up to the 8 GPUs tested in 69 
our experiments, indicating great potential for further scaling on larger GPU clusters. In this 70 
paper we report the implementation of GeRelion, the results of performance tests, and a detailed 71 

procedure of utilizing the GeRelion program. This new parallel implementation on GPU system 72 
will significantly improve the efficiency of single particle EM image processing, and enable the 73 
routine analysis of much larger data sets, thus facilitating the determination of high resolution 74 
cryo-EM structures and the analysis of mixed conformations of dynamic molecular machines. 75 

 76 

RESULTS 77 

Profiling of RELION 78 
RELION integrates various function modules for single particle cryo-EM image processing. Our 79 

implementation focuses on the two mostly used and computationally intensive functionalities: 80 
3D classification and 3D refinement. In order to parallelize RELION on GPU, we first analyzed 81 
the RELION program to locate the computation hot spots and identified the computation patterns.  82 

The mathematic basis of RELION is Bayesian statistics and the underlying algorithm is 83 

expectation-maximization method (details in Online Methods)6. We analyzed the execution 84 

time distribution of RELION, according to the program skeleton of RELION (Supplementary 85 

Fig. 1). The overall computation procedure is divided into three steps: expectation, maximization, 86 

and others. The expectation step consists of four major subroutines: 87 

getFourierTransformAndCtfs (getImg), getAllSquaredDifferences (getDiff), 88 

convertAllSquaredDifferencesToWeights (convert) and storeWeightedSums (store). The others 89 

step includes MPI communication, overhead of data read/write, and certain data processing tasks 90 

on the host side such as combining the partial 3D reconstruction files. We first used 8 CPU cores 91 

with MPI parallelism to evaluate the execution time distribution of RELION, by running 3D 92 
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classification of the TRPV1 cryo-EM data set16. This data set contains 35,645 particles with a 93 

size of 256 x 256 pixels. The results show that the most time-consuming step is expectation, 94 

occupying over 97% of the total time, while the maximization and others steps take only 0.4% 95 

and 2.1%, respectively (Fig. 1a). Within the expectation step, the getDiff subroutine, which 96 

computes the l2-norm of expectation algorithm, is the slowest part. The same test was carried out 97 

for another single particle cryo-EM data set of the RAG complexes17, which contains 154,984 98 

particles with a size of 192 x 192 pixels, resulting in a similar pattern of execution time 99 

distribution (Fig. 1b). 100 

We further evaluated the scalability of RELION with increasing number of CPUs, by 101 

testing the total execution time and the time in the expectation step. We carried out 3D 102 

classifications using the TRPV1 data set with and without C4 symmetry, and also the RAG data 103 

set. The RELION computation speed on the TRPV1 data set increased linearly with up to 64 104 

CPUs, but the speed improvement significantly slowed down with more than 64 CPUs (Fig. 1c). 105 

The limitation of CPU-based speedup was due to the substantially increased time proportions in 106 

the maximization and others steps (Supplementary Fig. 2b). The overhead of combining the 107 

partial 3D reconstruction files seems to be the most significant portion in the others step. The 108 

suppression of speedup with more CPUs appeared less severe in the tests on the TRPV1 data set 109 

without applying symmetry, and on the RAG data set that contains more than 4 times the 110 

particles of the TRPV1 data set (Fig. 1c). This is due to the increased computational loads in the 111 

slowest expectation step, which partially alleviated the increasing time occupancy in the 112 

maximization and others steps (Supplementary Fig. 2e). Indeed, for all three tests, the speedup 113 

in the expectation step was consistently more linear than that in the overall execution time (Fig. 114 

1d). To remove the extra bottlenecks from the maximization step and certain overheads, which 115 

would significantly impact the scaling of RELION computation, we decided to parallelize all the 116 

steps on GPU system. 117 

Based on the abovementioned tests and careful analysis of RELION program, we classified 118 

the RELION computation tasks into three categories: intensive computation, sparse index 119 

deduced computation, and global reduction operation. Specific strategies were developed for the 120 

parallel implementation of these different tasks on GPU, as detailed in Online Methods. 121 

 122 

Implementation of GeRelion 123 
We have implemented GeRelion, a GPU-enhanced version of RELION, to accelerate the most 124 
widely used functionalities: 3D classification and 3D refinement (“auto-refine”). The original 125 

RELION codes for data read/write and MPI communication are unmodified, and the flow control 126 
of progressive processing in the original RELION is kept.  127 

