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Abstract

We propose and discuss a simulation model of annual plants competing for
a single resource. Plants are characterised by their tolerance to a shortage
of it and the maximum number of seeds a plant could produce in a year.
Interaction among plants is reduced to blocking a part of the resource by the
plant’s nearest neighbours. Spatial and temporal external conditions remain
unchanged. We consider two systems - plants of one type (target plants) and
a mixture of two types, when the second type differs from the target ones
only by the tolerance to a shortage or surplus of the resource. We show how
the life cycle of a plant depends on its tolerance, supply of the resource and
how it is affected by the presence of the second type of annuals. We demon-
strate that coexistence of the two species is possible, and we determine the
conditions for it.

Keywors: Monte Carlo simulations, plant dynamics, annual plants, coex-
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1 Introduction

The problem of coexistence of species and maintaining biodiversity is one
of the central issues of plant ecology. As such it has many facets and the
number of papers devoted to the subject is enormous. There are many papers
discussing the competition - colonisation trade-off (Levins and Culver 1971;
Tilman 1994; Holmes and Wilson 1998; Yu and Wilson 2001; Coomes et al.
2002), role of heterogeneity of space (Chesson 2000; Tilman 1987; Pacala
1986) or various type of disturbances, like fire, flooding or grazing (Roxburgh
et al. 2004; Miller et al. 2012; Seifan et al. 2012). Pairwise (PW) experiments
of annual plants have been reported by Goldberg and Fleetwood (1987) where
the effect of the presence of nearest neighbouring plants has been studied and
the plant types differed in many aspects. The focus was on the role played by
the size of the seeds in the competition between plants. The problem of how
the presence of one type of plants affects the target plants, has no satisfactory
answer (Grime 1977; Keddy and Shipley 1989; Tilman et al. 1990; Connolly
et al. 2001) and therefore further, also theoretical, studies are much needed.

In this paper we present a model of a PW simulation experiment of annual
plants. This model, described in detail in the next section is of individual
based type and its properties are determined by Monte-Carlo type numerical
simulations.

We revisit some important questions (Connolly et al. 2001), namely:

e In a pairwise evolution which species dominates at a particular time?
e [s a coexistence of two species possible?

e What is the effect of another species presence on the performance of
the target plants?

e How the above relations change when the supply of the resource vary
— from a shortage, through optimal to a surplus. How the dominance
changes with the supply of the resource?

Dominance means here that one species is more abundant than the other
(Connolly et al. 2001).

There are many factors characterising a plant community and accounting
for even most of them would make the model intractable, banning explo-
ration of the full parameter space. Therefore we have decided to reduce the
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characteristics of the plants to just their demand for one resource, tolerance
to a shortage of it and the maximum number of seeds a plants can produce
in a year. Once the basic mechanisms of such a system are understood, it
would be possible to extend the model by considering different size of the
plants, competition for more than one resource, different maximum number
of seeds and their size, effect of litter etc, (Kacki and Pekalski 2011; Pekalski
and Szwabinski 2013; Droz and Pekalski 2013). Also spatial and/or tempo-
ral inhomogeneities either in the form of cyclic or random changes could be
incorporated. We study a habitat composed of a population of annual plants
living on plaquettes of a square lattice of size L x L with hard boundary con-
ditions. In the first part of the paper we shall investigate a system with only
one type of annual plants. Here we shall determine the role of the control
parameters and the mechanisms at play. In the second part we shall study
a system with two types of plants and we will establish the influence of the
presence of the second type of plants on the first one. In both cases, a lattice
site (plaquette) could be either empty or contain only one plant. Initially,
a given number of plants is randomly distributed on the lattice. Life cycle
of a plant is composed of 15 weeks, making a year. During a year plants
are growing and produce seeds according to their fitness, which will then
determine the chance a plant has to survive till the moment of dispersing its
seeds. At the end of a year seeds are dispersed and the plants die.

External conditions, which could incorporate nutrients, water and light,
are summarised in the parameter

W(j) = Wo 4+ w(0.5 —r(j)), (1)

which describes the amount of the resource available during week j. To
account for possible changes of the resource from one week to another we
introduce fluctuations with the amplitude w around Wy and r(j) is a random
number taken from a uniform distribution in the interval [0, 1].

All plants within a given population have the same average characteristics
(except their position in the habitat). The features of the plants are:

1. p the maximum number of seeds a plant could produce in one year in
optimal conditions.

2. 7 € [0,1] — plants’ tolerance to the shortage of the resource W.

