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Abstract 

How the size of organelles in cells is controlled despite a constant turnover of their constituent 

parts is a central problem in cell biology. A general mechanism has been proposed based on the 

idea that an organelle grows by self-assembly of molecular subunits that freely diffuse in the 

cytoplasm. Assembly continues until the available pool of subunits is depleted to the point when 

the stochastic addition and removal of subunits is balanced, leading to a structure of well-defined 

size. Here we focus on length control of multiple filamentous structures in cells, such as actin 

cables and flagella. Using queueing theory and computation we show that the limiting pool 

mechanism leads to three different phases of assembly, starting with a rapid growth phase when 

all filaments quickly accumulate a large number of available subunits. Then, the slower growing 

filamentous structures enter a disassembly phase as they gradually lose all of their subunits to the 

faster growing structures. Finally, when multiple, equivalent fast-growing filaments are present, 

their lengths undergo protracted diffusive dynamics due to the stochastic swapping of subunits 

between them. This eventually leads to a broad, power-law distribution of filament lengths in 

steady state. Our findings demonstrate that the limiting-pool mechanism is incapable of 

controlling lengths of multiple filamentous structures that are assembled from a common pool of 

subunits, and at best, can produce only one filament of a well-defined size. Overall, our 

theoretical results reveal physical limitations of the limiting-pool mechanism of organelle size 

control. 

Significance Statement  

What determines the size of organelles in cells is a classic problem in cell biology. Recent 

experiments on mitotic spindles, and nucleolus have singled out the limiting-pool mechanism of 

size control. As these structures assemble, they deplete a finite pool of subunits present in the 

cell, thereby reducing the rate of subunit addition. Eventually the stochastic addition and removal 

of subunits are balanced and a well-defined size is achieved. We find that, while the limiting-

pool mechanism does control the size of an individual structure, it fails when multiple structures 

are competing for the same pool of subunits. In that case we predict large size fluctuations and 

that the fastest growing structure takes up practically all the subunits from the pool.   
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Introduction 

Cells consist of organelles whose size is often matched to the size of the cell. The scaling of the 

spindle size with the size of the cell in a developing embryo is a classic example (1). How these 

organelles are assembled and maintained to have a specific size is a question that is still not well 

understood. A simple idea that seems to provide the answer in many but certainly not all cases, is 

that the cell maintains a limiting pool of a molecular component that is required for assembling 

the organelle. In such a case, size control is simply achieved by the organelle growing until the 

limiting pool is depleted to the point when the rates of assembly and disassembly are matched. In 

this paper we theoretically investigate the limiting pool mechanism for controlling the length of 

filamentous structures in cells. In particular, we identify its limitations in controlling size when 

two or more structures are assembled from the same building blocks.  

The cell cytoskeleton contains a number of micron-scale filamentous structures which are 

maintained at a constant length suggesting that their form is related to their function. Examples 

include mitotic spindles, flagella, actin patches and actin cables(2–5). Large changes in their size 

often result in significant deviations from their normal physiological functions. For example, In 

yeast cells intracellular transport is disrupted if actin cables overgrow and buckle(5). In fact, 

experiments have shown that when filamentous structures are cut to a smaller size, they often 

grow back to their physiological length suggesting that the length is under tight control(4). 

Most cellular filamentous structures are composed of actin filaments and microtubules, which in 

turn are composed of actin monomers and tubulin dimers, respectively. These subunits undergo 

constant turnover as they are stochastically added and removed from the structure. The key 

question then is how the balance between addition and removal of molecular building blocks is 

achieved so as to generate a structure of a well-defined length. Another related question is how 

different-sized structures, made of the same building blocks can coexist in the same cell. For 

example, actin cables and actin patches in yeast are made up of the same actin monomers, have 

different size, form, and function, yet co-exist in the same cytoplasm and exchange actin 

monomers(6).  

