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The dispensability of individual genes for viability has interested generations of 
geneticists. For some genes it is essential to maintain two functional chromosomal 
copies, while other genes may tolerate the loss of one or both copies. Exome sequence 
data from 60,706 individuals provide sufficient observations of rare protein truncating 
variants (PTVs) to make genome-wide estimates of selection against heterozygous loss 
of gene function. The cumulative frequency of rare deleterious PTVs is primarily 
determined by the balance between incoming mutations and purifying selection rather 
than genetic drift. This enables the estimation of the genome-wide distribution of 
selection coefficients for heterozygous PTVs and corresponding Bayesian estimates for 
individual genes. The strength of selection can help discriminate the severity, age of 
onset, and mode of inheritance in Mendelian exome sequencing cases. We find that 
genes under the strongest selection are enriched in embryonic lethal mouse knockouts, 
putatively cell-essential genes inferred from human tumor cells, Mendelian disease 
genes, and regulators of transcription. Using an essentiality screen, we find a large set of 
genes under strong selection that are likely to have critical function but that have not yet 
been studied extensively.  
 

The evolutionary cost of gene loss is a central question in genetics and has been investigated in 
model organisms and human cell lines1–3. In humans, the question of dispensability and 
haploinsufficiency of individual genes is intimately related to their causal role in genetic disease. 
However, estimates of the selection and dominance coefficients in humans have proved elusive 
as inference techniques used in other sexual organisms generally require cross-breeding over 
several generations.  
 
The analysis of patterns of natural genetic variation in humans provides an alternative approach 
to estimating selection intensity and dispensability of individual genes. Despite substantial 
methodological progress in the ascertainment and analysis of population sequence data4–8, 
estimation of parameters of natural selection in humans has been complicated by genetic drift, 
complexities of human demographic history4,7,9–13 and the role of non-additive genetic 
variation14–16. Additionally, naturally occurring PTVs are infrequent in the population and as a 
result, datasets of even thousands of individuals are underpowered for the estimation of gene 
dispensability in humans.  
 
The Exome Aggregation Consortium (ExAC) dataset now provides a sufficiently powered 
sample to assess the selection that constrains the number of gene-specific PTVs in the general 
population17. We restrict our analysis to PTVs predicted to be consequential18, which allows us 
to assume that all PTVs within a gene likely incur the same selective disadvantage. We can 
then treat each gene as a bi-allelic locus with a functional state and a loss-of-function state. In 
each gene, the cumulative frequency of rare deleterious PTVs (the sum of PTV allele 
frequencies throughout the gene) is then primarily determined by the balance between incoming 
mutations and selection rather than through reassortment of alleles by stochastic drift. This 
makes our estimates robust to drift, population structure and historical changes in population 
size, which we evaluate analytically and with simulations (Methods and Supplementary 
Figure 1). 
 
Using population frequency data from 60,706 jointly-called exomes from individuals without 
severe Mendelian disorders, we estimate both the overall distribution of gene-based fitness 
effects and individual gene fitness cost in heterozygotes. Given gene-specific estimates of the 
de novo mutation rate19,20, the observed number of PTV alleles throughout each gene, and the 
number of chromosomes sampled, we estimate the distribution of the genome-wide selective 
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effect of PTVs on heterozygote carriers, 𝑠"#$. We parameterize the distribution of selective 
effects using an inverse Gaussian, which is fit using maximum likelihood (Figure 1). We then 
estimate the selection coefficient for each gene using the posterior probability for 𝑠"#$ given 
gene-specific values of the observed number of PTVs, the number of chromosomes sampled 
and the estimated mutation rate (Supplementary Table 1). 
 
 

   
         
Figure 1: Inferred distribution of fitness effects for heterozygous loss of gene function. Estimates of parameters 𝛼, 𝛽  
from maximum likelihood fit to the observed distribution of PTV counts across 15,998 genes in terciles of mutation 
rate, assuming 𝑠het~IG 𝛼, 𝛽 . Shaded areas show 95% CI obtained from 100 bootstrapping replicates, intended to 
quantify the influence of sampling noise in the data set on parameter inference, with fixed estimates of local mutation 
rate. 
 
Although the distribution is broad, suggesting that the effect of losing one copy of a gene is 
variable, the mode of the distribution corresponds to a fitness loss of about 0.5% (𝑠"#$ = 0.005). 
Despite the large sample size, resolution to distinguish between very high selective effects is 
still limited. There are 2,984 genes with 𝑠"#$ > 0.1, a result concordant with previous estimates 
of loss of function intolerance derived from population data17. Even though some genes are 
heavily depleted of PTVs in ExAC as compared with mutational expectation, these values 
suggest that heterozygote PTVs in many genes are not necessarily responsible for observable, 
severe clinical consequences.  
 
Unsurprisingly however, genes known to be involved in rare Mendelian diseases have higher 
𝑠"#$	values. Among them, genes annotated exclusively as autosomal dominant (AD, N=867) 
have significantly higher 𝑠"#$ values than those annotated as autosomal recessive (AR, 
N=1,482)21 [Mann-Whitney p-value 3.14x10-64] (Figure 2[a,b]). This suggests that it may be 
possible to prioritize candidate disease genes identified in clinical exome sequencing analysis 
using the observed mode of inheritance and 𝑠"#$ value.  
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Figure 2: Separation of disease genes and clinical cases by mode of inheritance. [a] The distribution of genes 
associated with exclusively autosomal dominant (AD, N=867) disorders versus autosomal recessive (AR, N=1,482) 
disorders as annotated by the Clinical Genomics Database (CGD). Logarithmic bins are ordered from greatest to 
smallest 𝑠"#$ values. [b] Overall, AD genes have significantly higher 𝑠"#$ values than AR genes [Mann-Whitney p-
value 3.14x10-64]. [c] Similarly, in solved Mendelian clinical exome sequencing cases (Baylor)22, 𝑠"#$ values can help 
discriminate between AR and AD disease genes, as annotated by clinical geneticists. [d] A 𝑠"#$ value of 0.04 can be 
used as a simple classification threshold for AD genes with a PPV of 96%. [e] This finding is replicated in a separately 
ascertained sample from UCLA. Box plots range from 25th-75th percentile values and whiskers include 1.5 times the 
interquartile range. 
 
In a set of 504 clinical exome cases that resulted in a Mendelian diagnosis22, we find a similar 
enrichment of cases by MOI and selection value (Figure 2[c]). We find that 90.4% of novel, 
dominant variants are associated with heterozygous fitness loss greater than 0.04 (Figure 2[d]). 
Among disease variants, a cutoff of 𝑠"#$ > 0.04 provides a 96% positive predictive value for 
discriminating between AD and AR modes of inheritance.  
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To test the generalizable utility of 𝑠"#$ values in prioritizing candidate genes in Mendelian 
sequencing studies, we compared the overall prevalence of genes with 𝑠"#$ > 0.04 to the 
corresponding fraction in an independently ascertained dataset of new dominant Mendelian 
diagnoses (Figure 2[e])23. This analysis suggests that restricting to genes with 𝑠"#$ > 0.04 would 
provide a three-fold reduction of candidate variants, given the overall distribution of 𝑠"#$ values. 
Thus, initial effort in clinical cases can be focused on just a few genes for functional validation, 
familial segregation studies, and patient matching. We summarize the classification accuracy for 
all possible thresholds (AUC 0.9312) and probabilities for the mode of inheritance in each gene, 
generated using the full set of clinical sequencing cases (Supplementary Figure 2 and 
Supplementary Table 2). 
 