3. d, the demand for resources may slightly vary among plants. To account
for that we assume that the demand of a plant ¢, d;, is between d—e and
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d+e€, where € is the amplitude of the fluctuation. Assuming that there is
a single value of the external resource, which is optimal, is certainly an
approximation. However, allowing for a range of best conditions would
lead to additional parameters and eventually will make the analysis of
the results less transparent. The demands are fixed and do not change
in time. In the following it will prove useful to operate with v = Wy /d,
a value of the resource, Wy, normalised by the average demand for it
d. This way the parameter ~ is dimensionless.

4. We assume that plants having large tolerance to a shortage of the
resource have lesser tolerance to a surplus of it. Therefore for W (j) > d,
or equivalently v > 1, the value of 7 is replaced by (1 —7). It should be
noticed that when 7 = 0.5, the tolerance to a shortage and too much
of the resource are the same (see below).

5. If a plant has a nearest neighbour, a part ¢ of the resource is blocked by
the neighbour. In this way interactions among the plants are accounted
for. This may correspond to e.g. blocking by the neighbours’ roots a
part of water or to reducing light. Root competition and mechanisms
inhibiting access of other roots to resources (called sometimes contest
competition or allelopathy) is a well known phenomenon (Schenk 2006).
Since there could be a shortage as well as a surplus of the resource the
effect of this interactions could be negative or positive (competition or
facilitation).

First, we shall show how a population of one type of plants with a given
tolerance reacts to changes of the external parameter v. Afterwards we shall
determine the influence the second type of plants has on the target ones. The
plants of the second second type are almost identical to the first ones, except
for one feature - their tolerance to a shortage of the resources.

1.1 One type of plants

Our algorithm (Monte Carlo type of simulations) is the following. At the
initial time, a certain number (2000) of plants is put randomly on 10? pla-
quettes of the lattice. Each week plants are randomly selected, their demand
for the resource is compared with its availability and the result is a measure
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of the departure from the optimum. For a plant ¢ at week j the effective
resource available to it has the form

0i(j) = W(H) (1 — ¢ nny), (2)

where the factor ¢ - nn; represents that part of the resource which is blocked
by nn; nearest neighbours of the plant 7. The ratio of the resource available
to the plant, ¢;(j), to the demand for it (wd;), is used in the determination
of the plant’s fitness at time j

fiG) === (3)

Fitness has a maximum when the supply equals the resource demand for
it. When there is too much of the resource, like too much water in the
soil, the fitness goes down. In short, fitness peaks in optimal conditions.
Fitness from each week, f;(j), is averaged over the weeks to yield f;, which
is used to calculate the probability of survival of the plant p; at the end of
a year. The form of the probability is obtained from the following empirical
considerations:

1. p; should be 1 if all the needs are met by the resources,

2. p; should vary smoothly in a way taking into account the tolerance
factors.

3. p; should go to zero when v — 0, because if there is no resources a
plant cannot survive.

A simple function fulfilling the above criteria is

flop(-r(1-£)?)  ify<1 (4)

P e (CO -0 f?) iy (5)
where (3 is a positive number controlling the shape of the probability function
for v < 1. If a random number r; € [0,1], taken from a uniform distribution,
is greater than p;, the plant is eliminated. Otherwise the plant survived, and
the number of seeds, which it produced, is calculated as a product of the
maximum number of seeds p and p;. Using the same formula for checking
the plant’s survival and the number of seeds it produced in a year might
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be a simplification, however, as shown by (Shirley 1929) the two are closely
related and therefore such an assumption is well justified. The seeds are
randomly distributed on the 13 plaquettes composed by the first, second and
third nearest neighbours of the plant ¢ and the site 7 itself. After dispersing
their seeds plants die.

Next comes springtime when seeds can germinate. Each plaquette con-
taining a seed is randomly selected and the germination test is performed
much in the same way as the survival test was run for adult plants. Here
however the seeds do not feel the presence of neighbouring seeds, since the
seedlings are too small to have an effect on their neighbours. Once all pla-
quettes with seeds have been visited, the seeds are removed from the system
- there is no seed bank. Seedlings become adult plants and a new year starts.