Rich data-level fine-grained parallelism and efficient memory access are two major factors 128 
that determine the performance of GPU program. In this work, we designed a four-level parallel 129 
model for the single particle cryo-EM image processing to exploit the powerful computational 130 
capability of GPU. In the first level, the particle images are divided into a set of pools that are 131 
parallelized onto individual GPUs, and the number of pools to be processed simultaneously 132 

equals to the number of GPUs (Fig. 2a). In the second level, the images within one pool are 133 
parallelized onto the stream multi processors of one GPU (Fig. 2b). In the third level, the 134 
workload for one image in one orientation will be assigned to one thread block of the GPU 135 

kernel, and the parallel degree of this level equals the number of orientations to be processed 136 
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(Fig. 2c). In the fourth level, the processing of one or several pixels is assigned to one thread 137 

within each thread block, and all the pixels within one particle image are processed 138 
simultaneously (Fig. 2d). In GeRelion, the maximal parallel degree equals nr_gpus*M*N*K, 139 
where nr_gpus, M, N and K represent the number of GPUs, the number of images within one 140 
pool, the number of orientations to be processed, and the pixel number in one particle image, 141 
respectively.  142 

In order to efficiently map the proposed multi-level parallel model to GPU-based system, 143 

we restructured the program in several aspects, as detailed in Online Methods. The original deep 144 

loops were flattened and partitioned, and data layout was reorganized to fit the architecture of 145 

GPU (Supplementary Fig. 3). To address the problem of memory limitation on GPU, GeRelion 146 

implements an adaptive parallel framework to determine the number of orientations to be 147 

processed simultaneously, based on the available memory space. To exploit the data reuse, we 148 

enlarged the parallel granularity in the first coarse sampling pass, and designed the lightweight 149 

kernels in the second fine sampling to achieve sufficient parallelism. In addition, we parallelized 150 

the sparse index computation by compacting the sparse data array to a continuous vector 151 

(Supplementary Fig. 4), and optimized the global reduction operation with atomic operation 152 

strategy. 153 

 154 

Performance of GeRelion 155 
To test the performance of GeRelion and compare it with the original RELION, we used two 156 
computation systems (system 1 and system 2 in Table 1). The unmodified RELION ran on a 157 
CPU-only cluster with 256 CPU cores, while GeRelion ran on a GPU-based cluster with 2 nodes, 158 
each containing 4 GPUs and 12 CPU cores.  159 

We first used the TRPV1 data set to run 3D refinement without or with C4 symmetry, and 160 

compared the computation times of RELION and GeRelion. The test results show that the 161 
overall computation speed of GeRelion on 4 GPUs is similar to that of RELION on 256 CPU 162 
cores, and GeRelion demonstrated a near-linear speedup with up to 8 GPUs, indicating excellent 163 
scalability of the implementation (Fig. 3a, 3c). The speed enhancement of GeRelion in the total 164 
execution time is consistent with that in the expectation step (Fig. 3a, 3c), which was in turn 165 
contributed by the similar speedup of all four major subroutines in the expectation step (Fig. 3b, 166 
3d). We notice the extra speed increase in the overall execution compared to the expectation step 167 
(Fig. 3a, 3c), which is due to the significant speedup in the steps of maximization and others 168 
(Table 2, Supplementary Fig. 5). To prove the computation accuracy of our implementation, 169 

we also confirmed that the 3D reconstructions generated by RELION and GeRelion are 170 
essentially identical (Fig. 3e, 3f).  171 

We then compared the performance of GeRelion and RELION in 3D classification. The 172 

results are very similar to those from the tests of 3D refinement, showing excellent scalability of 173 
GeRelion with increasing number of GPUs (Fig. 4). For the TRPV1 data set, GeRelion on 4 174 
GPUs outperformed RELION on 256 CPU cores (Fig. 4a). Since the scalability of CPU-based 175 
RELION is improved with higher computational loads in the expectation step (Fig. 1c, 1d), for 176 

the RAG data set with significantly more particles, 8 GPUs were needed for GeRelion to outrun 177 
the 256 CPU core-powered RELION (Fig. 4c). In addition, we also tested the 3D refinement 178 
using the RAG data set and the 3D classification using the TRPV1 data set with C4 symmetry. 179 
The execution times of all the tests in this work are summarized in Table 2. Collectively, our 180 
extensive performance tests demonstrate the superb acceleration and scalability of GeRelion.  181 
 182 
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DISCUSSION 183 
RELION is a popular image processing program in the cryo-EM field, and has generated most of 184 
the recently published high-resolution single particle cryo-EM structures. However, the Bayesian 185 
statistics-based computation in RELION is very costly, and the resulting massive computational 186 
loads limit the particle number of routine single particle data sets to well below one million. Due 187 
to the widely used automatic data collection and the need to analyze more particles to extract 188 
more structural information from a particular biological sample, there is a pressing need to 189 
significantly accelerate the image processing programs such as RELION1.  190 

Here we presented GeRelion, an efficient GPU-based parallel implementation of the RELION 191 
program. To exploit the powerful computational capability of GPU system, we designed a four-192 
level parallel model and restructure the RELION program to efficiently map this parallel model 193 
to GPU system. The resulting GeRelion implementation demonstrates significant speedup in the 194 
tests with two cryo-EM data sets, and shows excellent scalability with increasing number of 195 