Beyond mode of inheritance, we find that 𝑠"#$ can help predict phenotypic severity, age of onset, 
penetrance, and the fraction of de novo variants in a set of high-confidence haploinsufficient 
disease genes (Figure 3). In broader sets of known disease genes, 𝑠"#$ estimates significantly 
correlate with the number of references in OMIM MorbidMap and the number of HGMD disease 
“DM” variants (Supplementary Figure 3).  

Figure 3: Enrichments of 𝑠"#$ in known haploinsufficient disease genes of high confidence (ClinGen Project). In 
(N=127) autosomal genes, we annotate the 𝑠"#$ scores of genes associated with each disease category and 
classification. Higher 𝑠"#$ values are associated with increased phenotypic severity (Mann-Whitney p-value 4.87x10-

3), earlier age of onset (p=1.46 x10-2), high or unspecified penetrance (p=1.79 x10-2), and a larger fraction of de novo 
variants (p=8x10-5). Box plots range from 25th-75th percentile values and whiskers include 1.5 times the interquartile 
range. 
 
Gene-specific fitness loss values allow us to plot the distribution of selective effects for different 
disorders. This provides information about the breadth and severity of selection associated with 
various disorder groups using both well-established genes (Figure 4[a]) and new findings from 
Mendelian exome cases (Figure 4[b]). Overall, genes involved in neurologic phenotypes and 
congenital heart disease appear to be under more intense selection when compared with other 
disorder groups, tolerated knockouts in a consanguineous cohort, or in all genes (Figure 
4[c,d])24. Interestingly, genes recessive for these disorders appear to have only partially 
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recessive effects on fitness, so selection on heterozygotes is not negligible in these genes 
(Figure 4).  

 
Figure 4: Distribution of 𝑠"#$ values for phenotypes in known disease genes and clinical cases. We plot the 
distribution of selective effects for different disorder groups, providing information about the breadth and severity of 
selection associated with each group. [a] We include known Mendelian disease genes (Clinical Genomic Database) 
annotated as either Autosomal Recessive or Autosomal Dominant and [b] clinical exome sequencing cases22. We 
contrast these with [c] all tolerated knockouts in a consanguineous cohort (PROMIS)24 and [d] the distribution of 
selective effects in all scored genes. Logarithmic bins are ordered from greatest to smallest s"#$ values. 

 
In germline cancer predisposition, genes with higher selection values are enriched in individuals 
with cancer over those in ExAC (Supplementary Figure 4). This suggests that genes with low 
𝑠"#$ values should not be prioritized in the prospective genetic screening for cancer 
predisposition. Consistent with previous studies19, we find that de novo mutations in patients 
with autism spectrum disorder are significantly enriched in genes with higher selective effects 
than those identified in controls (Supplementary Figure 5 and Supplementary Table 3).  
 
Next, we analyze 𝑠"#$ in the context of developmental and functional assays. In a large set of 
neutrally-ascertained mouse knockouts (N=2,179 genes)25, mice that are null mutant for 
orthologous genes with higher 𝑠"#$ estimates are enriched for embryonic lethality or sub-
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viability, while those with the lowest 𝑠"#$ estimates are depleted for embryonic lethality [Mann-
Whitney p=2.95x10-28] (Figure 5[a,b]).  
 

  
Figure 5: High-throughput screens of gene essentiality in mice and cell assays. [a] Proportion of orthologous mouse 
knockout genes by phenotype, from a neutrally-ascertained set of genes generated by the International Mouse 
Phenotyping Consortium (IMCP). Logarithmic bins are ordered from greatest to smallest 𝑠"#$ values. [b] ICMP mice 
are separated into viable (N=1,057), sub-viable (N=211) and lethal knockouts (N=477), and lethal knockouts have 
significantly higher 𝑠"#$ values than viable [Mann-Whitney p-value 2.95x10-28]. [c] Cell-essential genes as reported by 
Wang et al. from genome-wide KBM-7 tumor cell CRISPR assay (N=1,740) have significantly higher 𝑠"#$ values [p-
value 5.13x10-16] and [d] as do genes that were characterized as essential in a gene trap assay (N= 1,081) [p-value = 
4.90x10-18]. In the CRISPR assay, all genes with adjusted p-values < 0.05 and negative assay scores are included, 
and genes with gene trap scores < 0.4 or lower are included. Box plots range from 25th-75th percentile values and 
whiskers include 1.5 times the interquartile range. 
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It is well known that mutations that are haploinsufficient in humans can often be well-tolerated 
when heterozygous in mice26. A classic example is SHH; heterozygous null mutations in this 
important developmental signaling gene result in holoprosencephaly27. Haploinsufficiency for 
other genes in this signaling pathway also results in developmental defects; e.g. GLI3 (Pallister-
Hall syndrome and Greig cephalopolysyndactyly syndrome)28–30 and GLI2 (Holoprosencephaly 
9)31. Interestingly, haploinsufficiency for these genes is tolerated in mouse models; mice 
heterozygous for null variation in the SHH signaling pathway are phenotypically normal, while 
homozygous mutant mice have defects that recapitulate features of the human syndrome32–34. 
This extends to many other human developmental disorders, enabling the experimental 
characterization of the molecular consequences of these mutations. Thus, it is notable that mice 
that are homozygous for null mutations in orthologous genes with higher 𝑠"#$ values are 
enriched for lethality.  
 
High-throughput genetic analysis of cell-essentiality provides an orthogonal dataset for 
comparison with our estimates of 𝑠"#$. In genes that are predicted to be essential for human cell 
proliferation using CRISPR-based inactivation (Figure 5[c]) and gene trap inactivation assays3 
(Figure 5[d]), we find that putatively essential genes are heavily enriched in genes with high 
𝑠"#$ values [p-values 5.13x10-16, 4.90x10-18, respectively].  
 
Key developmental pathways are dramatically enriched in genes with high 𝑠"#$ values (Figure 
6[a]). We also find a significant positive correlation between the number of protein-protein 
interactions for each gene and its 𝑠"#$ value (Figure 6[b,c]), identified from high-throughput 
mass spectroscopy data. In the context of molecular and cellular function, a set of genes with 
very high estimated selective effects (𝑠"#$ > 0.15, 2,072 genes) is statistically enriched in 
biological process categories “transcription regulation” (Bonferroni corrected p=1.8x10-39), 
“transcription” (7.5x10-36), and “negative regulators of biosynthetic processes” (see 
Supplementary Material)35. Consistent with this finding, nucleus was the most enriched cellular 
compartment for products of these genes (4.8x10-76). The enrichment of this set of high-𝑠het 
genes for transcription factors is consistent with literature that describes dosage dependence for 
enzymatic proteins and haploinsufficiency for transcriptional regulators36. 
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Figure 6: Protein pathways and protein-protein interactions. [a] In key developmental pathways in KEGG, we find 
that genes with higher 𝑠"#$ values are enriched in genes important to development. [b] We plot the distribution of the 
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number of protein-protein interactions for each gene, as determined by a genome-wide Mass Spectrometry assay37 
versus 𝑠"#$ value. [c] We find that 𝑠"#$ values are positively correlated with the number of observed interactors for 
each gene. Box plots range from 25th-75th percentile values and whiskers include 1.5 times the interquartile range. 
 