Our choice of several parameters of our model has been motivated by
the papers of Hickman (1977) and of Reynolds (1984) who studied annual
plants living in mountain areas. The life cycle of such plants is about 15
weeks, they produce up to 10 seeds per plant and the seeds success depends
strongly on the external conditions (Reynolds 1984). Plants have also dif-
ferent tolerance to shortage of water (Hickman 1977). Their coexistence has
been observed for a period of several years (Hickman 1977). The value of
the “interaction strength”, ¢ is chosen as 0.1. Larger values could be unreal-
istic, since it seems that half of the a priori available resource could not be
blocked by neighbours. We have verified that making a year last 45 weeks,
which would be appropriate for plants living in moderate climates, does not
affect the results. As the dynamics is stochastic, some averaging should be
performed. Note however that it is also interesting to study the role played
by a control parameter (like 7 or ¢) on the fate of a single population, as will
be demonstrated later on.

1.2 Two types of plants

A similar approach can be applied in the case where two types of plants,
called P1 and P2, are present. The two types of plants could differ in many
respects - their demand for the resource, type and number of seeds, tolerance
to a shortage of the resource etc. To keep the problem simple we assume that
the only difference is the tolerance to a shortage of the resource. The initial
conditions are such that a fraction f; of the lattice is occupied by the target
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plants P1 while another fraction fs5 is occupied by plants P2. The fraction
fr (k = 1,2) when multiplied by the initial density determines the density
of plants of k type. Assuming that initially we put 2000 plants on a lattice
with 10000 plaquettes, the fractions f; vary between 0 and 0.2. Increasing
the initial number of plants to, say, 5000 is virtually unnoticed after some 10
years.

We have the following control parameters - reduced resource supply 7,
tolerance of plants P1 - 7y and of plants P2 - 75 and finally the initial fractions
of two types of plants - fi, fs.

The evolution rules for the two types of plants are straight extensions
of the ones described above for one type of plants. The only new aspect is
concerning seeds germination. After the plants have dispersed their seeds, a
plaquette may contain s; seeds coming from P1 and s, seeds coming from P2.
Only one seed will be chosen and submitted to the germination test. This
seed is selected according to the majority rule, i.e. the chance of choosing,
say, of a P1 seed, is proportional to the fraction s;/(s; + s9) of this type of
seeds on the plaquette. It corresponds to the lottery model introduced by
Chesson and Warner (1981) with equal weights.

2 Results

2.1 One type of plants

We consider first a system of dimensions L x L with L = 100 on which initially
2000 plants of one type are put in random positions. Dynamics of this system
has been described in the previous section. We have found that a population
reaches a stationary state, where the fluctuations of the number of plants are
less than 1%, in just several years. The number of plants in the stationary
state vary very little from one realisation (random initial distribution of the
same number of plants) to another. We have limited the simulations to 100
years and the data presented in this section are averaged over 20 realisations.

Figure 1 shows the number of plants as a function of v = Wy /d, the re-
source supply Wy divided by the average demand for it d, for several values
of the tolerance 7. As could be expected, for small tolerance, like 7 = 0.3,
plants need larger values of v to survive than when the plants tolerance is
greater, but on the other hand in this case they can survive when ~ is much
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larger than 1. Maximum of the number of plants does not depend on the
tolerance and is located at v ~ 1.2. The shift from v = 1 is due to the fact
that part of the resource is blocked by the neighbours of each plant, hence ~
should be larger than 1.
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Figure 1: Number of plants P1 for various tolerances as a function of the
reduced resource supply v. Colour on line.

Next, figure 2 shows the three successes - 57, 55,95 defined as follows.
Sp is the seeds success, i.e. the ratio of the number of seedlings in a given
year to the number of plaquettes with seeds in the same year. Since from
a plaquette only one seed could germinate, it is the number of plaquettes,
not the number of seeds, which determines this success. S5 is the seedlings
success - the ratio of the number of adult plants which were able to produce
seeds, to the number of seedlings. Finally, S5 is the total success - the ratio
of adult plants producing seeds to the number of plaquettes with seeds, or
simply S3 = 57 - S2. We have found that the three successes depend only
very weakly on the value of the tolerance, hence only the plot for 7 = 0.5 is
presented. Which success dominates and which determines the overall one,
depends on the value of 7, i.e. the supply of the resource.
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Figure 2: Three successes for P1 plants. S; - seeds success, Sy - seedlings
success, S - total success of plants (product of the previous ones) as functions
of the resource supply v and for 7 = 0.5 . Colour on line.