The idea that a limiting pool of diffusible subunits plays a major role in the control of size has 

received considerable attention as it offers a simple mechanism of size regulation. A recent 

review summarized the experimental evidence for this mechanism controlling the size of diverse 
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structures such as centrosomes, flagella, and the nucleus(1). More recently, in vitro studies used 

a microfluidic system to encapsulate cytoplasm from Xenopus egg extracts in small droplets and 

showed that spindle size is proportional to the droplet volume, thus suggesting that the amount of 

cytoplasmic material controlled its size(7). Another recent study showed inverse scaling of the 

size of nucleoli with cell size in a developing C. elegans embryo in which the number of subunits 

in the nucleoplasm was fixed, also consistent with the limiting pool mechanism(8). The idea of a 

limiting-pool is particularly appealing as it offers a simple size-control mechanism without the 

need for any additional molecular mechanism by which cells “measure” individual structure 

sizes and adjust assembly or disassembly rates accordingly. 

The question that we address in this paper is whether the limiting pool mechanism is capable of 

maintaining multiple structures with a well-defined size, when the structures share a common 

molecular component that is limiting. We consider this general question in the context of a 

simple model of filament growth, from which we derive general conclusions about the limiting 

pool mechanism.  

Results 

We consider the limiting-pool mechanism of size control in the context of a simple model where 

filaments grow from a fixed number of nucleating centers within the cell by stochastic addition 

of diffusing monomers. Monomers, whose number in the cell is fixed, also stochastically 

dissociate from the filament. The number of filaments is fixed by the number of nucleating 

centers, which can be a single protein or a protein complex, and which aid in the formation of the 

filament. An example is provided by formins which help assemble filamentous actin structures. 

Formins bind to the barbed end of an actin filament and capture (profilin bound) actin monomers 

from solution, which are then incorporated into the growing filament (see Figure 1A). Note that 

the model we consider is a significant departure from textbook examples of stochastic filament 

growth where every monomer in solution can serve as the site of new filament growth. In our 

case filament growth occurs only from nucleating centers.  

We consider three different scenarios, one when there is a single nucleating center in a cell 

which contains a fixed number of monomers, the case of two identical nucleating centers, and of 

two distinct nucleating centers, which differ in the rates at which they incorporate monomers. An 
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example of inequivalent nucleators is provided by the two different formins Bni1 and Bnr1 in 

budding yeast, which assemble actin filaments at different rates(9). 

A limiting-pool of monomers leads to a single filament of a well-defined length 

First we consider the case of a single nucleating center, where a single filament is assembled by 

the addition and dissociation of monomers. The total number of monomers in the cell,  , is 

fixed, and each monomer can associate to a filament with growth rate   , which is proportional 

to the number of free monomers in the compartment. Hence, for a single filament, its growth rate 

starts off as       
  , but as the filament grows, it decreases to         , where   is the 

length of the filament in units of monomers. Note that the rate constant     is obtained by taking 

the second order rate constant for monomer addition, which has units       , and multiplying it 

by the volume of the cytoplasm within which the free monomers diffuse. The rate of growth is 

thus length dependent, and assuming a constant monomer dissociation rate,   , it leads to a 

peaked distribution of filament lengths (Figure 1B).  

In order to describe the dynamics of an individual filament, we model the growth and decay of 

the filament using the master equation formalism. The key quantity to compute is the probability, 

      , that the filament has a length   (measured here in units of monomers) at time  . The 

master equation describes the evolution of        in time, by taking into account all the possible 

changes of the state (length) of filament that can occur in a small time interval    (Figure 1A). 

The master equation for a single filament is (for    )  

        

  
                                                                      

We compute the steady-state distribution of filament lengths by setting the left-hand side of the 

equation to zero and omit the time variable in      to indicate the steady state nature of the 

distribution. We use detailed balance equations       
               , to obtain      

     
  
       

      
  (SI, section 4), where           

 ) is a dimensionless dissociation constant for 

the chemical reaction of a monomer binding to filament which is obtained by multiplying the 

dissociation constant with the cell volume. For example, for actin cables in yeast cells we 

estimate        and        , using the measured concentration of actin in yeast ( 
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    ) (10), the typical volume of a yeast cell (        (11) and the measured rates of 

association (             ) and dissociation (       ) for binding of actin monomers to actin 

filaments (12) (See SI section 3.5 for the calculations). The mean and standard deviation of the 

distribution are given by      and    , respectively. This distribution is very peaked, and the 

same is true for the distribution of free monomers, which in fact is very close to Poisson (See SI, 

section 3). Interestingly, the typical length of the filament is essentially given by the number of 

available monomers unless     and    are fine-tuned to be close in value (See SI, section 3.1).  