GPUs. To our knowledge, GeRelion represents the first systematic GPU conversion of all the 196 
computation steps in the two most widely used RELION functionalities: 3D classification and 197 
3D refinement. 198 

Our tests show that GeRelion using 4 or 8 GPUs outperforms RELION using 256 modern 199 
CPU cores. Thus, to achieve similar computation speed, it is more cost-effective to purchase and 200 
maintain a couple GPU nodes than a large CPU cluster. Specifically, one NVIDIA K40m GPU 201 
provides 1.43T FLOPS (float-point operations per second) for double precision float, and its 202 
price is about $3,000. In contrast, an Intel Xeon E5-2620 v2 CPU supports up to 100.8G FLOPS, 203 
and its price is about $400 per CPU. When considering the cost of memory and other 204 
components of a computer node, the prices for 8 GPUs (2 nodes) and 256 CPU cores (22 nodes) 205 
are about $34,000 and $67,700, respectively. Practically it is also much easier to build and 206 
maintain a couple GPU nodes than a large CPU cluster. Furthermore, regular RELION 207 

computation uses double precision float point data, which makes it necessary to use high-end 208 
GPUs. The calculation with single precision float point has been implemented in the RELION 209 
version 1.4. If the computation with single precision float point can satisfy the requirement of 210 
image processing at least under certain circumstances, it will be an optimal choice to use the 211 
consumer level GPU at the price range of $200-600, which is similar to the price of a six-core 212 
Intel Xeon CPU.  213 

Several aspects of our current GeRelion implementation may be further improved in the 214 
future work. First, the parallel degree of the getImg subroutine can be increased. In the current 215 

implementation, we only parallelized one pool of images for each kernel invoked, and the default 216 
number of 8 is insufficient for GPU.  Therefore, we can parallel hundreds or thousands of images 217 
in this step and keep the results in GPU memory for the following getDiff subroutine. Second, 218 
the maximization step can be optimized for the large particles such as those with a size of 512 or 219 

more pixels. Due to the GPU memory limitation, currently it is difficult to execute the Fourier 220 
transform function for the very large particles. Third, a hybrid GPU-CPU implementation can be 221 
developed to utilize the CPU computation capability, which comes with the GPU system, for 222 

further improvement of the computation efficiency. Fourth, the parallel read/write can be 223 
improved, which will become particularly important for scaling in much larger GPU clusters. 224 

In summary, GeRelion dramatically speeds up the computation-intensive 3D classification 225 
and 3D refinement in RELION, and demonstrates a great potential for scaling the speed 226 
enhancement on larger GPU clusters. GeRelion will greatly accelerate the processing of much 227 
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larger single particle cryo-EM data sets, and thereby facilitate high resolution structure 228 

determination as well as analysis of mixed conformations in biological samples. 229 
 230 

METHODS 231 
Methods and any associated references are available in the online version of the paper. 232 
 233 
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 256 

Figure 1 | Execution time distribution and scalability of RELION. (a) Execution time 257 
distribution of 3D classification of the TRPV1 data set (without symmetry) using 8 CPU cores. 258 
The time distributions for the three steps (expectation, maximization and others) and for the four 259 
major subroutines (getImg, getDiff, convert and store) in the expectation step are shown. (b) 260 
Same as (a), except the 3D classification was carried out for the RAG data set. (c) Speed 261 
enhancement in 3D classifications of the TRPV1 data set, with and without C4 symmetry, and 262 

that of the RAG data set, using 8, 16, 32, 64, 128 and 256 CPU cores. The speeds of 8 CPU cores 263 
were used as the reference to calculate the speed enhancement. (d) Same as (c), except the speed 264 
enhancement is for the expectation step. 265 
 266 

  267 
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 269 

Figure 2 | Multi-level parallel model of GeRelion. (a) Multi-pool parallelization to multiple 270 
GPUs. The particle images are divided into a set of pools. The maximal parallel degree is the 271 
number of GPU: nr_gpus. (b) Multi-image parallelization to stream multi processors (SM) of one 272 
GPU. The maximal parallel degree is the number of particle images within the pool: M. (c) 273 
Multi-orientation parallelization to thread blocks (TB). The maximal parallel degree is the 274 
number of orientations to be calculated for the particle image: N. (d) Multi-pixel parallelization 275 
to threads (T). The maximal parallel degree is the total pixel number within one particle image: 276 

K. Therefore, the maximal overall parallel degree of GeRelion equals nr_gpus*M*N*K.  277 
  278 
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 279 