Spatial arrangement of plants may change in different external conditions,
viz. for different v. A convenient way to measure it is the ratio of the
average number of nearest neighbours (NN) to the average number of next
nearest neighbours (NNN). When there is not enough resource (low =)
plants are expected to avoid growing in closely packed clusters, since each
NN blocks a certain amount of, already scarce, resource. When the supply of
the resource is about what a plant needs, one may expect a balance between
the average number of (NN) and (NNN). Finally, when there is too much
of the resource, growing in close clusters becomes beneficial, as it allows to
reduce the too large supply. This is exactly what is seen in figure 3.
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Figure 3: (NN)/(NNN) for several tolerances 7 as a function of the resource
supply 7. Colour on line.

The presented above plots allow the following description of the basic
mechanisms of our model. There is a tendency of plants of adjusting their
spatial organisation according to the external conditions in order to cope with
either surplus or shortage of the resource. This in turn determines whether
the elimination will take place at the seedlings or adult plants stage. If v <1,
hence there is a shortage of the resource, eliminated are mostly adult plants.
It could be explained as follows. When the resource is scarce, seedlings, which
do not have their access to the resource blocked by their NN, are better off
than adult plants which loose a part of the resource supply. This lost may
be crucial and an adult plant could be eliminated before producing seeds.
When v > 1, there is too much of the resource and the elimination is at the
level of seeds. Once a seed germinated and developed into an adult plant,
its conditions are better since part of the surplus of the resource is blocked.
The total success of plants is therefore determined mainly by the success of
the adults plants when v < 1 and by the success of seeds when v > 1.

Two types of plants

After showing the basic mechanisms of our model, we may turn into applying
it to a more complex case, namely two, called P1 and P2, quite similar types

10
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of annuals living in the same habitat. We assume that both types are present
there from the beginning of the study and no immigrants are allowed.

We assume that the initial fractions of the P1 and P2 are equal. Such

an assumption allows us to estimate whether a given species contributes
more at the end than at the beginning and then we can tell which of the
species outperformed the other (Connolly et al. 2001). It corresponds to
the average relative growth rate concept (Evans 1972). We shall call the P1
plants the target plants with fixed value of the tolerance at , = 0.5 and we
shall investigate how the presence of P2 of various tolerances, influences the
existence of P1. Fixing the value of 71 and changing only 7 is reasonable,
since we know from the previous section how the dynamics of P1, living
alone, changes with 71 and moreover the only difference between P1 and P2
are their tolerances. When two types of plants are present a stationary state
is also attained, although it corresponds to just one type of plants alive.
The less adapted species are sooner or later eliminated. This may happen
after a long time, like 800 years, or just after 50 years and the outcome
depends on the supply of the resource and initial arrangement. Elimination
of a worse adapted species has been established before (Levin 1970; Chesson
and Huntly 1997; Chesson 2000). It, is of course quite unrealistic to assume
that external conditions will remain the same for 800 years. Therefore we
have decided to study the case of two types of plants during an interval of
100 years. Clearly at that time the system is not in a stationary state but in
a transient one. Such a period is still quite long from an experimental point
of view. How the picture changes when another time limit is chosen, will be
discussed later. The figures for two types of plants for the three successes
and the dependence of the average number of NN divided by the average
number of NNN are quite similar to the Figures 2 and 3, and therefore are
not presented.
For one type of plants averaging over just 20 realisations gave smooth curves.
Dynamics of a system of two types of plants is much more complex and we
had to average over 200 realisations to arrive at the figures presented in the
next section.

11
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Figure 4: Number of P1 and P2 plants for various tolerances of P2 and as a
function of the resource supply 7. 7y is everywhere equal 0.5. a) 7, = 0.3, b)
Ty = 0.4, ¢) 75 = 0.45, d) 75 = 0.6. Colour on line.

From figure 4 we see that the presence of P2 has a profound effect on
P1, restricting their existence range and changing the abundance. There are
regions when the better adapted plant eliminates the other one, but there is
also an interval of the values of v where coexistence is possible. The region
is larger when the tolerances of P1 and P2 are more similar. It should be
noted that even when the tolerances are very close, like 7, = 0.5, 75 = 0.45,
the worse adapted species is eliminated in a large interval of the values of the
resource which were acceptable when there was just one type of plants. This
effect is better seen in figure 5 where we compare the number of plants P1
when they grow without P2 (the mono curve) and when P2 are present and
have various tolerances. Several features should be noticed. When 7 = 0.3
the P1 are unaffected at all for small values of ~, since there the advantage
of P1 is so large that P2 are eliminated. Once however the P2 are able to
survive, they reduce the number of P1 and with growing ~ the process of
replacing P1 by P2 is more and more fast. If , = 0.45, the P2 appear at
smaller values of v than when 7 = 0.3, but could eliminate P1 only when ~

12
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is quite large.