We used stochastic simulations to analyze the time evolution of the length distribution. We start 

with a filament of zero length growing from a single nucleating center and then follow the 

growth trajectory of the length of the filament in time as monomers attach and fall off. After 

some time, we observe the filament reaching a steady state (see Figure 1B inset), when the length 

distribution of the filaments no longer changes with time. The distribution extracted from these 

simulations matches the analytic results. The time scale over which the steady state is reached is 

of order         which can be understood as the time it takes   monomers to be taken up from 

the pool at a rate   
    (see SI, section 2.1 for a more precise calculation). 

Two identical nucleating centers in a limiting pool of monomers produce filaments with large, 

anti-correlated fluctuations in length 

Next we turn to the case of assembly of multiple filamentous structures competing for a 

common, limited pool of monomers. We begin by considering the simplest case of two 

nucleating centers that are growing one filament each (Figure 2A). The results obtained in this 

simple case are also found in the more general many-filament case, which is described in detail 

in the SI. 

In the case of two identical nucleating centers, each of the two filaments adds a monomer to it at 

the same rate    . Therefore the growth rate of filaments starts off as   
  , however as the two 

filaments grow, it decreases to             , where    and    are the lengths of the two 

filaments in units of monomers. The rate of dissociation (  ) of monomers is identical for both 

filaments. 
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Since there are now two filaments in the cell, we characterize the state of the system with a joint 

probability distribution          ), which satisfies the master equation 

            

  
                                                              

                                                                

At steady state,                   and the joint probability distribution takes on the product 

form                
  

        

          
, which is a result from queueing theory(13) (see SI, section 4). 

Here         
  is once again the dimensionless dissociation constant.  The distribution of 

lengths for a single filament, i.e.,        and       , can be obtained from the joint distribution 

by summing over all possible lengths of the other filament (   and   , respectively); we perform 

these calculations explicitly in sections 4.1 and 4.3 of the SI. 

An approximate formula for the distribution of lengths for a single filament in steady state can be 

derived from a simple argument, which also sheds light on the physics of the problem. In steady 

state the average number of free monomers left in solution is   , and the distribution of free 

monomers is very close to Poisson with standard deviation    , implying that it is very 

narrowly concentrated around its mean   . (The Poisson approximation to the free monomer 

pool was previously derived (14) by assuming that the probability of a filament having zero 

length is zero; we rigorously justify this approximation in SI, section 4.1)  Hence, the total 

number of assembled monomers is to an excellent approximation a constant     . Therefore, 

by symmetry, every possible configuration of filament lengths that satisfies            is 

equally likely. The number of such confgurations is        and therefore 

       
 

    
        

i.e., it is uniform on the interval         . This approximation is very accurate except in a 

very narrow interval of lengths of order     when    is close to     , where it decays rapidly 

to zero. This effect is due to the Gaussian fluctuations of the free monomer pool around its mean. 

This simple argument can be further extended to an arbitrary number of filaments and is 

validated by our exact calculations (see SI, sections 1.1 and 4.1).  
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We also used stochastic simulations to investigate individual growth trajectories for the two 

filaments and compared the results to our analytical steady-state distributions        and        

(Figure 2B). Once again, we follow the stochastic trajectory in time of the length of each 

individual filament. Initially, both filaments grow in unison (subject to small fluctuations) until 

their combined length reaches the steady state total length     . After this rapid growth period 

the individual trajectories of the filaments diverge, as one grows the other shrinks (Figure 2B 

inset). These anti-correlated fluctuations in length persist indefinitely and eventually become of 

order     . At the same time the length distributions for each filament,        and       , 

settle into their steady state values, Equation 3.  

