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Abstract 12

Modern genomics techniques generate overwhelming quantities of data. Extracting 13

population genetic variation demands computationally efficient methods to determine 14

genetic relatedness between individuals or samples in an unbiased manner, preferably de 15

novo. The rapid and unbiased estimation of genetic relatedness has the potential to 16

overcome reference genome bias, to detect mix-ups early, and to verify that biological 17

replicates belong to the same genetic lineage before conclusions are drawn using 18

mislabelled, or misidentified samples. 19

We present the k-mer Weighted Inner Product (kWIP), an assembly-, and 20

alignment-free estimator of genetic similarity. kWIP combines a probabilistic data 21

structure with a novel metric, the weighted inner product (WIP), to efficiently calculate 22

pairwise similarity between sequencing runs from their k-mer counts. It produces a 23

distance matrix, which can then be further analysed and visualised. Our method does 24

not require prior knowledge of the underlying genomes and applications include 25

detecting sample identity and mix-up, non-obvious genomic variation, and population 26

structure. 27

We show that kWIP can reconstruct the true relatedness between samples from 28

simulated populations. By re-analysing several published datasets we show that our 29

results are consistent with marker-based analyses. kWIP is written in C++, licensed 30

under the GNU GPL, and is available from https://github.com/kdmurray91/kwip. 31

Author Summary 32

Current analysis of the genetic similarity of samples is overly dependent on alignment to 33

reference genomes, which are often unavailable and in any case can introduce bias. We 34

address this limitation by implementing an efficient alignment free sequence comparison 35

algorithm (kWIP). The fast, unbiased analysis kWIP performs should be conducted in 36

preliminary stages of any analysis to verify experimental designs and sample metadata, 37

catching catastrophic errors earlier. 38

kWIP extends alignment-free sequence comparison methods by operating directly on 39

sequencing reads. kWIP uses an entropy-weighted inner product over k-mers as a 40

PLOS 2/29

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 4, 2016. ; https://doi.org/10.1101/075481doi: bioRxiv preprint 

https://github.com/kdmurray91/kwip
https://doi.org/10.1101/075481
http://creativecommons.org/licenses/by/4.0/


estimator of genetic relatedness. We validate kWIP using rigorous simulation 41

experiments. We also demonstrate high sensitivity and accuracy even where there is 42

modest divergence between genomes, and/or when sequencing coverage is low. We show 43

high sensitivity in replicate detection, and faithfully reproduce published reports of 44

population structure and stratification of microbiomes. We provide a reproducible 45

workflow for replicating our validation experiments. 46

kWIP is an efficient, open source software package. Our software is well documented 47

and cross platform, and tutorial-style workflows are provided for new users. 48

Introduction 49

A major application of DNA sequencing is comparing the genetic make-up of samples 50

with one another to either identify commonalities, and thus detect relatedness, or to 51

leverage the differences to elucidate function. Initially, one seeks to confirm assumed 52

genetic lineages and replicates, or to group samples into families, populations, and 53

species. Estimating the genetic relatedness between a broad collection of samples must 54

avoid bias and have minimal per sample cost. 55

Nowadays, the vast majority of studies in population genomics are performed using 56

next generation sequencing (NGS) [1]. The methods commonly employed to analyse 57

whole genome DNA sequencing data rely on two complementary concepts: the assembly 58

of reference genomes, and comparing samples to this reference by re-sequencing, read 59

mapping, and variant calling. This approach, while functional in model organisms, is 60

not ideal. Selecting the reference individual is mostly random, generating a reference 61

genome assembly is time consuming and costly [2, 3], and analyses based on read 62

alignment to a possibly inappropriate reference genome sequence are highly susceptible 63

to bias [4, 5], to the point where large parts of the genomes are missed when sufficiently 64

different or absent from the reference. Alignment-free methods for measuring genetic 65

relatedness would help overcome this reference genome bias. 66

Another issue of concern is sample identification. A recent review [6] found that 67

sample misidentification occurs at an alarming rate. With ever increasing sample 68

numbers in (population) genetic projects, the issue of correct and consistent metadata 69

arises on several levels, technical (mix-up) and biological (misidentification). Large field, 70
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and entire gene bank collections are being DNA-sequenced. With sample handling from 71

the field through the laboratory to the sequence read files and eventual upload to data 72

repositories, there is ample opportunity for mix-ups and mislabeling of samples and files. 73