Estimation of the strength of purifying selection on PTVs provides a measure of gene 
dispensability unbiased with respect to existing knowledge. Thus, it has the potential to highlight 
genes that play a key role in development or in maintaining core functions in human cells. There 
are many genes with high estimated fitness costs that have not been previously described in 
human genetics studies. Given the marked enrichment of genes with high 𝑠"#$ values 
associated with Mendelian disorders, cell essentiality, embryonic lethality and development, it is 
plausible that many genes with high 𝑠"#$ values that have not been previously associated with 
human disease may be so detrimental that they are required for embryonic development.  
 
We inspect the set of genes that lack disease annotations and publications but that have high 
𝑠"#$ values to determine whether they share functional and genetic features reminiscent of 
known genes with central roles in cell housekeeping and developmental biology. We measure 
the relative knowledge about each gene in the primary literature from Entrez and PubMed38 
using the number of gene reports connected with each manuscript, and sum the weighted 
contributions across all available manuscripts39 (PubMed score, Methods). While the PubMed 
score is positively correlated with 𝑠"#$ values, a substantial number of understudied genes fall in 
the highest 𝑠"#$ decile (Supplementary Figure 6).  
 
We selected the 250 most cited and least cited genes within the top 𝑠"#$ decile, and compared 
their frequency of protein-protein interactions, viability of orthologous mouse knockouts and cell 
essentiality assays. Genes with the fewest publications have nearly the same number of 
embryonic lethal mouse knockouts as genes with the most publications. Other assays are only 
slightly depleted in the set of genes with the fewest publications (Supplementary Figure 7). 
These findings suggest that there may be additional essential developmental pathways yet to be 
uncovered in the set of genes under strong selection that lack functional or disease annotations, 
and provides a very promising gene set for further exploration. We have created a prioritized list 
of genes using a heuristic score developed from functional evidence to indicate the most 
promising candidates for future functional screening (Supplementary Table 4). 
 
To place our inferences in the broader evolutionary context, we use comparable estimates from 
model organisms including flies and yeast, based on knockout competition with wild type or 
explicit crosses. In yeast, the analysis of a library of PTV knockouts provides a mean estimate 
of 𝑠"#$ ≈ 0.013, which is close to our inferred results (𝑠"#$ ≈ 0.059) in humans40, given that the 
functional experiments excluded genes with very high s. Estimates in flies derived from 
homozygote lethal mutations which reduce viability in heterozygotes (rather than only PTVs) 
suggest values of 𝑠"#$ on the order of 1-3%, which is also in broad agreement with our estimates 
in humans1,41.  While values of s in this range have a small impact in each generation, they may 
have dramatic evolutionary consequences42.  
 
In conclusion, we use the genome-wide distribution of PTVs to estimate the fitness loss due to 
the heterozygous loss of each gene. Unlike recent work on intolerance to variation and its utility 
in human genetics19,43, we attempt to explicitly estimate the distribution of selection coefficients 
for PTVs. Our estimates are also distinct from the earlier work on the estimation of fitness 
effects of allelic variants in humans44 as the large sample size coupled with the assumption of 
strong selection makes our approach robust with respect to complexities of demographic history 
and dominance, and allows gene-based inferences. Conversely, our assumptions are justified 
for many but not all genes, as the method has limited resolution for genes under the strongest 
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and weakest selection. We find significant enrichments in genes under strong selection in 
orthologous lethal mouse knockouts, genes that are essential for cell proliferation, and 
transcription factors. Additionally, these results may be useful in Mendelian disease gene 
discovery efforts and provide clinical utility in the inference of severity and mode of inheritance 
underlying Mendelian disease. 
 
Methods  
 
Model of deterministic mutation-selection balance  
 
For most genes, protein-truncating alleles are both individually and collectively rare. For genes 
where they are collectively rare, estimation of the selective effect against heterozygous PTVs 
(𝑠het) can be greatly simplified. We model each gene as a single bi-allelic locus with cumulative 
frequency 𝑋 = 𝑥33 , where the sum is over PTVs in gene i for PTV sites j. This is motivated by 
the simplifying assumption of identical selection coefficients for all PTVs within a gene, and the 
observation that the frequency of the vast majority of PTVs is extremely low such that the 
occurrence of multiple variable sites within a gene on a single haplotype is also extremely low 
(2𝑁𝑥63𝑥67 < 1 for sample size N). Moreover, multiple PTVs in a gene in an individual would be 
functionally equivalent to a single PTV resulting in a loss of function state. 
 
Then for each gene, the cumulative allele frequency 𝑋 is influenced by incoming mutation, 
selection and the random reassortment of alleles (genetic drift). When selection is strong, 𝑠 ≫ 
2.5x10-5 (i.e. when 4𝑁e𝑠 ≫ 1, with effective population size 𝑁e = 104), drift is much smaller than 
the contribution of selection. Furthermore, the strength of genetic drift is weakest for genes at 
low frequencies: for a variant with cumulative frequency of 𝑋 = 0.001 the expected frequency 
change due to drift is only Δ𝑋= 	~	𝑋/4𝑁e = 2.5x10-8 per generation. Notably, at the locus level 
assuming 𝑋 ≪ 1 the drift contribution is also much smaller than the mutational influx. Hence 
under strong selection and for small allele frequencies the expected cumulative frequency of 
PTVs is determined by the equilibrium between the influx of de novo mutations (estimated to 
increase the cumulative frequency by an average 1.4x10-6 per locus per generation by 
mutational model) and the outflux due to natural selection.  
 
In the presence of selection on both heterozygotes and homozygotes and ignoring back 
mutations, the dynamics of 𝑋 are captured by the following equation: 
  
 𝜕A𝑋 = −𝑠het𝑋 1 − 𝑋 − 𝑠hom𝑋= 1 − 𝑋 + 𝑈   (1) 
 
Here U represents the PTV mutation rate at the gene locus per individual per generation, and 
𝑠"#$ = ℎ𝑠 > 0 and 𝑠"JK = 𝑠 > 0 represent the strength of negative selection against PTV 
heterozygotes and homozygotes, respectively. We note that compound heterozygotes (with a 
single PTV on each chromosome) are treated as homozygotes under the bi-allelic assumption. 
Provided 𝑋 ≪ 1, as is the case for PTVs under strong selection (2𝑁e𝑠 ≫ 1), this equation 
simplifies dramatically: 
 
 𝜕A𝑋 ≈ −𝑠het𝑋 − 𝑠hom𝑋= + 𝑈      (2) 
 
Because 𝑋 ≪ 1, selection against heterozygotes (the linear term) generally also dominates over 
selection against homozygotes (the quadratic term), provided 𝑠het/𝑠hom ≫ 𝑋. This is only 
violated in cases of extreme recessivity (where the dominance coefficient ℎ ≪ 0.001), but even 
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in that case the expected cumulative frequency of PTVs in essential genes is unlikely to exceed 
0.001 (the characteristic 𝑋 in the completely recessive case is 𝑈/𝑠	~10-3 when 𝑠~1, see 
simulations in Supplementary Figure 1). The strong selection regime thus corresponds to 
mutation-selection balance in the heterozygote state of a PTV mutation. Notably, there is no 
dependence on the demography or population size in this regime, as the contribution from drift 
vanishes because selection drives alleles out of the population efficiently and on very short time 
scales. 
 