These dynamics are illustrated in  Figure 3A, where we  plot           obtained from stochastic 

simulations. At first the mean filament length increases until the free monomer pool (or 

equivalently the total filament length) reaches its steady state (black curves). The time scale for 

this is of order       
  
    same as in the case of a single filament.  After that, we observe the 

widening of the distribution at constant mean (blue curve) which eventually becomes uniform 

(red curve) at the longest times, of order       (SI, section 2.3). Thus, we reach the somewhat 

surprising conclusion that the limiting-pool mechanism does not control length in the case of two 

structures competing for the same monomers. In fact, this remains true when more than two 

identical structures are present, as explained in the Discussion section. 

Once the total length of the two filaments has reached a steady state, any monomer that come off 

one filament is rapidly taken up by the other filament. This is a consequence of the fact that in 

steady state the total number of monomers in the two filaments is narrowly distributed around its 

mean value. We therefore expect individual filament lengths to exhibit diffusive dynamics. We 

demonstrate this explicitly in the inset to Figure 3B where the variance,   , of the length 

distribution of an individual filament is seen to increase linearly with time until it eventually 

saturates. Given the diffusional law        the initial slope of the    curve in Figure 3B gives 

the diffusion constant  . The diffusion constant can be computed by taking into account that 

when the total length reaches steady state monomers exchange between the two filaments with a 

rate set by   . A detailed analysis of all possible exchange processes while accounting for their 

probabilities leads to the exact result        (see SI, section 2.3),  which we also checked 

with stochastic simulations.  
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Two inequivalent filaments assembling in a limiting pool of monomers results in only one 

filament having a well-defined length 

Next, we consider the case of two nucleating centers with different elongation rates for filaments 

in a common pool of monomers (see Figure 4A). As in the example of two different formins in 

yeast, monomers are stochastically added to the two filaments at different rates:       and      . 

These rates start as        and        but as the two filaments grow they decrease to         

         and                    respectively, where    and    are the individual lengths of 

the two filaments in units of monomers. The rate of dissociation,   , of monomers is assumed 

identical for both filaments. 

As before, the joint probability distribution          ) satisfies a master equation, but now with 

different assembly rates for the two filaments, namely 

            

  
      

                              
                         

                                

      
               

                                            

The steady state joint distribution of filament lengths is again given by a product form, from 

which the distribution of lengths of each individual filament can be computed. The exact 

calculation is in the SI and here we provide a simple intuitive argument.  

For concreteness, let us assume that the growth rate of first filament is larger than the second, 

i.e.,             (or equivalently,    
    

 , using    
         for the dimensionless 

dissociation constants). Then over a long period of time, a larger number of monomers will join 

the first, fast assembling filament. Since the detachments rates are the same, the first filament 

will accumulate most of the monomers. Hence,        , implying that average rate of 

monomers leaving the first filament is               . Next, by equating this rate to the 

rate at which monomers attach to the first filament, i.e.,        average number of free 

monomers), we find that the average number of free monomers is    
, and, as in the case of 

equivalent filaments, we expect the steady-state distribution of the number of free monomers to 

be Poisson. From this result, we can derive the distribution of lengths for the second, slower 
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growing filament from the detailed balance equations         
               , which leads 

to the conclusion that the lengths for the second  filament are distributed geometrically, i.e., 

         
   

   

  
   

   

 
 

. Then the first filament is virtually unaffected by the presence of the 

second and the distribution of its lengths is peaked, as in the case of a single filament. The 

approximate average length of the first and the second filament are given by      
 

   

       

 

and 
   

       

, respectively (see SI, sections 1.2 and 4.2). 

