
 1 

  
Abstract— Neoadjuvant chemotherapy is a treatment 

routinely prescribed to patients diagnosed with muscle-
invasive bladder cancer. Unfortunately, not all patients are 
responsive to this treatment and would greatly benefit from 
an accurate prediction of their expected response to 
chemotherapy. In this project, I attempt to develop a model 
that will predict response using tumour microarray data. I 
show that using my dataset, every method is insufficient at 
accurately classifying responders and non-responders.  
 

Index Terms — Bladder Cancer, Chemotherapy, Classification, 
Machine Learning 
 

I. INTRODUCTION 
ladder tumours are classified based on their stage and grade 
[1]. Grade is given based on the cancer cells’ appearance 

compared to normal cells and pathological stage (pT) describes 
the extent of penetration of the tumour. These two clinical 
features are currently important factors when deciding which 
treatment to administer to patients with bladder cancer.  
Neoadjuvant chemotherapy is the administration of 
chemotherapeutic agents before a standard treatment. The 
current standard treatment for muscle-invasive bladder cancer 
(MIBC) is radical cystectomy, which is the surgical removal of 
all or part of the bladder. The rationale for the administration of 
chemotherapy prior to cystectomy is that it can help treat 
micrometastatic diseases and downstage the diagnosed tumour 
so that there is an increase potential for complete resection of 
the tumour [2]. It has been shown that compared to radical 
cystectomy alone, the use of neoadjuvant chemotherapy 
followed by radical cystectomy increases the likelihood of 
eliminating residual cancer in the cystectomy specimen and is 
associated with improved survival among patients with locally 
advanced bladder cancer [3]. However, the overall response 
rate of neoadjuvant chemotherapy is only 50% to 60% [4]. 
Consequently, neoadjuvant chemotherapy negatively affects 
the health of non-responsive patients while they receive no 
benefit from the harmful treatment. Therefore, there is a critical 
need to predict those who will respond positively to 
neoadjuvant chemotherapy. 
 
 

The expression of some genes have been found to have a 
correlation to chemotherapy response. BRCA1 plays a central 
role in DNA repair pathways. Font et al. found that patients with 
low/intermediate BRCA1 levels had a higher pathological 
response rate than those with high levels [5]. Similarly, Kiss et 
al. observed that the overexpression of Bcl-2, an inhibitor of the 
apoptotic cascade, in chemotherapy-naive primary tumors is 
related to poor response to neoadjuvant chemotherapy, which 
might help discriminate likely non-responders [6]. The 
expression of genes, such as BRCA1 and Bcl-2, are examples 
of features that can be used to distinguish responder vs non-
responder. 
Furthermore, muscle-invasive bladder cancers are biologically 
heterogeneous and can be stratified into 2-4 subtypes, such as 
basal, luminal, and p53-like [7]. These subtypes can have 
widely variable clinical outcomes and responses to 
conventional chemotherapy [8]. Specifically, p53-like MIBC 
are consistently resistant to neoadjuvant MVAC chemotherapy, 
and all chemoresistant tumors adopt a p53-like phenotype after 
therapy. Therefore, identifying subtypes can be another useful 
approach to predicting response to chemotherapy.  
Various groups have come up with different methods to predict 
patient response to chemotherapy. One approach uses a method 
called coexpression extrapolation (COXEN) derived from 
expression microarray data of the National Cancer Institute 
(NCI)-60 cell line panel to predict drug sensitivity of bladder 
cancer cell lines [9], [10]. To test its performance, they 
performed in vitro drug response experiments to determine the 
sensitivity of each bladder cell line to cisplatin and paclitaxel. 
For those cells, prediction accuracies averaged 85% for 
cisplatin and 78% for paclitaxel. A different group study by 
Takata et al. predicted response to chemotherapy by selecting 
genes that discriminated responder vs non-responder then 
scored each sample by a weighted-vote of each gene [11]. In a 
validation study, they applied their method to 22 additional 
cases of bladder cancer patients and found that the scoring 
system correctly predicted clinical response for 19 of the 22 test 
cases [12]. In 2011, the same group applied their method to the 
same problem that this project faces: predicting response of 
gemcitabine and cisplatin treated muscle-invasive bladder 
cancer using microarray data. They achieved strong results, 
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correctly classifying 18 out of 19 test samples [13].  
There are numerous machine learning classification methods 
that can be applied to this problem. For instance, logistic 
regression is a method that defines a linear decision boundary 
by minimizing an error function of the training samples’ target 
and output. In contrast, k-Nearest Neighbors is a method that 
decides a sample’s class based on the class of the k samples that 
are nearest to it. Consequently, depending on the method, the 
predicted class can be determined very differently.  
In this project, I apply several different classification methods 
to bladder tumour microarray data and try to predict response. I 
also compare the performance of these methods to the method 
developed by Takata et al. by applying them to the same dataset. 
Finally, I attempt to use a neural network to model the complex 
features in the data with hopes of improving prediction 
accuracy. 