From Eq. 2 follows that for a population sample of size 𝑁, sample allele counts 𝑛 = 𝑁𝑋 =
𝑁 𝑥33  are expected to be Poisson distributed around the expectation given by:  
  
 𝐸 𝑛 ≡ QR

Shet
        (3) 

 
Generally, genes under the strongest and weakest selection are expected to have greater 
estimation uncertainty, as the resolution to estimate 𝑠"#$ deteriorates when variants are so 
common that they may not only be controlled by heterozygote selection, but also by drift or 
complex demography. However, the overwhelming majority of genes conform to our 
assumptions of cumulative PTV allele frequency not exceeding 0.001. Despite issues such as 
the admixture of populations, consanguineous samples in ExAC24, and the Wahlund effect, very 
few genes (1,201 of 17,199 covered genes) have higher estimated cumulative allele frequencies 
𝑋, which we restrict from the estimation procedure. On the other end of the spectrum, genes 
under strong selection may lack PTVs by chance alone in ExAC, which limits the ability to 
distinguish between large selective effects. 
 
Population genetics simulations of model assumptions  
 
To validate the assumption that estimates of selection can be made under mutation-selection 
balance independent of demography or population size for variants under sufficiently strong 
selection, we used SLiM 2.0 to conduct forward population genetics simulations45. We ran 10 
replicates each of simulations with selection coefficients of -5x10-2, -5x10-3, -5x10-4, -5x10-5, and 
-5x10-6 through the demography published in Tennessen et al.46 for Africans and Europeans 
(Supplementary Figure 1). We compare the theoretical mutation load (𝑈/𝑠"#$) with the 
simulated mutation load in three groups (African, European and Combined, which includes 
pooled site frequency spectra from both African and European populations in proportions 
represented in the EXAC dataset). The simulations support our assumption of mutation-
selection balance in the strong selection regime (|𝑠"#$| >= 1x10-3), which appears to be 
appropriate for PTVs.  
 
All simulations had a length of 1 kilobase, mutation rate of 2x10-8 per generation per base pair, 
and recombination rate of 1x10-5 per generation per base pair. The high recombination rate was 
chosen to simulate largely unlinked sites, as we are simulating PTVs which are infrequent 
enough that they are expected not to be in linkage with other PTVs in the same gene.  
 
Dataset for 𝑠"#$ estimation  
 
In this analysis, we use Exome Aggregation Consortium (ExAC) dataset version 0.3, a set of 
jointly-called exomes from 60,706 individuals ascertained with no known severe, early-onset 
Mendelian disorders. The mean coverage depth was calculated for each gene (canonical 
transcript from Ensembl v75, GENCODE v19) in the ExAC dataset (mean 57.75; s.d. 20.96). 
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Genes with average coverage depth of at least 30x were used in further analysis (N=17,199). 
Single nucleotide substitution variants annotated as PASS quality with predicted functional 
effects in the canonical transcript of stop-gain, splice donor, or splice acceptor (Variant Effect 
Predictor) were included in the analysis.  
 
We are mindful that not all PTVs will result in complete loss of gene function, due to alternative 
transcripts or nonsense mediated decay. To address this, variants were filtered using LOFTEE47 
and restricted to those predicted with high confidence to have consequences in the canonical 
transcript. 
 
For each of the 17,199 genes we have observable values for (n, U, N), where n denotes the 
total number of observed PTV alleles in the population sample of N chromosomes covered in 
the gene, and U the PTV mutation rate across the canonical gene transcript from a mutational 
model19,20. Values of N and U for each gene from Samocha et. al. were used along with the 
number of well-covered chromosomes in each gene to generate the null mutational expectation 
of neutral evolution, NU. Incorrectly specified values from this mutational model could alter 
estimates of selection for individual genes, as higher estimates of selection are made in genes 
with greater depletions from the null expectation model. Our inference of selection coefficients 
relies on the assumption that the cumulative population frequency of PTV mutations, 𝑋, is small 
due to strong negative selection, so genes with 𝑋 = 𝑛/𝑁 > 0.001 are omitted from the analysis, 
leaving 15,998 genes. 
 
Estimation of 𝑃(𝑠het) 
 
A genome-wide ensemble of observed (n) and expected (𝑁𝑈 ≡ 𝜈) genic PTV counts enables 
the inference of the distribution of heterozygous loss-of-function fitness effects, 𝑃(𝑠het), which 
underlies the evolutionary dynamics of this class of mutations. We estimate the parameters 
(𝛼, 𝛽) of this distribution by fitting the observed distribution of PTV counts across genes: 
 
 𝑃 𝑛|𝛼, 𝛽; 𝜈 = 𝑃 𝑛 𝑠het; 𝜈 	𝑃 𝑠het; 𝛼, 𝛽 	d𝑠het .   (4) 
 
For a given gene under negative selection PTV mutations are rare events, such that we expect 
a Poisson distribution for the likelihood of the observed number of PTVs 
𝑃 𝑛 𝑠het; 	𝜈 	=	Poiss 𝑛; 𝜆 , where 𝜆	 = 𝜈/𝑠het (Eq. 3). We parameterize by using the functional 
form of an inverse Gaussian distribution, i.e. 𝑃 𝑠het; 𝛼, 𝛽 = 	IG(𝑠het; 𝛼, 𝛽), so Eq. 4 becomes: 
 
 𝑃 𝑛|𝛼, 𝛽; 𝜈 = Poiss 𝑛; 𝜆 = 𝜈/𝑠het 	IG 𝑠het; 𝛼, 𝛽 	d𝑠het 
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where 𝐾_(𝑧) is the modified Bessel function of the second kind. To estimate parameters of the 
distribution of selection coefficients, 𝑃(𝑠het; 𝛼, 𝛽), we fit Eq. 5 to the observed distribution of PTV 
counts, 𝑄 𝑛 , by maximizing the log-likelihood 
 
 log[ℒ 𝛼, 𝛽| 𝑛 ] = log 𝑃 𝑛6|𝛼, 𝛽; 𝜈6v

6w^      (6)  
 