 280 

Figure 3 | Performance of GeRelion in 3D refinement of the TRPV1 cryo-EM data set. (a) 281 
Computation speeds of RELION on 256 CPU cores and GeRelion on 2, 4 and 8 GPUs. The 3D 282 

refinement was carried out without applying symmetry. The speed of RELION was used as the 283 
reference to calculate the speed enhancement of GeRelion. (b) Computation speeds of the four 284 
major subroutines of the expectation step in GeRelion, from the tests in (a). The speeds of 285 

GeRelion on 2 GPUs were used as the reference to calculate the speed enhancement with more 286 
GPUs. (c) Same as (a), except the 3D refinement was carried out with C4 symmetry. (d) Same as 287 

(b), except the 3D refinement was carried out with C4 symmetry. All the corresponding 288 
execution times are listed in Table 2. (e) 3D reconstructions of TRPV1 generated by RELION 289 

(left, in orange) and GeRelion (right, in blue). Both maps were filtered at 3.6 Å resolution, and 290 
show essentially identical features. (f) Gold-standard Fourier shell correlation (FSC) curves (in 291 
orange and blue)  of the two 3D reconstructions in (e) show excellent overlap, and the FSC curve 292 
between these two reconstructions (in green) shows the FSC values of 0.9 and 0.75 at the 3.6 Å 293 
resolution and Nyquist limit, respectively. These indicate that the two reconstructions generated 294 

by RELION and GeRelion are essentially identical. 295 
  296 
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 297 

 298 

Figure 4 | Performance of GeRelion in 3D classification. (a) Computation speeds of RELION on 299 
256 CPU cores and GeRelion on 2, 4 and 8 GPUs, in 3D classification of the TRPV1 data set 300 
without symmetry. The speed of RELION was used as the reference to calculate the speed 301 

enhancement of GeRelion. (b) Computation speeds of the four major subroutines of the 302 
expectation step in GeRelion, from the tests in (a). The speeds of GeRelion on 2 GPUs were 303 
used as the reference to calculate the speed enhancement with more GPUs. (c) Computation 304 
speeds of RELION on 256 CPU cores and GeRelion on 2, 4 and 8 GPUs, in 3D classification of 305 
the RAG data set. The speed of RELION was used as the reference to calculate the speed 306 
enhancement of GeRelion. (d) Computation speeds of the four major subroutines of the 307 
expectation step in GeRelion, from the tests in (c). The speeds of GeRelion on 2 GPUs were used 308 
as the reference to calculate the speed enhancement with more GPUs. All the corresponding 309 
execution times are listed in Table 2. 310 

  311 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2016. ; https://doi.org/10.1101/075887doi: bioRxiv preprint 

https://doi.org/10.1101/075887
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1 | Computation systems used for the tests. 312 

System 1:  CPU cluster System 2: GPU-based cluster 

CPU  CPU  GPU  

Intel E5-2620 v2 Intel E5-2620 v3  NVIDIA K40m 

2.10GHz 2.40GHz 0.75GHz 

2x6 cores per node 2x6 cores per node 4 GPUs per node 

DDR3 1866MHz DDR4 2133MHz GDDR 5 3004MHz 

128GB per nodes 128 GB per node 

22 nodes 2 nodes 

 313 

 314 
  315 
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Table 2 | Execution time (in minutes) of RELION and GeRelion in auto-refine and 3D 316 

classification of the two single particle cryo-EM data sets. 317 

  