II. MATERIALS AND METHODS 

A. Microarray Data 
The data used to predict response to chemotherapy is 
microarray data (17000 gene expressions) for 52 muscle-
invasive bladder cancer patients who received gemcitabine and 
cisplatin chemotherapy after their initial biopsy. Out of the 52 
patients, 15 (29%) were complete responders (pT<2 and lymph 
node negative) and 37 (71%) were non-responders (pT2 or 
higher, or any node positive). The data was log-transformed and 
quantile normalized with R package aroma.light. Prior to 
analyzing the data, a minimum cutoff mean and standard 
deviation gene expression was set to remove genes that had 
either very low expression or had expressions that did not 
significantly vary. This helped reduce the dimensionality of the 
data to nearly 9000 genes. 

B. Nested Two-Fold Cross-Validation 
Since there is only 52 samples to use for training, validation, 
and testing, I decided to implement nested two-fold cross-
validation. Nested two-fold cross-validation means that the 
data is split in two, one half for training and the other half for 
testing, and then the training half is split again. The first fold 
is used for testing the performance of the classifier on held out 
data and the inner fold is used to select hyperparameters for 
the models. More specifically, I use stratified two-fold cross-
validation so that the proportion of each class remains 
relatively constant for each fold. 

C. Machine Learning Methods 
The following are the classification methods used in this project 
which were imported from Scikit Learn: Logistic Regression 
with L1 (LR1), L2 (LR2), and ElasticNet (LRel) regularization, 
k-Nearest Neighbors (kNN), Random Forests (RF), Support 
Vector Classification (SVC), Gaussian Naive Bayes (GNB), 
Linear Discriminate Analysis (LDA) and AdaBoost (ADA). 
These methods were chosen because they exhibit a wide range 
of different decision boundaries given the same data set. There 
hyperparameters were set by two-fold cross-validation. 

D. Takata/Kato 2011 Method 
I implemented the method used by Kato et al. [13] which was 
shown to be an effective method at predicting response given 
the same scenario. Their method first identifies genes that 
discriminate between the two classes then calculates a 
prediction score (PS) for each test sample using those 
discriminating genes. Mean (µ) and standard deviation (δ) 
were calculated from the log-transformed data of each gene in 
the responder (R) and non-responder (N) cases. A 
discrimination score (DS) for each gene was defined as: 

	𝐷𝑆 = (𝜇' −	𝜇))/(𝛿' + 𝛿))	 
Next, samples were randomly permutated between the two 
classes 10,000 times and since the DS data set of each gene 
showed a normal distribution, the P-value for each gene was 
calculated. Cross-validation is used to determine how many of 
the top significant genes will be used in the gene set. To 
classify a sample, each gene in the gene set votes for either 
responder or non-responder depending on whether the 
expression level (xi) in the sample is closer to the mean 
expression level of the responders or non-responders in the 
reference samples. The magnitude of the vote (Vi) reflects the 
deviation of the expression level in the sample from the 
average of the two classes.  

Prediction Score = (VR - VN )/(VR + VN ) 
Where Vi = | xi - (µR + µN)/2 | 

Therefore, a positive PS predicts responder whereas a negative 
PS predicts non-responder and a higher absolute value reflects 
a stronger confidence in the prediction.  

E. Neural Network 
To implement a neural network, I modified the Python code 
from http://neuralnetworksanddeeplearning.com/ to fit my 
problem. The network had sigmoid activation functions for 
each layer and cross-entropy error. The hyperparameters, such 
as network topology, learning rate, and regularization were 
determined through cross-validation. 

F. Accuracy vs AUC 
Since there is an imbalance in the number of each class (15 
responders vs 37 non-responders), if we predict all samples to 
be non-responders we will achieve 71% accuracy and only 
50% AUC. I have chosen to report the AUC in Fig 1 and 2 
instead of accuracy for each method because it is unaffected 
by the imbalanced classes and in this case is a better indicator 
of a method’s predictive performance. 

III. RESULTS 

A. Prediction Results 
I applied various classification methods to the microarray data. 
Fig. 1 is a plot of the average receiver operating characteristic 
(ROC) curves over 10 iterations of these various methods. The 
methods outputted 0 for responders and 1 for non-responders. 
The plot shows that none of the methods are capable of 
properly classifying the two classes. The AUC of methods are 
all near 50%, indicating they are essentially random. The 
highest AUC is kNN at 0.54 and the lowest is Random Forest 
at 0.45. Table 1 shows the accuracy of the methods. Most 
methods learn to achieve 71% by predicting non-responder for 
all samples which is about .50 AUC. The continuous value 
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output of most methods is about 0.71 (ie. predicts non-
responder), which is equal to the average label value (37/52). 
This output is due to the imbalanced classes (15 responders vs 
37 non-responders) because it minimizes the error when 
classes are predicted by chance. If the classes are balanced by 
subsampling the majority class, then the methods output 0.5 
for most samples, indicating they are unable to predict class.  