This figure gives an answer to the question often asked by ecologists
(Connolly et al. 2001) - how much the target species performance (here the
number of plants) is attributable to other species presence. The figure shows

how this influence changes with the supply of the resource and the relation
between tolerances of the two species.
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Figure 5: Number of P1 where they grow alone (mono curve) and with P2

of various tolerances as a function of the resource supply v. 71 = 0.5 for all
cases. Colour on line.

When two species coexist and compete for a limited resource, often a
plant competition index is introduced. There is however still a controversy
how it should be defined. In a paper by Weigelt and Jolliffe (2003) nearly
50 of them have been described and discussed. In view of the controversy
we have chosen a simple one, namely the Relative Competition Index (RCI),

introduced by Grace (1995) as
NP, — NP,
mono mixr 6
NPmono ’ ( )
where N P,,on, is the number of plants in a monoculture and N P,,;, is the
number of the same type of plants living with other plants. In Figure 6 the

RCI =
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RCI is presented as a function of the resource supply v and several values
of 1. There is no competition when RCI is either zero (P2 plants are there
eliminated) or when RCI = 1, when the P1 plants cease to exist. The region
in between marks the competition and coexistence range. If RCI < 0.5 the
P1 are dominant, otherwise P2 are more abundant.

RCI

0.4

0.2 | 1=

1.75 2 2.25

Figure 6: The RCI index, for definition see the text, as a function of the
resource supply v and several values of the P2 plants tolerance. Colour on
line.

An interesting problem, which could be studied only via computer sim-
ulations in agent based models, is the spatial organisation of the two pop-
ulations. Figure 7 shows it after 100 years for v = 1.4, 1y = 0.5, » =0.4,
both in a whole lattice and in a blow-up showing more details of the spatial
structure. One sees clearly that plants of the same type have a tendency to
grow in clusters. There are several ways to measure this effect. One of them
is presented in Figure 8 as the average number of NN of the same type as the
central plant (same line) and of both types (both line). It is evident that e.g.
for plot a), when ~ is very small, the P1 plants have only NN of the same
type, as there are no other plants in the system. However for v &~ 1.3 there
is already a large number of P2, yet still the P1 have mostly P1 as their NN.
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Figure 7: Spatial arrangement of the P1 (red crosses) and P2 (green circles)
plants at the end of simulation (100 years) for v = 1.4, ; = 0.5 and 7 =
0.4. Full lattice (left) and a part of it (right) Colour on line.
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Figure 8: Average number of nearest neighbours, as functions of the resource
supply 7, of the same type (same) and of both (both) types for P1 and P2
and two values of 75. a) P1 plants 7, = 0.4, b) P2 plants 7, = 0.4, ¢) P1
plants 7, = 0.6, d) P2 plants 75 = 0.6. Colour on line.
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Another way to see possible regularities in the spatial arrangement of
plants, is to plot the number of plants of a given type along some direction.
Figure 9 shows it for the X-axis, v = 1.4 and 7, = 0.4. The total number of
plants along that axis is, grosso modo, constant, P2 being more numerous,
but we see also that in some areas the number of P1 grows at the expanse of
P2, which indicates the presence of a P1 cluster.
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Figure 9: Number of P1 and P2 plants along the X-axis at ¢ = 100 years and
for v = 1.4, 7 = 0.5 and 75, = 0.4. Colour on line.

When the tolerances of both types of plants are similar, like 7y = 0.5, 75 =
0.45, the number of both types of plants are comparable and the effects of
appearance of local clusters are stronger (see Figures 10 and 11). Comparison
of the two figures 9 and 11 shows also that when the tolerances 7, and 7 are
getting closer, the clusters of the same type of plants are growing.
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Figure 10: Spatial arrangement of the P1 (red crosses) and P2 (green circles)
plants at the end of simulation (100 years) for v = 1.4, ; = 0.5 and 7 =
0.45. Full lattice (left) and a part of it (right). Colour on line.
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Figure 11: Number of P1 and P2 plants along the X-axis at ¢ = 100 years
and for v = 1.4, for 7, = 0.45. Colour on line.