on the regime 𝛼 ∈ [10yz, 2] and 𝛽 ∈ [10y{, 2], where G is the number of genes. In order to 
account for a slight positive correlation between the mutation rate and selection strength 
(Supplementary Figure 8), we separately perform the fit on U terciles of the data set and 
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combine the results in a mixture distribution with equal weights. The mean mutation rates in the 
three terciles are 𝑈^ = 4.6 ∙ 10y~, 𝑈= = 1.1 ∙ 10y�, and 𝑈z = 2.6 ∙ 10y�. We estimate (α^, β^) = 
(0.057±0.010,0.0052±0.0003), (α=, β=) = (0.046±0.005,0.0087±0.0004), and (αz, βz) = 
(0.074±0.005,0.0160±0.0005), with error margins denoting two s.d. from 100 bootstrapping 
replicates of the set of ~5,333 genes in each tercile. This error estimate is intended to quantify 
the effect of the sampling noise in the data set on the parameter inference while local mutation 
rate estimates are assumed fixed. The resulting fitted distributions of counts are shown in 
Supplementary Figure 9 together with the corresponding 𝑄 𝑛 , while Figure 1 shows the 
inferred 𝑃 𝑠het; 𝛼, 𝛽 = 	IG 𝑠het; 𝛼^, 𝛽^ + IG 𝑠het; 𝛼=, 𝛽= + IG 𝑠het; 𝛼z, 𝛽z /3. The choice for the 
functional form of 𝑃 𝑠het  is motivated by the shape of the empirical distribution of the naïve 
estimator 𝜈/𝑛 (given by a simple inversion of Eq. 3). We also compared the log-likelihood of the 
fit to 𝑄(𝑛) obtained with this model to that obtained from two other two-parameter distributions, 
𝑠het	~	Gamma and 𝑠het	~	InvGamma, and chose the model with the highest likelihood, which is 
𝑠het	~	IG. 
 
Inference of 𝑠het on individual genes 
  
From the inferred distributions 𝑃 𝑠het; 𝛼A, 𝛽A  in each tercile t of the mutation rate U, we construct 
a per-gene estimator of 𝑠het for genes in the tercile using the posterior probability given 𝑛, which 
mitigates the stochasticity of the observed PTV count: 
 
 𝑃 𝑠"#$,6|𝑛6; 𝜈6 = � _�|S���,�;g� � S���,�;f�,d�

� _�|S;g� � S;f�,d� 	dS
   ,    (7) 

 
where the denominator is given by Eq. 5. Supplementary Table 1 provides the mean values 
derived from these posterior probabilities for each gene. 
 
Predicted mode of inheritance in clinical exome cases  
 
We trained a Naïve Bayes classifier to predict the mode of inheritance in a set of solved clinical 
exome sequencing cases from Baylor College of Medicine (N=283 cases)22 and UCLA23 (N=176 
cases). Using data from UCLA as the training dataset, we are able to cross-predict the mode of 
inheritance in separately ascertained Baylor cases with classification accuracy of 88.0%, 
sensitivity of 86.1%, specificity of 90.2%, and an AUC of 0.931. Genes that were related to 
diagnosis in both clinics (overlapping genes) were removed from the larger Baylor set 
(Supplementary Figure 2). 
 
Using a logistic regression based on the full set of cases from Baylor and UCLA, we generated 
predictions for all 15,998 genes where there is a 𝑠het value (Supplementary Table 4). 
   
Mouse knockout comparative analysis  
 
We reviewed mouse knockout enrichments from two datasets: the full set of mouse knockouts 
from a neutrally-ascertained mouse knockout screen (N=2,179 genes) generated by the 
International Mouse Phenotyping Consortium25. Genes were classified as ‘Viable’, ‘Sub-Viable’, 
or ‘Lethal’ based on the results for the assay.  
 
PubMed gene score and enrichment analysis  
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We developed a score to estimate the relative importance of each gene in the published 
medical and scientific literature. First, we connected literature from Entrez which included both 
PubMed citations and references to Entrez genes. We assigned a weight to each article 
referencing a gene of 1/ai, where ai was the number of genes referred to by article i. For 
example, an article referring to four genes would receive a weight of 1/4. Finally, we assigned 
each gene a score which was the sum of the weighted article scores. These scores ranged from 
4,672 articles per gene (p53) to 0.0001 articles/gene. 
 
Next, we focused on genes that are estimated to be under very strong selection but that lack 
functional or clinical annotations. In the top decile of 𝑠"#$ values, we separated the top 250 and 
bottom 250 genes by PubMed score. We then annotated each of these with unbiased genome-
wide assays, including the number of protein-protein interactions (as determined by a genome-
wide Mass Spectrometry assay)37, whether each gene is determined to be cell-essential in 
genome-wide CRISPR and gene trap assays3, and whether there is a mouse knockout in the 
neutrally-ascertained orthologous nonviable mouse knockout48. To limit the number of genes 
with incorrect 𝑠"#$ estimates in this set of 500 genes, we pre-filtered any genes with only a 
single exon, as they may be enriched for recent pseudogenes, and also removed any olfactory, 
mucin, and zinc finger proteins. 
 
Functional enrichment analysis  
 
We inspected the functional annotations related to approximately the top 10% of selectively 
disadvantageous genes (with 𝑠"#$	> 0.15, N=2,072 genes) that were successfully mapped using 
Database for Annotation, Visualization, and Integrated Discovery (DAVID) version 6.735, DAVID. 
Separately, two other cutoffs (𝑠"#$	> 0.25, N=897 genes and 𝑠"#$	> 0.5, N=32 genes) were also 
tested and similar results were identified.  
 
Using DAVID, we identified functional annotation terms and keywords that were enriched and 
clustered. Functional annotation terms were generated using the Functional Annotation tool, 
which includes protein information resource keywords, GeneOntology (GO) terms, biological 
processes and pathways, and protein domains. Using the default settings (Count 2 and EASE 
0.1), 247 statistically significant (Bonferroni corrected) terms were identified and are included in 
Supplementary Table 5.  
 
Using the DAVID Functional Annotation clustering feature, we identified clusters using the same 
set of 2,072 genes with the default settings. The first annotation cluster includes core, essential 
cellular components including the nuclear lumen, nucleoplasm, organelle lumen (Enrichment 
score 32.63), and the second includes transcription regulation and transcription factor activity 
(Enrichment score 27.94), detailed in Supplementary Table 6. 
 
Acknowledgements 
 
This work was supported by National Institutes of Health Grant HG007229,  
GM078598, HG009088, MH101244, and GM105857. We thank Ivan Adzhubei, Konrad 
Karczewski, and Alexey Kondrashov for helpful advice. 
 
References 
 
1. Mukai, T., Chigusa, S. I., Mettler, L. E. & Crow, J. F. Mutation rate and dominance of 

genes affecting viability in Drosophila melanogaster. Genetics 72, 335–55 (1972). 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 16, 2016. ; https://doi.org/10.1101/075523doi: bioRxiv preprint 

https://doi.org/10.1101/075523


2. Deng, H. W. & Lynch, M. Estimation of deleterious-mutation parameters in natural 
populations. Genetics 144, 349–360 (1996). 

3. Wang, T. et al. Identification and characterization of essential genes in the human 
genome. Science (80-. ). 350, 1096–1101 (2015). 

4. Williamson, S. H. et al. Simultaneous inference of selection and population growth from 
patterns of variation in the human genome. Proc. Natl. Acad. Sci. U. S. A. 102, 7882–7 
(2005). 

5. Boyko, A. R. et al. Assessing the evolutionary impact of amino acid mutations in the 
human genome. PLoS Genet 4, e1000083 (2008). 

6. Kryukov, G. V, Pennacchio, L. A. & Sunyaev, S. R. Most rare missense alleles are 
deleterious in humans: implications for complex disease and association studies. Am. J. 
Hum. Genet. 80, 727–39 (2007). 