 
Fig 1: True Positive Rate vs False Positive Rate of several classification 
methods based on averaging 10 iterations. All methods have an AUC around .5 

B. Kato Method Results 
Since the various classification methods I used previously 
were not successful at distinguishing the two classes, I 
implemented the method from [13] which was shown to be an 
effective method given the same classification problem. See 
‘Kato 2011 Method’ in Material and Methods for a description 
of the method. In their paper they came up with a gene set that 
could correctly classify 18 out of 19 test samples. I applied 
their method to my data to come up with another gene set. 
Using the gene set obtained from their data and the one from 
my data, I calculated a prediction score for each test sample in 
my data set. Figure 2 is the ROC curve of the predictions 
using each gene set. The AUC is nearly .50 for both, which is 
in indication that their predictions are essentially random. This 
is the same result as Fig 1; the genes in the training set that are 
found to be significant to not generalize to the test set.  

  
Fig 2. True Positive Rate vs False Positive Rate of the method from [13] using 
the gene set they published (blue line)  as well as the gene set obtained from  
applying their published method to my data. Both gene sets have an AUC of 
about 0.5 (as good as random). 

C. Neural Network Results 
In an effort to identify more complex features in the data to 
improve predictions, I implemented a neural network. I 
experimented with a wide range of hyperparameters. For 
instance, I tested networks with 1 to 3 hidden layers and 2 to 
1000 nodes per layer. Fig. 3 is a comparison of the error on the 
training set vs the test set over 300 epochs of a network with a 
topology of two hidden layers with 10 nodes each. Most 
network topologies resulted in a very similar plot as Fig 3. The 
training error is seen to descend initially then level off until 
epoch 200 where it begins to descend again. In contrast, the 
test set error increases initially then fluctuates at a high error 
for the remaining epochs. This is an indication that the 
features learned in the training set do not generalize to the test 
set. If the problem with the model was overfitting, we would 
expect the test set error to initially drop then begin to increase 
when the model overfits. If the model were underfitting, then 
we would expect the training error to not descend at higher 
epochs. Thus it is not a problem of overfitting or underfitting, 
it’s that there is not enough structure in the data to make 
strong predictions. Fig 5 in the Supplemental section is a 
comparison of the network trained on the real microarray data 
and the network trained on data that is completely random. 
The random data was created by sampling from a uniform 
distribution for each feature of each sample. The two graphs 
are similar in that the test error does not decrease when the 
training error decreases, but they are different at the later 
epochs as the real data graph A) has high fluctuations in its 
test error whereas the simulated random data does not. 
Nonetheless, Fig 5 is an indication that the real data may not 
have much more structure than random data.   
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Fig 3. Neural Network Training (dashed blue) and Test Error (solid green) over 
300 epochs. 

IV. DISCUSSION 

A. Possible Explanations for Poor Results 
Takata and Kato have shown previously that their method 
could discriminate responders and non-responders almost 
perfectly (18/19 correct test samples). However, using my 
dataset, they achieve an AUC of nearly 0.5, meaning their 
method was effectively random, just like the results of all the 
other methods I tried. As an illustration of the difference 
between datasets, Fig 4A is a figure from Kato’s paper [13] 
showing the prediction scores of the training and test sets. It is 
clear that the scores are clearly distinct between the two 
classes. Fig 4B is the prediction scores of the test set from 
applying the same method to my dataset. There is no longer 
any difference between the responders and non-responders.  
The reason for this outcome could be that the measurements of 
the gene expressions from the microarrays in my dataset may 
have been very noisy causing the input data to be imprecise. 
There could have been some sort of batch effect or 
preprocessing that may have modified the negatively modified 
the inputs. Similarly, there could have been errors when 
labeling the samples as responders or non-responders. For 
these possible reasons, the method used by Takata and Kato 
performed much better on their dataset than mine. 

B. Relabeling Data 
To see if the reason for the poor accuracy was due to 
mislabeling, I tried relabeling the data based on different 
definitions of being a responder. Initially, the definition of 
responder was that the post-chemo sample be at a stage less 
than 2 (pT<2) and be lymph node negative. One example of a 
new responder definition is if there is any decrease in stage of 
the tumour (not necessarily less than 2) then we classify that 
sample as a responder. I tested this relabeling scheme and 
others but unfortunately the methods were still unsuccessful at 
effectively classifying the two classes. 