Once again, in order to develop intuition about the assembly dynamics we used stochastic 

simulations to follow the growth of the two filaments from the two nucleating centers each 

starting from zero length (Figure 4B, inset). Just like in the case of equal nucleating centers, we 

observe that there is an initial, fast growth scale which occurs over a time of the order 

 
 

  
      

   
 .  After the growth phase, we observe that filament with a higher growth rate grows 

to a steady state characterized by a large length, whereas the other filament shrinks to zero. 

When the two elongation rates are close in magnitude then we see for a while anti-correlated 

fluctuations of lengths similar to what we observed in the case of identical nucleating centers. 

These fluctuations happen over a time scale 
 

     
 
   

   
     

, i.e., over a time that is of order  , 

and eventually subside as the systems settles into a steady state with practically all monomers 

taken up by the faster growing filament. This is illustrated in the plots of length distributions for 

the two filaments, where for the fast-assembling filament we observe a distribution sharply 

peaked around the mean while the slower assembling filament is characterized by a geometric 

distribution of filament lengths peaked at zero; see Figure 4B. We find wider distributions when 

the elongation rates are numerically close to each other, which results from the increased 

fluctuations of the filament lengths. Comparison of the analytical solution of Equation 4 for 

       and        (see SI, section 1.2 and 3.2) to the simulation data serves as a stringent test of 

the simulation procedure (Figure 4B). 

To summarize, when considering two nucleating centers with different rates of filament 

assembly, the one with the higher rate wins and produces a filament of well-defined length, 

while the other filament does not stably form.  
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Discussion 

The limiting pool mechanism of size control has been implicated in assembly of a number of 

different cellular structures in different cell types (1). In order to understand the quantitative 

features of this general size-control mechanism we considered a simple model of stochastic 

growth of filamentous structures from a limiting pool of diffusing monomers, where the number 

of filaments is determined by the number of nucleating centers at which they assemble. While we 

found that the limiting-pool mechanism is able to precisely control the length of a single 

filament, it is unable to control individual filament lengths when two filaments are assembled 

from the same monomer pool.  

Namely, when the two nucleating centers produce identical filaments, we found that the total 

length of the two generated filaments reaches a well-defined value in steady state, however their 

individual lengths are characterized by large fluctuations, which are only limited by the total 

number of monomers. In the presence of two non-identical nucleating centers which assemble 

filaments with different growth rates, the one with the higher growth rate “wins”, i.e., it takes up 

most of the available monomers.  

 

Assembly of many filaments 

Thus far we have only considered two filamentous structures competing for the same pool of 

monomers. In cells though it is common to observe multiple structures made from the same pool 

of monomers. For example, the number of actin cables in budding yeast is about ten or so, while 

the number of actin patches is of order ten to a hundred.  

The key results described above for two filamentous structures readily carry over to the case of 

multiple filaments. More specifically, for any finite number of filaments starting at zero length, 

growth of all filaments is strongly favored in the initial phase of assembly, and all the filaments 

quickly reach lengths of order   (the total number of monomers) over a time scale which is 

independent of  . Then, in case of inequivalent elongation rates, the slower growing filaments 

gradually lose monomers and diminish in length to a small, geometrically distributed length. The 

duration of this phase is of order  . Furthermore, at the end of this phase practically all the 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 16, 2016. ; https://doi.org/10.1101/075655doi: bioRxiv preprint 

https://doi.org/10.1101/075655
http://creativecommons.org/licenses/by-nd/4.0/


12 
 

monomers are taken up by the fast growing filaments, and the number of free monomers 

approaches a Poisson distribution with a mean equal to the smallest (dimensionless) dissociation 

constant among all the filaments. This then implies that the total number of monomers assembled 

into the fast growing filaments will have a well-defined size characterized by a peaked 

distribution. The lengths of individual fast-growing filaments then undergo a protracted diffusive 

dynamics on time scales of the order   . These dynamics are generated by the stochastic 

swapping of monomers between individual filaments, and eventually lead to a broad, power-law 

distribution of filament lengths in steady state. Interestingly, we find that if the number of fast 

growing filaments is of the order of  , then in the limit of large   the resulting length 

distribution is geometric. This theoretical result might provide a link between two recent 

experiments on mitotic spindles, one which showed that the spindle size is controlled by a 

limiting pool mechanism (7) and the other that found that individual microtubule lengths within 

the spindle are geometrically distributed (15).  