7. Kryukov, G. V, Shpunt, A., Stamatoyannopoulos, J. A. & Sunyaev, S. R. Power of deep, 
all-exon resequencing for discovery of human trait genes. Proc Natl Acad Sci U S A 106, 
3871–3876 (2009). 

8. Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. 
Nat. Rev. Genet. 8, 610–8 (2007). 

9. Boyko, A. R. et al. Assessing the evolutionary impact of amino acid mutations in the 
human genome. PLoS Genet. 4, e1000083 (2008). 

10. Do, R. et al. No evidence that selection has been less effective at removing deleterious 
mutations in Europeans than in Africans. Nat. Genet. 47, 126–131 (2015). 

11. Fu, W., Gittelman, R. M., Bamshad, M. J. & Akey, J. M. Characteristics of neutral and 
deleterious protein-coding variation among individuals and populations. Am. J. Hum. 
Genet. 95, 421–36 (2014). 

12. Lohmueller, K. E. The distribution of deleterious genetic variation in human populations. 
Curr. Opin. Genet. Dev. 29, 139–46 (2014). 

13. Gravel, S. When Is Selection Effective? Genetics 203, 451–62 (2016). 
14. Williamson, S., Fledel-Alon, A. & Bustamante, C. D. Population genetics of polymorphism 

and divergence for diploid selection models with arbitrary dominance. Genetics 168, 463–
75 (2004). 

15. Balick, D. J., Do, R., Cassa, C. A., Reich, D. & Sunyaev, S. R. Dominance of Deleterious 
Alleles Controls the Response to a Population Bottleneck. PLoS Genet. 11, e1005436 
(2015). 

16. Simons, Y. B., Turchin, M. C., Pritchard, J. K. & Sella, G. The deleterious mutation load is 
insensitive to recent population history. Nat. Genet. 46, 220–224 (2014). 

17. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 
285–291 (2016). 

18. MacArthur, D. G. et al. A systematic survey of loss-of-function variants in human protein-
coding genes. Science (80-. ). 335, 823–828 (2012). 

19. Samocha, K. E. et al. A framework for the interpretation of de novo mutation in human 
disease. Nat. Genet. 46, 944–50 (2014). 

20. Francioli, L. C. et al. Genome-wide patterns and properties of de novo mutations in 
humans. Nat. Genet. 47, 822–6 (2015). 

21. Solomon, B. D., Nguyen, A.-D., Bear, K. A. & Wolfsberg, T. G. Clinical genomic 
database. Proc. Natl. Acad. Sci. U. S. A. 110, 9851–5 (2013). 

22. Yang, Y. et al. Molecular Findings Among Patients Referred for Clinical Whole-Exome 
Sequencing. JAMA (2014). doi:10.1001/jama.2014.14601 

23. Lee, H. et al. Clinical Exome Sequencing for Genetic Identification of Rare Mendelian 
Disorders. JAMA (2014). doi:10.1001/jama.2014.14604 

24. Saleheen, D. et al. Human knockouts in a cohort with a high rate of consanguinity. 
(2015). doi:10.1101/031518 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 16, 2016. ; https://doi.org/10.1101/075523doi: bioRxiv preprint 

https://doi.org/10.1101/075523


25. Koscielny, G. et al. The International Mouse Phenotyping Consortium Web Portal, a 
unified point of access for knockout mice and related phenotyping data. Nucleic Acids 
Res. 42, D802-9 (2014). 

26. Georgi, B., Voight, B. F. & Bućan, M. From Mouse to Human: Evolutionary Genomics 
Analysis of Human Orthologs of Essential Genes. PLoS Genet. 9, e1003484 (2013). 

27. Roessler, E. et al. Mutations in the human Sonic Hedgehog gene cause 
holoprosencephaly. Nat. Genet. 14, 357–60 (1996). 

28. Kang, S., Graham, J. M., Olney, A. H. & Biesecker, L. G. GLI3 frameshift mutations 
cause autosomal dominant Pallister-Hall syndrome. Nat. Genet. 15, 266–8 (1997). 

29. Vortkamp, A., Gessler, M. & Grzeschik, K. H. GLI3 zinc-finger gene interrupted by 
translocations in Greig syndrome families. Nature 352, 539–40 (1991). 

30. Wild, A. et al. Point mutations in human GLI3 cause Greig syndrome. Hum. Mol. Genet. 
6, 1979–84 (1997). 

31. Roessler, E. et al. Loss-of-function mutations in the human GLI2 gene are associated 
with pituitary anomalies and holoprosencephaly-like features. Proc. Natl. Acad. Sci. U. S. 
A. 100, 13424–9 (2003). 

32. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog 
gene function. Nature 383, 407–13 (1996). 

33. Hui, C. C. & Joyner, A. L. A mouse model of greig cephalopolysyndactyly syndrome: the 
extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nat. Genet. 3, 241–
6 (1993). 

34. Mo, R. et al. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in 
skeletal patterning and development. Development 124, 113–23 (1997). 

35. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of 
large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2008). 

36. Seidman, J. G. & Seidman, C. Transcription factor haploinsufficiency: when half a loaf is 
not enough. J. Clin. Invest. 109, 451–455 (2002). 

37. Huttlin, E. L. et al. The BioPlex Network: A Systematic Exploration of the Human 
Interactome. Cell 162, 425–40 (2015). 

38. NCBI Resource Coordinators. Database resources of the National Center for 
Biotechnology Information. Nucleic Acids Res. 41, D8–D20 (2013). 

39. Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: 
Predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 5, 
(2009). 

40. Agrawal, A. F. & Whitlock, M. C. Inferences about the distribution of dominance drawn 
from yeast gene knockout data. Genetics 187, 553–566 (2011). 

41. Simmons, M. J. & Crow, J. F. Mutations Affecting Fitness in Drosophila Populations. 
Annu. Rev. Genet. 11, 49–78 (1977). 

42. Wright, S. Evolution in Mendelian populations. 1931. Bull. Math. Biol. 52, 241-95–7 
(1990). 

43. Petrovski, S. et al. The Intolerance of Regulatory Sequence to Genetic Variation Predicts 
Gene Dosage Sensitivity. PLoS Genet. 11, e1005492 (2015). 

44. Kiezun, A. et al. Exome sequencing and the genetic basis of complex traits. Nat. Genet. 
44, 623–30 (2012). 

45. Messer, P. W. SLiM: simulating evolution with selection and linkage. Genetics 194, 1037–
9 (2013). 

46. Tennessen, J. A. et al. Evolution and Functional Impact of Rare Coding Variation from 
Deep Sequencing of Human Exomes. Science (80-. ). 337, 64–69 (2012). 

47. Karczewski, K. LOFTEE (Loss-Of-Function Transcript Effect Estimator). (2015). at 
<https://github.com/konradjk/loftee> 

48. Ayadi, A. et al. Mouse large-scale phenotyping initiatives: overview of the European 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 16, 2016. ; https://doi.org/10.1101/075523doi: bioRxiv preprint 

https://doi.org/10.1101/075523


Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse 
Genetics Project. Mamm. Genome 23, 600–10 (2012). 