C. Simulated Data and L1 Logistic Regression 
As a proof of concept, I simulated data to compare the 
effectiveness of the various methods. The assumption I make 

for the simulated data is that the majority of the features/genes 
are non-informative for distinguishing the two classes but 
there is a small subset of the features that are informative. So 
for the majority of the features, I sample from the same 
Gaussian for both classes, whereas for a minority of the 
features, each class is sampled from two different (possibly 
overlapping) Gaussians. If I make 100 samples (50 for 
training, 50 for validation) with 100 features and 10 of those 
features being distinguishable, then most of the methods 
perform well (>96% accuracy). If I increase the number of 
features to 9000 (similar to this project) and keep 10 
distinguishable features, then most methods do poorly (<60% 
accuracy) except Logistic Regression with L1 regularization 
(>90% accuracy). This must be because L1 gives zero weight 
to all features that don't seem useful whereas the other 
methods give a little weight to most features which ends up 
being a significant amount of noise when predicting validation 
samples. This result is in accordance with Andrew Ng’s paper 
on L1 regularization and irrelevant features [14]. Basically, 
the simulated data showed that if there were genes that were 
differentially expressed then atleast L1 Logistic regression 
should be able to find them.  

D. Other Attempts 
I tried taking the majority vote of all methods for each sample 
to decide its class. The result was that the combination of 
methods was either the same or worse than any individual 
method. 
Next, rather than trying to find significant genes, I investigated 
whether genes that have been reported to have an influence on 
chemotherapy response were predictive in my dataset. To this 
end, I selected genes BRCA1, Bcl-2, and p53 and ran my 
methods on them individually. None of the methods achieved 
an accuracy better than using all genes in the dataset, meaning 
that these specific genes were not predictive in this case. 
Finally, instead of applying supervised methods, I tried 
clustering the data to see if the assigned labels would have any 
relation to response. I first applied PCA to reduce the 
dimensionality to 50 then fitted a Gaussian Mixture Model 
with two clusters. The predicted classes ended up not having 
any sensible relation to the response of the samples. 

E. Future Directions 
For my future directions, I will aim to acquire a new dataset. 
Ideally, the new dataset will have more samples which will 
reduce the overfitting of my models and reduce the effect of 
outliers. I can also try using RNASeq data instead of 
microarray data. The TCGA would be a good source for this 
data. Furthermore, rather than predicting from single gene 
expressions, we could look at pathways. We could create 
metagenes based on the expressions of genes involved in the 
same pathway. These metagenes would help reduce 
dimensionality, increase regularization, and help the 
interpretability of the model. However, identifying these 
metagenes would not be trivial and would be an area of future 
work. Additionally, I will be incorporating mutational data 
into my analyses to potentially help the predictions.  
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V. CONCLUSION 

The goal of this project was to improve the prediction of 
response of muscle-invasive bladder cancer to neoadjuvant 
chemotherapy. Given my dataset, none of the methods that I 
used were able to effectively distinguish responders from non-
responders. In addition, the method used in Kato et al. was 
also unable to accurately classify the two classes using my 
dataset. Furthermore, the features learned by the neural net 
using the training set did not generalize to the test set. My 
negative results may stem from the dataset being too noisy to 
accurately predict response. Future work should incorporate 
data from other sources, such as the TCGA. 
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VI. SUPPLEMENTAL 

 
Method 

Training 
Accuracy 

(%) 

Validation 
Accuracy 

(%) 

Validation 
AUC 
(%) 

Gaussian Naive 
Bayes 

100 71 52 

Linear Discriminate 
Analysis 

77 71 49 

Support Vector 
Classification 

71 71 48 

k-Nearest 
Neighbors 

73 67 54 

Logistic Regression 
with L1 Reg. 

100 63 48 
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Logistic Regression 
with L2 Reg. 

100 63 46 

Logistic Regression 
with ElasticNet  

71 71 45 

Random Forests 98 63 45 

Takata Method 92 69 49 

Takata Gene Set 64 48 52 

Table 1. Training and validation accuracies and AUC of various methods predicting responder vs non-responder using microarray data. The validation accuracies 
are computed from leave-one-out cross-validation. There are 52 samples (15 responders, 37 non-responders). 

 
 

 
Fig 4: A) Figure from [13] showing the distribution of the prediction scores between classes for training samples and test samples. Test 

samples were predicted correct 18/19.  B) The prediction scores of the test samples using the same method applied to my dataset. There is 
effectively no distinction between classes. I subsampled from the majority class (non-responders) so that the predictions would not be biased. 
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Fig 5: A) Neural Network Training (dashed blue) and Test Error (solid green) over 300 epochs on microarray data. B) Same network applied to random data for 

comparison.

 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 16, 2016. ; https://doi.org/10.1101/075705doi: bioRxiv preprint 

https://doi.org/10.1101/075705
http://creativecommons.org/licenses/by-nc/4.0/