total 

expecta-

tion 

Maxi

mi-

zation others 

get-

Img getDiff convert store 

TRPV1 

auto-

refine 

C1 

256 cpus 298.0  221.2  50.0  26.8  1.0  164.2  10.0  26.3  

2 gpus 713.0  698.3  7.0  7.1  51.2  440.8  67.7  129.3  

4 gpus 301.0  287.4  7.7  5.9  29.9  173.3  28.6  70.1  

8 gpus 146.0  131.6  8.8  5.6  11.9  64.9  15.7  29.6  

TRPV1 

auto-

refine 

C4 

256 cpus 203.0  115.9  60.4  26.7  0.9  82.8  3.4  16.4  

2 gpus 251.0  237.3  8.1  5.7  35.9  102.5  25.4  65.6  

4 gpus 190.0  174.6  8.5  7.3  26.9  80.0  18.5  43.0  

8 gpus 92.0  76.4  9.4  6.2  10.8  31.4  7.3  18.5  

RAG 

auto-

refine 

256 cpus 863.1  773.0  69.0  21.0  34.2  517.7  82.5  203.2  

2 gpus 1697.0  1670.3  4.5  22.3  147.6  619.8  193.0  676.6  

4 gpus 1112.0  1071.9  4.5  22.7  110.6  470.0  140.4  304.7  

8 gpus 639.0  615.8  3.1  20.2  57.2  248.4  72.3  203.8  

TRPV1 

3D 

class 

C1 

256 cpus 223.0  136.0  21.2  65.8  0.6  82.8  16.0  18.7  

2 gpus 314.0  302.3  1.3  10.5  9.6  160.4  63.3  64.7  

4 gpus 165.0  153.5  0.8  10.7  5.0  80.7  32.2  33.3  

8 gpus 107.0  84.0  6.5  16.5  2.6  40.7  16.2  17.1  

TRPV1 

3D 

class 

C4 

256 cpus 157.0  66.7  20.0  70.3  0.7  25.9  4.1  23.3  

2 gpus 161.0  143.2  1.9  15.8  10.1  56.7  31.1  41.0  

4 gpus 93.0  78.8  1.0  13.2  5.7  31.0  16.6  23.0  

8 gpus 75.0  46.3  6.9  21.8  2.8  15.5  8.2  11.5  

RAG  

3D 

class 

256 cpus 876.0  748.8  30.9  96.3  1.8  427.5  141.8  127.0  

2 gpus 2482.0  2456.4  1.8  23.9  32.3  1022.4  488.5  844.2  

4 gpus 1285.3  1248.0  1.3  36.1  50.0  521.9  250.2  425.1  

8 gpus 650.7  623.4  2.2  25.2  24.4  260.9  125.3  214.9  

 318 

“Total” indicates the total execution time of the whole application, which includes three steps: 319 

“expectation”, “maximization” and “others”. The “expectation” step consists of four major 320 

subroutines: “getImg”, “getDiff”, “convert” and “store”. The computation tasks in the “others” 321 

step include MPI communication, I/O overhead, and certain data processing tasks on the host 322 

side such as combining the partial 3D reconstruction files. 323 

 324 

 325 
 326 
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ONLINE METHODS 368 
RELION algorithm. RELION is an open-source software package for single particle cryo-EM 369 
structure determination. Like most of the existing implementations for cryo-EM image 370 
processing, it employs the so-called weak-phase object approximation, leading to the following 371 
linear image formation model in Fourier space.  372 

𝑋𝑖𝑗 = 𝐶𝑇𝐹𝑖𝑗 ∑ 𝑃𝑗𝑙
𝜙𝐿

𝑙=1 𝑉𝑘𝑙 + 𝑁𝑖𝑗                                                               (1) 373 

Where 𝑋𝑖𝑗is the 𝑗th component, with 𝑗 = 1, . . . , J of the 2D Fourier transformation 𝑋𝑖 of the 𝑖th 374 

experimental image, with 𝑖 = 1, . . . , N . 𝐶𝑇𝐹𝑖𝑗  is the 𝑗 th component of the contrast transfer 375 

function for the 𝑖 th image. 𝑉𝑘𝑙  is the 𝑙 th component, with 𝑙 = 1, . . . , L , of the 3D Fourier 376 

transformation 𝑉𝑘 of the 𝑘th of  𝐾 underlying structures in the data set. All components 𝑉𝑘𝑙 are 377 

assumed to be independent, zero-mean, and Gaussian distributed with variance 𝜏𝑘𝑙
2 .

, 𝑃Φis a J × L 378 

projecting matrix of elements 𝑃𝑗𝑙
𝜙

, 𝑁𝑖𝑗  is noise in the complex plane, which is assumed to be 379 

independent, zero-mean, and Gaussian distributed with variance 𝜎𝑖𝑗
2 . 380 

The objection of cryo-EM image analysis software RELION is to find the model with 381 

parameter set Θ (including all 𝑉𝑘𝑙 ,  𝜎𝑖𝑗
2

 and 𝜏𝑘𝑙
2  ) that has the highest probability of being the 382 

correct one in the light of both the observed data X and the prior information Y . From the Bayes’ 383 

law, this so-called posterior distribution factorizes into two components, shown as equation (2). 384 

Where the likelihood P(X|Θ, Y) quantifies the probability of observing the data given the model, 385 

and the prior P(Θ|Y) expresses how likely that model is given the prior information [16]. It 386 

should be noticed that most of the other methods in Fourier domain aimed to only optimize P(X|387 

Θ, Y).  388 

P(Θ|X, Y) ∝ P(X|Θ, Y)P(Θ|Y)                                                                 (2) 389 

As for RELION, prior information is the smoothness hypothesis about cryo-EM 390 

reconstructions, and posterior information is provided by cryo-EM image data set. The deduced 391 

optimization is called maximum a posterior (MAP) estimation. MAP estimation is the most 392 

likely model which gets most out of the data at the Gaussian prerequisite of smoothness. 393 

RELION implements an iterative expectation-maximization algorithm to optimize the MAP 394 

model 2. The iterative algorithm is expressed by formulas 3∼7. 395 

𝑉𝑘𝑙
(𝑛+1)

=

∑ ∫𝜙Γ
𝑖𝑘𝜙

(𝑛)
∑ 𝑃𝑗𝑙

𝜙𝑇𝐶𝑇𝐹𝑖𝑗𝑋𝑖𝑗

𝜎𝑖𝑗
2 (𝑛)