This problem is exacerbated by the often highly collaborative nature of such 74

undertakings. Some misidentifications might be virtually undetectable without 75

molecular genetic analysis, such as varying levels of ploidy, cryptic species, or 76

sub-genomes in (compilo)species complexes [7]. Unfortunately, much of this hidden 77

variation is easily overlooked by following aforementioned current best practices to 78

calculate genome-wide genetic relatedness from short read sequencing data. Erroneous 79

sample identification and/or underestimating the level of divergence has implications for 80

downstream analysis choices, such as which samples and populations to use for a 81

Genome Wide Association Study (GWAS); the missing heritability might then in fact 82

be in the metadata. 83

The field of alignment-free sequence comparison aims to combat these difficulties by 84

avoiding the process of sequence alignment. Approaches include decomposition to words 85

(or k-mers) [8–11], sub-string or text processing algorithms [12,13], and information 86

theoretic measures of sequence similarity or complexity [14]. While avoiding sequence 87

alignment, many alignment-free sequence comparison tools still require prior knowledge 88

of the underlying genome sequences, which precludes their use as a de novo tool. 89

Recently, several algorithms enabling de novo comparisons have been published. 90

These extensions all attempt to reconstruct phylogenetic relationships from sequencing 91

reads. Spaced [8, 13] uses the Jensen-Shannon distance on spaced seeds (small k-mers a 92

short distance from one another or with interspersed disregarded bases) to improve 93

performance of phylogenetic reconstruction. Cnidaria [15] and AAF [16] use the Jaccard 94

distance to reconstruct phylogenies, while mash [17] uses a MinHash approximation of 95

Jaccard distance to the same effect. None of these methods report acceptable 96

performance within species, meaning their utility in population genomics may be 97

limited. 98

Here we present a new metric to estimate genetic relatedness that introduces two 99

concepts to k-mer-based sequence comparison. Firstly, we no longer compare every 100

k-mer, but rather hash them first into a probabilistic data structure. Secondly, we 101

introduce an information theoretic weighting to elevate the relevant genetic signal above 102
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the noise. Pairwise similarity is calculated by the inner product between k-mer counts, 103

weighted by the information content derived from their population frequencies. Our 104

procedure is implemented in a software tool (kWIP). It estimates genetic relatedness 105

directly from sequencing reads by comparing the k-mer contents of sequencing runs. We 106

show by simulations and by re-analysing published datasets, that kWIP can quickly, and 107

accurately detect genetic relatedness between samples. 108

Design and Implementation 109

kWIP operates on files containing sequencing reads generated by common modern 110

sequencing platforms (e.g., Illumina). First, kWIP utilises khmer [18, 19] to count 111

overlapping words of length k (k-mers) into a probabilistic data structure (a sketch) for 112

each sample. kWIP then counts presence/absence of each k-mer across all sample 113

sketches and records this population frequency in a population frequency sketch. We 114

calculate similarity as the inner product between each pair of sample sketches, weighted 115

by the Shannon entropy of the respective frequency. This process is outlined in Fig 1. 116

k-mer counting 117

For each sample, kWIP uses khmer to decompose sequencing reads into overlapping 118

words of some fixed length, e.g., 20. The value of a reversible hash function is computed 119

for each k-mer. k-mers are canonicalised by using the lexicographically smaller of a 120

k-mer and its reverse complement. k-mers are counted using one sketch per sample. 121

These sketches are vectors with prime number length, typically several billion elements 122

in size (denoted Si for sample i). The elements of these sketches are referred to as bins 123

(indexed by b, e.g. Sib), and can store values between 0 and 255 (integer overflow is 124

prevented). To count a k-mer, the b-th bin of the sketch (Sib) is incremented, where b is 125

the hash value of the k-mer modulo the (prime) length of the sketch. For most use 126

cases, we recommend counting k-mers between 19 and 21 bases long, as this balances 127

the number of distinct k-mers with the uniqueness of each k-mer across samples. 128