49. McKusick-Nathans Institute of Genetic Medicine  MD), J. H. U. (Baltimore. Online 
Mendelian Inheritance in Man, OMIM®. at <http://omim.org/> 

50. Cassa, C. A., Tong, M. Y. & Jordan, D. M. Large numbers of genetic variants considered 
to be pathogenic are common in asymptomatic individuals. Hum Mutat 34, 1216–1220 
(2013). 

51. Tong, M. Y., Cassa, C. A. & Kohane, I. S. Automated validation of genetic variants from 
large databases: ensuring that variant references refer to the same genomic locations. 
Bioinformatics 27, 891–893 (2011). 

52. Zhang, J. et al. Germline Mutations in Predisposition Genes in Pediatric Cancer. N. Engl. 
J. Med. 373, 2336–2346 (2015). 

 
 
  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 16, 2016. ; https://doi.org/10.1101/075523doi: bioRxiv preprint 

https://doi.org/10.1101/075523


Supplementary Information 
 
Supplementary Figure 1:  

 
Population genetics simulations of model assumptions. To validate the assumption that estimates of selection 
can be made under mutation-selection balance independent of demography or population size for variants under 
sufficiently strong selection (Methods), we used SLiM 2.0 to conduct forward population genetics simulations45. We 
compare the theoretical mutation load (𝑈/𝑠"#$) with the simulated mutation load in three groups (African, European 
and Combined, which includes pooled site frequency spectra from both African and European populations in 
proportions represented in the EXAC dataset) for 𝑠"#$ ∈ {−5𝑥10y=, −5𝑥10yz, −5𝑥10y{, −5𝑥10y�, −5𝑥10y�} from left to 
right on the x-axis. U = 2x10-3 for all simulations. The simulations support our assumption of mutation-selection 
balance in the strong selection regime (|𝑠"#$| > 1x10-3), which appears to be appropriate for PTVs. A small random 
jitter has been added to separate the points visually. 
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Supplementary Figure 2: Mode of inheritance gene classifier performance characteristics  
  
  

 
 
ROC curve for mode of inheritance gene classifier. We train a Naïve Bayes classifier to predict the mode of 
inheritance in a set of solved clinical exome sequencing cases from Baylor College of Medicine22 (N=283 cases) and 
UCLA23 (N=176 cases). Using data from UCLA as the training dataset, we are able to cross-predict the mode of 
inheritance in separately ascertained Baylor cases with classification accuracy of 88.0%, sensitivity of 86.1%, 
specificity of 90.2%, and an AUC of 0.931. Genes that were related to diagnosis in both clinics (overlapping genes) 
were removed from the larger Baylor set.  
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Supplementary Figure 3: HGMD and OMIM disease annotations 
 
We next annotate each gene with disease associations using reports in the medical and 
scientific literature in the Human Gene Mutation Database (HGMD v.2014_3) and also with the 
number of associations listed in the Online Mendelian Inheritance in Man (OMIM MorbidMap)49. 
HGMD disease gene annotations (DM status) are used to specify a suspected association with 
a known Mendelian disorder, and all associations from OMIM are included, although it is well-
known that these disease annotations have quality and curation issues50,51. Data are separated 
by 𝑠"#$ deciles and OMIM and HGMD disease annotations appear to be a combination of 
Autosomal Dominant and Autosomal Recessive disease genes. 
 

 
 

Association of 𝒔𝐡𝐞𝐭 estimates with known disease genes. Proportion of genes listed to have a disease association 
in the Human Gene Mutation Database, and number of disease associations related to each gene in OMIM 
MorbidMap, by 𝑠"#$ decile. Each bin is expected to contain 10% of all covered genes, ordered from greatest to 
smallest 𝑠"#$ values, in bins 1 through 10, respectively.  
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Supplementary Figure 4: Enrichment in germline cancer predisposition genes  
 

 
 

Enrichment in germline cancer predisposition genes. In a large screen of germline cancer predisposition genes in 
the Pediatric Cancer Genome Project (PCGP), the enrichment of variants in pediatric cancer cases is measured over 
individuals in ExAC.52 Genes with greater enrichment of variants in cancer cases over ExAC are correlated with 
higher selection coefficients. Data are separated by 𝑠"#$ bins on a log scale. Box plots range from 25th-75th percentile 
values and whiskers include 1.5 times the interquartile range. 
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Supplementary Figure 5: Enrichments of 𝒔𝐡𝐞𝐭 in de novo variants in autism spectrum 
disorders (ASD) 
 

 
 

Enrichments of 𝒔𝐡𝐞𝐭 in de novo variants from autism spectrum disorders (ASD) case and control trios. In a set 
of de novo ASD case (N=2,939) and control (N=1,429) trios, 𝑠"#$ estimates can help discriminate between all protein-
coding variants, protein-truncating variants (including all frameshift, nonsense, and essential splice site variants), and 
individually for nonsense, frameshift, and missense variants which are predicted to be PolyPhen-2 damaging. Box 
plots range from 25th-75th percentile values and whiskers include 1.5 times the interquartile range. 
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Supplementary Figure 6: PubMed score 
 
We measured the relative knowledge about each gene in the primary literature using Entrez and 
PubMed38. We developed a novel PubMed Gene Score using the number of reports connected 
with each gene and the number of genes described in each manuscript, and sum the relative 
contributions for each gene across all available manuscripts. The Pubmed Gene Score is 
significantly positively correlated with 𝑠"#$ (p<0.0001), so we know that the average knowledge 
has a positive relationship with gene selection/consequence of disruption. We also find that 
there are a substantial number of genes with high predictions of 𝑠"#$ but not even one full, 
individual citation in the scientific literature.  
 

 
 

Association of 𝒔𝐡𝐞𝐭 estimates with PubMed gene score. [a] The average PubMed gene score is calculated by 𝑠"#$ 
decile. Estimates of selection are positively correlated with the average Pubmed gene score. Each bin contains 10% 
of all covered genes, ordered from greatest to smallest 𝑠"#$ values, in bins 1 through 10, respectively. [b] The 
PubMed gene score is significantly positively correlated with the (p<0.0001) using a logarithmic model 
(y=4.557*log(𝑠"#$)+44.449) with R2=0.00409.   
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Supplementary Figure 7: Most published and least published genes from top 𝒔𝐡𝐞𝐭 decile 
 

 
Most published and least published genes from top 𝒔𝐡𝐞𝐭 decile. The proportion of annotations related to genes 
with the fewest and most publications in Entrez Gene. From the set of genes under the strongest selection (top 10% 
of 𝑠"#$ values), we create two sets of 250 genes. The first set of genes has the fewest publications associated with 
each gene, as defined by our PubMed gene score (Methods), and the second set has the greatest number of 
associated publications. Between the two groups, we compare the 𝑠"#$ values, number of protein-protein interactions, 
viability of orthologous mouse knockouts (IMPC), and cell essentiality assays (KBM-7 CRISPR score and Gene Trap 
Score). These results suggest that the genes in the least published set are similar to those in the most published set, 
and are also potentially important developmental genes. 
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Supplementary Figure 8: Relationship between gene mutation rate and selection 
 

 
 

Relationship between gene mutation rate and selection. Relationship between the estimate of local mutation rate, 
U, and the naïve estimator for heterozygous selection against PTVs, 𝜈/𝑛 = 𝑁𝑈/𝑛, for all 17,199 genes. Light green 
dots represent genes with 𝑥 = 𝑛/𝑁 > 0.001 (1,201), which we omit in the inference of the distribution of 𝑃 𝑠het . Light 
gray dots are used genes with n>0 (14,274), while dark blue dots correspond to those with n=0 (1,724). The latter 
were assigned a fixed selection coefficient estimate of 1 for illustration purposes. We computed the mean U in 
logarithmic bins of 𝜈/𝑛 for the range 0.00003 < 𝜈/𝑛 ≤ 0.012, and for the last bin from all genes with 𝜈/𝑛 > 0.012, 
including those with n=0 (large gray dots). Error bars denote s.e.m. The slight positive correlation between U and 
selection strength motivates the division of the data set into terciles of U and separate estimation of the parameters of 
the distribution of selection coefficients in each. 
 