𝐽
𝑗=1 𝑑𝜙

(𝑁)
𝑖=1

∑ ∫𝜙 Γ
𝑖𝑘𝜙

(𝑛)
∑ 𝑃

𝑗𝑙
𝜙𝑇 𝐶𝑇𝐹𝑖𝑗

2

𝜎𝑖𝑗
2 (𝑛)

𝐽
𝑗=1 𝑑𝜙

(𝑁)
𝑖=1

+
1

𝜏𝑘𝑙
2 (𝑛)

                                          (3) 396 

𝜎𝑖𝑗
2 (𝑛+1)

=
1

2
× ∑ ∫

𝜙
Γ

𝑖𝑘𝜙

(𝑛)
|𝑋𝑖𝑗 − 𝐶𝑇𝐹𝑖𝑗 ∑ 𝑃𝑗𝑙

𝜙
𝑉𝑘𝑙

(𝑛)𝐽
𝑗=1 |2𝑑𝜙𝐾

𝑘=1                                       (4) 397 

𝜏𝑘𝑙
2 (𝑛+1)

=
1

2
× |𝑉𝑘𝑙

(𝑛+1)
|2                                                                (5) 398 

Γ
𝑖𝑘𝜙

(𝑛)
=  

𝑃(𝑋𝑖|𝑘,𝜙,Θ
(𝑛)

,𝑦)𝑃(𝑘,𝜙|Θ
(𝑛)

,𝑦)

∑ ∫
𝜙′

𝑃(𝑋𝑖|𝑘′,𝜙′,Θ
(𝑛)

,𝑦)𝑃(𝑘′,𝜙′|Θ
(𝑛)

,𝑦)𝑑𝜙′𝐾
𝑘′=1

                                               (6) 399 

where Γ
𝑖𝑘𝜙

(𝑛)
 in equation (6) is the posterior probability of class assignment 𝑘 and orientation 400 

assignment 𝜙 for the 𝑖th image, given the model at iteration n. The iterative algorithm starts from 401 
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an initial estimate model of 𝑉𝑘 . User controls the number of models 𝐾  that is to be refined 402 

simultaneously. Initial estimations for  𝜏𝑘𝑙
2  and 𝜎𝑖𝑗

2  are calculated from the power spectra of the 403 

starting model and individual particles, respectively. Within each iteration, the posterior 404 

probability Γ
𝑖𝑘𝜙

(𝑛)
 for all images has to be calculated in all possible orientation and class 𝑘. The 405 

major computation comes from the calculation of the 𝑙2-norm in equation (7). 406 

 407 
Three computation modes of RELION. According to the computation instructions, we 408 
classified the computation tasks of RELION into three categories: the intensive computation, the 409 
sparse index computation and the global reduction (Supplementary Table 1). In the first 410 
sampling of “getDiff”, the l2-norm will be calculated for all particle images and reference CTF 411 
images in all possible orientations. High resolution structure determination often requires 412 

hundreds of thousands, or even millions of particles, and more than a thousand of orientations for 413 
the angle search. On top of these, there is another search grid of XY shift. The total computation 414 
requirement for “getDiff” will be over PetaFLOPs, the procedure can be considered as 415 
computation intensive.  In Relion, the process of the second fine sampling is only carried out in 416 
the significant orientations determined in the first sampling. An orientation can be consider as 417 
significant if the corresponding weight is larger than the threshold value. Compared with the 418 
total number of orientations, the number of significant orientations is relative small. The 419 
computation pattern is sparse index computation. To calculate weighted sum in the subroutine 420 

“store”, the operation of   summing all images  in formula (3) and the integration ∫
𝜙

 Γ
𝑖𝑘𝜙

(𝑛)
 421 

corresponds to solve the discrete sum in all significant orientations. Both of them refer to the 422 
global reduction for all particles and orientations. Similarly, the execution path of “store” also 423 
depends on whether the corresponding weight is significant. Due to the sparse feature of weight 424 

matrix, the process of “store” is both sparse index and global reduction. 425 

 426 
Restructuring of RELION for GPU implementation. In order to efficiently parallelize the 427 
RELION computation onto GPU system, we restructured the program in several aspects.  428 

Partition and unroll loops. The philosophy of GPU programing is unrolling loops to kernels. 429 
Generally, a simple kernel is designed based on one or several loops of code segment with the 430 
same parallel degree: the size of the loop index. In RELION, the subroutines consist of several 431 

layer of loops, the workload within different layer loops correspond to different parallel degrees. 432 
For example, the subroutine “getDiff” consists of three layer for loops, the orientation for loop, 433 
particle for loop and the translation for loop. The sub-functions of getFref, applyCTFtoFref and 434 

calDiff reside in these three layer loops respectively. That means the parallel degrees of them are 435 
not the same.  These workloads should be parallelized with different GPU kernels.  Therefore, 436 

we partition the long loops into several short loops, with the key function processed within each 437 
loop. Though loop unrolling, we can design kernels for each short loop by mapping workload of 438 

different layer loops to multilevel programming model of GPU (Supplementary Fig. 3).  439 