Note that the possible number of k-mers (4k) is much larger than the length of a 129

sketch. Therefore, aliasing (or “collisions”) between k-mers can occur, but in practice 130

can be avoided with appropriate parameter selection [18]. It is worth noting that 131
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aliasing can only increase similarity between any two samples, and this should occur 132

uniformly across all sample pairs. 133

Weighting and similarity estimation 134

Genetic similarity is estimated as the inner product between each pair of sample 135

sketches (Si, Sj), weighted by the informational content of each bin. The population 136

sketch (P ) contains the frequency of occurrence of each bin, calculated as the number of 137

samples with a non-zero count for each bin. We calculate a weight vector (H) of these 138

occurrence frequencies using Shannon’s entropy as per Equation (1). In the Weighted 139

Inner Product (WIP) metric (or kernel), similarity is then calculated as the inner 140

product over each sample’s sketch, weighted by H as per Equation (2). The unweighted 141

Inner Product (IP) metric is simply the inner product between to sample sketch vectors, 142

Si · Sj . This produces a matrix of pairwise inner products K, commonly referred to as a 143

kernel matrix. The kernel matrix is then normalised using the Euclidean norm (3), and 144

converted to distances using the “kernel trick” [20] as per Equation (4). To ensure 145

distance matrices are Euclidean, kWIP confirms that the resulting kernel matrix is 146

positive semi-definite by checking that all eigenvalues are non-negative using the Eigen3 147

library [21]. 148

H = −(P log2 P + (1− P ) log2(1− P )) (1)

Kij =
n∑

b=1

SibSjbHb (2)

K ′ij =
Kij√
KiiKjj

(3)

Dij =
√
K ′ii +K ′jj − 2K ′ij (4)

Implementation 149

Pairwise calculation of genetic distances from k-mer count files with both the WIP and 150

IP metrics is implemented in C++ as kWIP. kWIP is licensed under the GNU GPL, and 151
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source code and pre-compiled executables are available from 152

https://github.com/kdmurray91/kwip. Documentation and tutorials are available 153

from https://kwip.readthedocs.io. To use kWIP, one first counts k-mers present in 154

each sample using khmer’s load-into-counting.py script. kWIP will then estimate 155

similarity from these counts, producing a normalised Euclidean distance matrix and, 156

optionally, a similarity matrix. kWIP parallelises pairwise similarity calculations across 157

cores of a multi-threaded computer to ensure fast operation. Estimating relatedness 158

between 96 rice samples took approximately 4 hours on a 64GB, 16 core (2.6 GHz 159

Sandy Bridge) computer. 160

Results 161

We show that kWIP is able to accurately determine genetic relatedness in many scenarios. 162

Using a simulated population re-sequencing experiment, we quantify how the population 163

frequency-based weighting applied by kWIP improves accuracy, that is the correlation 164

with the known truth. We recover known technical and biological relationships between 165

sequencing runs of the 3000 Rice Genomes project [22,23]. We show that a visualisation 166

of kWIP’s estimate of genetic relationships between Chlamydomonas samples is nearly 167

identical to a similar representation published by the dataset’s authors [24], who used 168

traditional read mapping and variant calling to a reference genome. By analysing a 169

dataset on root-associated microbiomes [25], we show that our approach of sample 170

clustering can be extended to clustering of metagenome samples. See Materials and 171

Methods for detailed description of simulation experiments and validation datasets. 172