 
Supplementary Figure 9: Fit to the observed distribution of PTV counts  
 

     

 
 

 
Fit to the observed distribution of PTV counts. Fitted distribution 𝑃(𝑛) (black dots) from maximum likelihood fit to 
the observed distribution 𝑄(𝑛) (histogram) of PTV counts n across 15,998 considered genes divided into terciles 
according to mutation rate U, assuming 𝑠het~IG(𝛼, 𝛽). 
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Supplementary Figure 10: 𝒔𝐡𝐞𝐭 for non-Finnish Europeans 
 
We separately repeated the inference procedure for 𝑃 𝑠het  using data from a single population 
group, Non-Finnish Europeans (NFE, N=33,370, as annotated by ExAC), and generated a 
corresponding set of 𝑠"#$ estimates. The inferred parameters are very similar to those from the 
larger sample. Underlying allele count data is highly correlated between the overall set and the 
NFE set (R2 = 0.814) and the 𝑠"#$ estimates are also highly correlated. 
 

       
    

Inferred distribution of fitness effects for heterozygous loss of gene function in non-Finnish Europeans. 
Estimates of parameters from maximum likelihood fit to the observed distribution of PTV counts n across genes with 
𝑥 = 𝑛/𝑁 < 0.001 in the set of non-Finnish Europeans (16,279 genes), assuming 𝑠het~IG(𝛼, 𝛽) in terciles of the 
mutation rate U. Parameter estimates are (α^, β^) = (0.093, 0.0068), (α=, β=) = (0.046, 0.0110), and (αz, βz) = (0.078, 
0.0183), and shown is the mixture distribution of the three components with equal weights. 
 
Supplementary Note: Comparison with previous estimates of selection 
 
Previous studies have assessed the functional importance of differential observed mutational 
load, and have shown that these aid in Mendelian and complex gene assessment. Here, we 
estimate the selective coefficient for heterozygous variants, rather than the overall depletion 
observed in each gene, using a Bayesian estimation approach. This approach mitigates power 
issues related to correlation with gene length, helps discriminate between dominant and 
recessive acting disease genes, and provides an estimate of an important evolutionary 
parameter (𝑠"#$). These selective estimates can then be used to infer other related evolutionary 
parameters, such as dominance (h). 
 
Boyko et al.5 previously fit a gamma distribution to estimate the distribution of fitness effects for 
missense variants. Their results are grouped into three categories: s < 10-4 as neutral, 10-4 < s < 
10-2 as moderately deleterious, and s > 10-2 as lethal, as there is insufficient resolution to 
distinguish between values above 0.01. The authors estimate that 30-40% of missense variants 
are in this lethal category. For PTVs, we find a larger number, 10,124 genes, or 63.2% of 
covered genes are estimated to have 𝑠"#$ > 0.01. In this study, we have limited resolution to 
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accurately estimate 𝑠"#$ values between 0.15 and 0.34, and then poor resolution to differentiate 
specific 𝑠"#$ values above 0.34 (although they are estimated to be very high).  
 
We also compared the 𝑠"#$ estimate with the ExAC pLI score and find that the overall correlation 
coefficient is R2=0.66 using a logarithmic model. 
 
Supplementary Table 1: Distribution of 𝒔𝐡𝐞𝐭 estimates  
 
We provide 𝑠"#$ estimates in Supplementary Table 1. This file includes the mean 𝑠"#$ estimates 
for each gene as well as the upper and lower 95% credibility intervals for each gene estimate. 
Credibility intervals have precision of 10-3 where 𝑠"#$ > 0.005 and 10-5 otherwise. 
 
Supplementary Table 2: Predicted mode of inheritance for each gene 
  
For each gene, we generate a probability of mode of inheritance (either autosomal dominant or 
autosomal recessive). Estimates are generated using a logistic regression, trained on the full set 
of labeled case examples from two clinical exome sequencing programs (Baylor and UCLA)22,23. 
These estimates are applicable for interpretation of genes in cases that are similarly ascertained 
as these two clinical exome sequencing programs. 
 
Supplementary Table 3: Analysis of de novo variants observed in patients with autism 
spectrum disorders (ASD) 
 
We use a set of 2,939 ASD case trios and 1,429 control trios with at least one de novo variant, 
which were ascertained from three previous studies19. Protein coding de novo variants were 
included for analysis if they did not have a dbSNP rsID and did not appear in any individual in 
ExAC. Individuals with greater than two de novo variants in the coding exome were excluded to 
avoid potential false positives. Using the Mann-Whitney test, we find that 𝑠"#$ values are 
significantly higher in cases versus controls for all coding variants, putative PTVs, putative PTVs 
with in-frame deletions and insertions, and missense variants that were predicted by PolyPhen-
2 to be probably or possibly damaging. As expected, there is no significant difference in 𝑠"#$ 
values between ASD cases and controls for synonymous variants or missense variants 
predicted by PolyPhen-2 to be benign.   

ASD de novo variant type (Cases vs. Controls) Mann-Whitney p-value 

All ASD de novo variants 0.00711 

PTVs (Essential splice site and nonsense) 0.00101 

PTVs, in-frame deletions and insertions 0.00001 

Missense PolyPhen-2 probably or possibly-damaging  0.02937 

Missense PolyPhen-2 benign 0.20501 

Synonymous 0.62127 

 
Supplementary Table 4: Most published and least published genes from top 𝒔𝐡𝐞𝐭 decile 
 
Full annotations for the PubMed Score in the top s"#$ decile for the top 250 and bottom 250 
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PubMed genes scores. From the set of genes under the strongest selection (top 10% of s"#$ 
values), we create two sets of 250 genes. We then annotated these lists with the results from 
neutrally-ascertained screens of gene importance and gene essentiality. We summarize these 
screens using a heuristic score.  

Supplementary Table 5: Functional analysis terms from DAVID 
 
We include the results of GO term enrichment screening from DAVID that reach Bonferroni 
corrected significance in genes with s"#$ > 0.15, s"#$ > 0.25 and s"#$ > 0.5. 

Supplementary Table 6: Functional analysis clusters from DAVID 
 
We include the results of functional cluster enrichment screening from DAVID that reach 
Bonferroni corrected significance in genes with s"#$ > 0.15, s"#$ > 0.25 and s"#$ > 0.5. 
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