To illustrate our general results regarding assembly of many filaments from a common pool of 

monomers we show in Figure 5 the different phases of assembly using an example of six 

filaments with three growing at the same, fast rate and three taking up monomers more slowly. 

(See SI for detailed calculations pertaining to the multi-filament case.) 

Assembly of higher dimensional structures 

From the preceding analysis we see that assembling multiple filamentous structures from a finite 

and limiting pool of monomers does not lead to precise size control of individual structures 

without additional control mechanisms. This stems from the inherent reversibility of the 

assembly process, which allows the monomers to exchange between the different structures, 

resulting in either very small sizes, or high variability described by a power-law distribution of 

sizes for individual structures. Since the key ingredient, namely the reversibility of stochastic 

assembly, is not limited to linear structures, similar phenomena are likely to occur in two or 

three-dimensional structures assembled from a common and limiting pool of subunits.  

Experimental tests of the limiting-pool mechanism 

Our study makes a number of predictions that can be used to test the limiting-pool mechanism. 

In case of a single filamentous structure assembled from a pool of monomers, the steady state 
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distribution of filament length (SI, Section 3) can be tested in experiments in which the total 

number of monomers is tuned. This can be achieved, for example, by using the microfluidic 

approach described in (7). Interestingly, we observe that the mean length        of the 

filament depends on the total number of monomers whereas the variance (  ) does not. This 

result can be used as a stringent test of the limiting-pool mechanism of size control. 

Secondly, if there are multiple identical structures being made from a common pool of 

monomers, we predict the existence of anti-correlated fluctuations of individual filament sizes 

over time. For the two filament case, we predicted that these fluctuations will be observed at time 

scales of order       , which can also be tuned by controlling the total number of monomers. 

An experiment with two inequivalent filaments assembling from a common monomer pool 

should also reveal the time scale of order N, during which the slower assembling filament lose 

the monomers they quickly accumulated in the initial growth phase.   

For example, in C. elegans cells, two nucleoli are assembled from the same pool of nucleoli 

particles and they grow equally in size up until cell division, which happens after about 20 

minutes (8). However, if we were to engineer cells with longer cell cycles it might be possible to 

see the predicted anti-correlated fluctuations in individual nucleoli sizes, assuming the size of 

these structures is controlled by a limiting pool mechanism alone. 

Another example where in vivo experiments can be used to test our predictions is provided by 

fission yeast cells. These cells have two different types of actin structures, namely cables and 

patches which are assembled by different nucleating factors (formins and the Arp2/3 complex, 

respectively) (16, 17). Recently it was shown that it is possible reduce the number of patches in 

yeast cells by over-expressing profilin, which is an actin-binding protein having two specific 

effects: it significantly favors the formation of cables by increasing the elongation rates of 

formin-nucleated filaments and it inhibits Arp 2/3 mediated branching and hence represses the 

formation of patches(16, 17). Thus by regulating the level of profilin either formin or Arp 2/3 

generated structures will take up most of the available pool of actin monomers. This observation 

is consistent with our calculations since we find that when two structures are competing for the 

same subunit pool the one that assembles faster takes up practically all subunits. Still, further 

experiments need to be performed in which size distributions of different structures are measured 

to quantitatively test predictions of the limiting monomer pool model. 
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Finally, the limiting pool mechanism has also been invoked to explain size regulation of flagella 

in Chlamydomonas, which are microtubule filaments composed of tubulin dimers. When one of 

the two flagella is sheared off at its base, the severed flagellum does not simply regrow to match 

the remaining one. Rather, as the severed flagellum begins to regrow, the longer flagellum 

shrinks until the two flagella are equal in size, after which both grow out in unison (1). If, as 

hypothesized, the limiting-pool mechanism is indeed the mechanism by which the flagellum 

lengths are made equal, then our results predict the existence of anti-correlated fluctuations in the 

lengths of the flagella as they swap tubulin dimers. Observations of these fluctuations would 

serve as a quantitative test of the limiting pool mechanism. 