Reorganize the data layout. In the original program, the image data of different particles are 440 

stored in separate memory space, which disobeys the continuous access principle of GPU 441 

programming. Additionally, in order to save memory space, the operation on-the-fly is adopted 442 

for projection and back-projection. In GeRelion, we reorganize the image data by gathering the 443 

raw image data of different particles into a large array at the beginning of each iteration. While in 444 
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the following steps, all input data are generated from the previous kernels on GPU, which avoids 445 

the preparation of input for kernels and exploits the locality between producer and consumer.  446 

Build adaptive parallel framework. Generally, we hope to unroll the entire loop of a 447 

function to kernel. In RELION, in order to save memory, the program is designed to traverse 448 

loops to process all jobs of the entire orientation. Within each traversing, only one image will be 449 

processed. We consider to parallelize the workload of all orientations into one kernel, however, 450 

which may lead to out-of-memory error due to numerous orientations and images. In GeRelion, 451 

we proposed an adaptive parallel framework to address this problem. We firstly evaluate the 452 

maximal memory requirement according to the number of orientations, images and image size. 453 

Combining the memory requirement and the free GPU memory, a suitable parallel degree taken 454 

orientation as unit can be computed. Through this way, we can use the GPU resource as much as 455 

possible and avoid the problem of memory limitation.  456 

Enlarge parallel granularity and increase parallel degree. According to the profiling of 457 

RELION, there are three major computation modes.  In GeRelion, we design kernels for 458 

different sampling passes. For the first pass, considering that most of the orientations is valid and 459 

there is good data locality between the whole XY shift grid, we design a coarse kernel to 460 

parallelize the first pass of getDiff by enlarge the parallel granularity. One thread is used to deal 461 

with the job of the whole XY shift grid, and the reference image data can be reused for multiple 462 

times. For the second sampling, where the significant orientations are very few, in order to 463 

exploit enough parallelism, we developed a lightweight kernel by giving priority to parallel 464 

degree and using one thread to process only one pixel.  465 

Transform sparse computation into continuous processes. Although the sparse index 466 

computation is difficult and inefficient for GPU, the GPU-based parallelization of the sparse 467 

computing is inevitable for achieving high-performance GPU enhanced RELION. On one hand, 468 

from the profiling results, the sparse computation occupies a certain proportion of the execution 469 

time, especially in 3D classification. On the other hand, if the sparse index computation 470 

functions remain on the host side, a lot of intermediate data must be copied back to CPU. 471 

However, the data transmission between CPU and GPU is costly.  In GeRelion, we transform the 472 

sparse computation to continuous process to avoid divergence in GPU kernels. In our 473 

implementation, we pick up the significant weights of all particles from the sparse weight matrix 474 

into a small continuous vector. In order to keep the consistency of the weight with the 475 

corresponding image and orientation, an aux vector is introduced to store the indexes of the 476 

weights in the original sparse weight matrix. An example of the weight array and vector in CPU 477 

and GPU RELION are shown in Supplementary Fig. 4. Generally, the global reduction is done 478 

on the host side, even though the overhead of copy back the large weight matrix to CPU is costly 479 

and a lock primitive is also needed to ensure the correctness of the program. Due to the possible 480 

written conflict when back projecting 2D slices into the 3D Fourier space, we adopt atomic 481 

operation to implement global reduction.  482 

  483 
Performance tests of GeRelion. We used two single particle cryo-EM data sets to test the 484 
performance of GeRelion in 3D classification and 3D refinement (“auto-refine”). Both of the 485 
TRPV1 and RAG data sets can be downloaded from the Electron Microscopy Pilot Image 486 
Archive (https://www.ebi.ac.uk/pdbe/emdb/empiar/). The TRPV1 data set (EMPIAR-10005) 487 
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contains 35,645 particles with a size of 256 x 256 pixels. For our tests, we only used the particles 488 

averaged from all 30 movie frames to generate a map at 3.6 Å resolution. A continued 3D 489 
refinement using the particles averaged from the #3-16 movie frames would have improved the 490 
resolution to 3.4 Å. The RAG data set (EMPIAR-10049) is a combination of SEC and PC 491 
particles, and contains 154,984 particles with a size of 192 x 192 pixels. In the tests of 3D 492 
classification, the TRPV1 data is classified into 3 classes, and the RAG data into 6 classes. 493 