Finally, we discuss how the results presented above change when the
parameters we have fixed, take another values. Since the plots for the two
types of plants were obtained for a transient regime, it is important to check
how the picture will change would we take another time limit at which the
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plants’ abundances were calculated. 100 years taken by us in the simulation,
is a long period and therefore we have repeated the simulations for 50 years
time limit. There are some, but quite minor, differences between the results
for the two time limits. We may therefore conclude that in the transitory
regime at which we investigate the population evolution, the results do not
change qualitatively when the time limit varies within, say, the interval [30
- 150] years and in this respect the results are generic. The scatter of the
reduced demand, ¢ = 0.2, for the resource, makes the maximum number of
plants as a function of v less sharp, however a difference between ¢ = 0 and €
= 0.2 is rather small. Likewise the assumption that the supply of the resource
fluctuates from week to week with an relative amplitude w/Wy = 0.02, has
a small effect and its role is rather elimination of unrealistic repeating each
week the same supply of the resource. Similarly, taking € # 0 prevents us
from considering a system of clonal plants.

The size of the system L = 100 is a compromise between execution speed
and avoiding stochastic extinctions and poor statistics. For small systems,
like L = 20, even local demographic stochasticity could, in the case of non-
linear dynamics, lead to global effects (Bolker and Pacala 1999; Chesson
2000; Durrett and Levin 1994).

There are two other parameters which could influence the dynamics of
plants in our model. First is ¢ - the "interaction strength” describing the
effect on a plant of its NN. When ¢ = 0 we have a system of completely
independent plants when the neighbourhood have no influence on the central
plant. The main difference among plots for various values of ¢ is the shift of
the maximum number of plants towards larger values of v when ¢ is growing,
since with increasing ¢ more and more of the resource is blocked by the NN.
The second effect of growing ¢ is pushing down the maximum abundance, at
Ymaz, and at the same time increasing the abundance for 7 close to V4. This
comes from the fact that for large ¢ the nearest neighbourhood plays more
important role and since not all the plants have the same neighbourhood,
optimal conditions are more widely spread than for small values of c¢. Also
the coexistence region shrinks with growing c¢. For ¢ = 0 the dependence of
the number of plants on v has a very sharp maximum at v = 1.

The last parameter 8 > 0 is needed to assure that the probability of sur-
vival is vanishing when there is no resources. We have verified that changing
B from 0.1 to 0.5 in our simulations does not influence the results in a sig-
nificant way. Small values of 8 produce a smoother probability distribution
for v < 1.
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3 Conclusions

We have presented and discussed a computer based simulation model de-
scribing life cycles of a population of annual plants competing for a single
resource. Two scenarios have been investigated. In the first one only one
type of plants lived, while in the second there were two types. Plant char-
acteristics have been reduced to their tolerance to a shortage or surplus of
the resource and the maximum number of seeds a plant could produce in one
year. The only difference between the two types of plants is their tolerance
to the shortage of the resource.

The questions we have asked are — is a coexistence of two different species
possible in such a simple system, without the competition-colonisation trade-
off (Coomes et al. 2002; Yu and Wilson 2001) or disturbances (Chesson 2000;
Miller et al. 2012; Seifan et al. 2012). If so, how the dominance of one species
depends on the supply of the resource and the difference in the tolerances.
How the presence of a second type of plants, with quite similar characteristics,
affects the target plants. What will be the spatial structure in the coexisting
phase and how it will depend on the control parameters. To the best of our
knowledge such investigations have not yet been carried out.

The results obtained from the simulations and presented in the Results
section, allow us to conclude that our simple model leads to a coherent de-
scription of the situation and bring new light on the basic questions listed
above.

While the system of one type of plants arrives at a stationary state very
fast (up to 10 years), dynamics of a mixture is by far more complex. The
final state, which could be attained sometimes only after several hundred
years, is always a single species state. In the transient period coexistence,
lasting also sometimes very long, is possible. The range of values of the
resource over which it happens, is larger if the tolerances do not differ much
and happens where the supply is close to the demand. Growth rates of
the population depend very strongly on the supply of the resource and the
difference of the tolerances. Where the two are close, the growth rate of the
target plants is more affected by the presence of the second type of plants
than when the tolerances differ more. Life cycle of a plant could be controlled
either by elimination of the seedlings (including germination blocking) or by
elimination of adults plants. We have shown that it depends on the supply
of the resource which of the mechanism is more important. The value of the
tolerance does not play a significant role here.
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Using individual-based model allowed us to determine also spatial organ-
isation of plants. We have shown that depending on the availability of the
resource the plants have a tendency to stay away one from another when
the resource is scarce. When there is an adequate amount of it, there is no
visible pattern and when there is too much of the resource, the plants have
a tendency to form dense clusters. In a system of two types of plants they
form groups of alike plants and this tendency is growing when the difference
in the two tolerances is getting smaller.
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