Time scales of assembly 

Earlier in this section, we discussed different time scales associated with growth of filaments 

from identical nucleating centers, i.e. growth and diffusion timescales and their dependence on 

the number of monomers in the pool. One can use those calculations to estimate timescales in the 

case where multiple actin cables are made in the same pool of actin monomers in the mother 

compartment of a budding yeast. Using previously published numbers for cell volume (11) and 

rates of association and dissociation of monomers to actin filaments (12), we estimate   
     

        , and number of actin cables (about ten)  we predict that the growth phase lasts for less 

than a minute, assuming that there are no additional length control mechanisms. (See SI, section 

2.1 and 3.5 for details).  

In contrast, we estimate the diffusion time scale to span several days (SI, Section 2.3). In other 

words, we should never observe order-   fluctuations in cable lengths on the time scale of live-

cell experiments, given a division time of about 1.5 hours. Note that for this estimate, we assume 

that all the actin in the mother compartment of the budding yeast cells are used to make cables; a 

reasonable assumption as these cells have very few or no patches in their mother compartment. A 

substantially smaller number of actin monomers in cables could bring down the estimate of the 

diffusion time scale considerably due to the    dependence of this time scale. The fact that large 

fluctuations in cable length are not observed could also be due the presence of additional length 

control mechanisms. In fact, several actin and formin binding proteins have been shown to play 

an important role in controlling cable length (5, 18, 19). 
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Additional size-control mechanisms 

In cells, multiple size-control mechanisms can work in unison to control the size of a single 

structure (3, 5, 4, 18, 19). The limiting-pool mechanism is very likely one of the mechanisms at 

play as cells usually contain a limited number of building blocks which are used to make internal 

structures. Since our results provide quantitative predictions regarding the sizes of structures 

assuming that the limiting pool mechanism is the only one at play, they can potentially be used to 

identify the existence of additional size-control mechanisms. For example, actin cables in 

budding yeast are estimated to be almost three times as long as those seen in experiments if the 

finite number of actin monomers were the only size controlling factor. And in fact a mechanism 

that utilizes directed transport of an assembly-attenuating factor by a myosin motor along the 

cable was shown to lead to a length dependent assembly rate, thereby limiting the size of these 

structures (5, 18).  

In summary, the limiting-pool mechanism of size control can produce a single structure of a 

well-defined size. On the other hand, this mechanism is unable to maintain multiple structures 

that have a well-defined size, which assembly from a common pool of molecular components.  

Cells seem to get around this problem by using additional regulatory mechanisms, all of which 

seem to produce a length dependent assembly or disassembly rate. Quantitative experiments that 

measure the size of an intracellular structure and how they vary with changing amounts of 

diffusing components are needed to quantitatively define the role of the limiting-pool mechanism 

in regulating size. 

Material and methods 

Simulation protocol  

We used stochastic simulations to solve the master equations in Equations 1, 2 and 4. We start 

with a filament of zero length and then follow the stochastic trajectory of the filament. In the 

simulation, the state of the system is characterized by the filament length. In one step of the 

simulation we choose one of the set of all possible transitions from the current state of the system 

to the next. The transitions are chosen at random according to their relative weight, which is 

proportional to the rate of the transition. Once a particular transition is chosen the system is 

updated to a new state, which becomes the new current state. The time elapsed between two 

consecutive transitions is drawn from an exponential distribution, the rate parameter of which 
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equals the sum of all the rates of allowed transitions. This process is repeated for a long enough 

time such that the length of the cable reaches steady state. We obtain many such trajectories of a 

single filament and then compute the steady state distributions of filament lengths.  
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Figure and captions 

 

Figure 1: Growth of a filament from a single nucleating center in a limiting pool of 

monomers (A) Schematic showing the growth of a single filament (pink) from a single 

nucleating center (green) in a pool of monomers (in red). (B) (Inset) Numerical simulation of the 

growth trajectory of a single filament from the nucleating center (gray). After a fast growth 

phase, the size attains a steady state. By considering several such trajectories, we compute the 

probability distribution of filament lengths numerically, and a peaked distribution of size is 

obtained (in red). The parameters used for simulations are   
            

                    

and       , where        is the number of free monomers in solution.  The simulation results 

are compared with the analytical results (blue ) obtained in SI, section 4.  