Currently GeRelion can only support command lines to submit jobs. The commands for 494 
running all the GeRelion tests in this work are listed below. “Node01” and “node02” are the 495 
hostnames of the two GPU nodes. “Relion_refine_mpi” is the executable file of GeRelion. 496 
GeRelion can run on GPU or CPU, by setting the “model” parameter to 1 or 0.  497 
 498 
The command of auto-refine on TRPV1 without symmetry: 499 
mpirun --np 9 -N 5 --host node01,node02 relion_refine_mpi --o Refine_OPT_C1/run8 --500 

auto_refine --split_random_halves --i new_DFMerge_20.star --particle_diameter 160 --angpix 501 
1.2156 --ref EMD-5778.mrc --firstiter_cc --ini_high 60 --ctf --ctf_corrected_ref --flatten_solvent 502 
--zero_mask --oversampling 1 --healpix_order 2 --auto_local_healpix_order 4 --offset_range 5 --503 
offset_step 2 --sym C1 --low_resol_join_halves 40 --norm --scale --j 1 --memory_per_thread 8 --504 
dont_combine_weights_via_disc --mode 1 505 
 506 
The command of auto-refine on TRPV1 with C4 symmetry: 507 

mpirun --np 9 -N 5 --host node01,node02 relion_refine_mpi --o Refine_OPT_C1/run8 --508 
auto_refine --split_random_halves --i new_DFMerge_20.star --particle_diameter 160 --angpix 509 
1.2156 --ref EMD-5778.mrc --firstiter_cc --ini_high 60 --ctf --ctf_corrected_ref --flatten_solvent 510 
--zero_mask --oversampling 1 --healpix_order 2 --auto_local_healpix_order 4 --offset_range 5 --511 
offset_step 2 --sym C4 --low_resol_join_halves 40 --norm --scale --j 1 --memory_per_thread 8 --512 

dont_combine_weights_via_disc --mode 1 513 

 514 
The command of 3D classification on TRPV1 without symmetry: 515 
mpirun --np 9 -N 5 --host node01,node02 relion_refine_mpi --o Class3D_OPT/run8 --i 516 
allimg.star --particle_diameter 180 --angpix 1.23 --ref 3D_relion_class001_shz-5.dat --517 
firstiter_cc --ini_high 40 --ctf --ctf_corrected_ref --iter 25 --tau2_fudge 4 --K 6 --flatten_solvent 518 
--zero_mask --oversampling 1 --healpix_order 2 --offset_range 5 --offset_step 2 --sym C1 --519 
norm --scale --j 1 --memory_per_thread 8  --dont_combine_weights_via_disc --mode 1 520 

 521 
The command of 3D classification on TRPV1 with C4 symmetry: 522 
mpirun --np 9 -N 5 --host node01,node02 relion_refine_mpi --o Class3D_OPT/run8 --i 523 
allimg.star --particle_diameter 180 --angpix 1.23 --ref 3D_relion_class001_shz-5.dat --524 

firstiter_cc --ini_high 40 --ctf --ctf_corrected_ref --iter 25 --tau2_fudge 4 --K 6 --flatten_solvent 525 
--zero_mask --oversampling 1 --healpix_order 2 --offset_range 5 --offset_step 2 --sym C4 --526 
norm --scale --j 1 --memory_per_thread 8  --dont_combine_weights_via_disc --mode 1 527 

 528 
The command of auto-refine on RAG: 529 
mpirun --np 9 -N 5 --host node01,node02 relion_refine_mpi --o Refine3D_OPT/run8 --530 
auto_refine --split_random_halves --i particles_autopick_sort_class2d.star --particle_diameter 531 
200 --angpix 3.54 --ref 3i3e_lp50A.mrc --firstiter_cc --ini_high 60 --ctf --ctf_corrected_ref --532 
flatten_solvent --zero_mask --oversampling 1 --healpix_order 2 --auto_local_healpix_order 4 --533 
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offset_range 4 --offset_step 2 --sym D2 --low_resol_join_halves 40 --norm --scale  --j 2 --534 

memory_per_thread 4 --random_seed 1401784870 --dont_combine_weights_via_disc --mode 1 535 
 536 
The command of 3D classification on RAG: 537 

mpirun --np 9 -N 5 --host node01,node02 relion_refine_mpi --o Class3D_OPT/run8 --i 538 
particles_autopick_sort_class2d.star --particle_diameter 200 --angpix 3.54 --ref 3i3e_lp50A.mrc 539 
--firstiter_cc --ini_high 50 --ctf --ctf_corrected_ref --iter 25 --tau2_fudge 2 --K 4 --540 
flatten_solvent --zero_mask --oversampling 1 --healpix_order 2 --offset_range 3 --offset_step 2 -541 
-sym C1 --norm --scale  --j 1 --memory_per_thread 4 --dont_combine_weights_via_disc --mode 542 
1 543 
 544 
Code availability. The GeRelion program is open source and available on github 545 
(https://github.com/gpu-pdl-nudt/GeRelion). 546 
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