 

Figure 2: Growth of filaments from two identical nucleating centers in a limiting pool of 

monomers (A) Schematic showing the growth of filaments (pink) from two nucleating centers 
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(green) in a pool of monomers (in red).  (B) (Inset) Numerical simulation of the growth 

trajectory of the two individual filaments (red and black) and the sum of their lengths (gray). 

After an initial growth phase where the two filaments grow roughly in unison and the total length 

of the two filaments reaches steady state, we observe anti-correlated fluctuations in the 

individual lengths. These fluctuations lead to individual filaments having a uniform distribution 

of lengths (red and black) in simulations; we compare these to results obtained analytically (blue) 

in SI, section 4.3. The parameters used for simulations are 

    
      

    
            

                   and       , where        is the number of 

free monomers.   

 

Figure 3: Evolution of probability for individual filament lengths in the case of identical 

nucleating centers. In the initial growth phase (black), the distribution of individual filament 

lengths starts off as a peaked distribution whose mean increases, until the total length reaches a 

steady state. The growth phase is followed by the slow phase of monomers swapping which 

leads to anti-correlated fluctuations are seen in the individual trajectories, which is translated into 

the increase in the width of the filament length distributions while the mean stays unchanged 

(blue). The final, steady state distribution (red) is flat. (Inset) Plot of variance of the distribution 

(  ) vs. time of simulation. The variance initially increases linearly with time, but later saturates. 

Time was varied from           in steps of      . From the slope of the linear part plot of, 

we find a diffusion constant                  using the relation       . The parameters 

used for simulations were   
            

      ,           ,        where        is the 

number of free monomers. 
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Figure 4: Growth of filaments from two inequivalent nucleating centers in a limiting pool 

of monomers (A) Schematic showing the growth of filaments (pink) from two distinct 

nucleating centers (green) in a pool of monomers (in red). (B) (Inset) Numerical simulation of 

the growth trajectory of the filaments from the nucleating centers.  Shown are trajectories for 

10% difference in elongation rate (dark) and 1% difference (light). After a growth phase, where 

both filaments accrue monomers, the faster growing filaments attains a steady state by taking up 

most of the free monomers, while the slower filament shrinks. The faster growing filament 

attains a peaked distribution of size (black) and the slower one attains a geometric distribution 

(red). The parameters used are     
    

=            
        ,     

   
             

      ,     
  

          
      ,            and       . The simulations are overlaid on the results 

obtained analytically (blue and green) in SI, section 4.3. 
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Figure 5: Growth dynamics of six filaments from two types of inequivalent nucleating 

centers. (A) Schematic showing six nucleating centers in a pool of monomers where the first 

three nucleate filaments that grow at a high association rate   
   , and the remaining three at a 

slower rate   
    (  

      
   ); all filaments disassemble with the same rate   . (B) After a 

rapid assembly phase lasting approximately                   , the fast and slow growing 

filaments reach the average length of                         and                        , 

respectively. (C) After this rapid assembly phase, the slower growing filaments slowly decrease 

to nearly zero length over a period of time of order        
           

   , where    
 

       
  is the (dimensionless) dissociation constant for the slow growing filaments. At the end 
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of this phase, the three slow growing filaments are geometrically distributed with parameter 

   
    

, the free monomer pool approaches a Poisson distribution with mean    
, and nearly all 

the monomers,      
     

     
    

 , are taken by the fast growing filaments, and are 

equally distributed among them. (D) Finally, the sizes of the three largest filaments decorrelate 

on a slow, diffusion time scale which is of order   , during which the monomers randomly 

exchange between these large filaments. 
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