Quantification of kWIP performance 173

With simulated data we quantified the performance of kWIP comparing our novel metric, 174

the weighted inner product (WIP), with the unweighted inner product (IP), which we 175

consider equivalent to the D2 statistic. Unsurprisingly, the accuracy, i.e., kWIP’s 176

correlation to known truth, decreases with decreasing average sample sequencing depth 177

or genome coverage (Fig 2a); this is true for WIP as well as IP. Importantly, the WIP 178

metric performs far better than IP at low coverages, i.e., below 30-fold. Above a certain 179

coverage, in the case of our simulations at about 50-fold, the performances of the WIP 180
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and IP metrics converge. We find that the coefficient of variation between the number 181

of sequencing reads does matter. As a general rule, if a sample has much lower genome 182

coverage than the average, kWIP has difficulty accurately determining its relatedness to 183

other samples. Therefore, we advise to exclude such samples or subsample reads from 184

the remainder, if the dataset allows. At constant genome coverage, the improvement in 185

accuracy of the WIP metric relative to the IP metric increases as mean pairwise genetic 186

variation decreases (Fig 2b). While the accuracy of the IP metric decreases markedly 187

below a mean pairwise distance (π) of approximately 0.01, the WIP metric does not 188

show such decrease (Fig 2b). 189

Replicate clustering 190

kWIP can efficiently verify replicates. Figs 3a and 3b show a representative example of 191

replicate clustering. The WIP metric is able to accurately cluster replicates (Fig 3a), 192

whereas the IP metric makes mistakes, as highlighted in red in Fig 3b. We quantified 193

this difference in performance and Fig 3c shows the distribution of rank correlation 194

coefficients between distances obtained with the WIP and IP metrics and the expected 195

clustering patterns for 100 subsets of 96 sequencing runs. The WIP metric outperforms 196

the IP metric, having a higher mean correlation than the IP metric (p << 0.001, paired 197

Student’s T test, n = 50). 198

Population structure 199

Flowers, et al. [24] sequenced 20 strains of Chlamydomonas reinhardtii from continental 200

USA, and, by alignment- and SNP-based analysis, find significant population structure, 201

mostly explained by geography [24]. In Fig 4a we display the published genetic 202

relationships as a principal component analysis (PCA) of SNP genotypes exactly as 203

presented by the authors [24]. PC1 separates the laboratory strains (and one western 204

sample) from both eastern and western samples with further structure among wild 205

Chlamydomonas collected in western, southeastern and northeastern USA. In Fig 4b we 206

plot the relatedness between the same samples as revealed by kWIP, directly from the 207

raw sequencing reads. We note that the results are highly similar. 208

Each of the 20 strains had been sequenced to a depth of roughly 200-fold genome 209
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coverage [24]. By systematically subsampling this dataset we investigate the effect of 210

coverage on the accuracy of kWIP’s similarity estimation. Fig 5a shows that as coverage 211

decreases, the accuracy of relationship estimation decreases. We also provide PCA plots 212

of estimated genetic relatedness at varying coverages illustrating this decay 5b. We note 213

that the performance of kWIP to determine similarity is very good even at low coverages. 214

A two-fold genome coverage is enough to detect the major splits in this dataset 215

(Laboratory vs West vs East). 216

Metagenome relatedness 217

Edwards, et al. [25] sequenced rice root-associated microbiomes and find stratification of 218

samples by rhizo-compartment, cultivation site, and cultivation practice. Analysing 219

their raw sequencing data with kWIP, we detect highly similar stratification between 220

microbial communities. An example is shown in Fig 6b. We observe a gradient of 221

samples from within the root, through the root-soil interface into soil, and separation by 222

cultivation site. This replicates the separation of samples by rhizo-compartment and 223

cultivation site published by Edwards, et al. [25], shown in Fig 6a. 224

Discussion 225

The k-mer Weighted Inner Product (kWIP) estimates genetic distances between samples 226

within a population of samples directly from next generation sequencing data. kWIP 227

does not require a reference genome sequence and is able to estimate the genetic 228

distances between samples with less data than is typically used to call SNPs against a 229

reference. As a k-mer-based method, kWIP is sequencing protocol and platform agnostic, 230

allowing use into the future. 231

kWIP uses a new metric, the weighted inner product (WIP), which aims to reduce 232

the effect of technical and biological noise and elevate the relevant genetic signal by 233

weighting k-mer counts by their informational entropy across the analysis set. This 234

weighting has the effect of down-weighting k-mers which are either highly abundant, or 235

present in very few samples. Those k-mers are typically either common, fixed, 236

repetitive, invariable, or rare, or erroneous. By using Shannon entropy, the weights of 237

common and infrequent k-mers are assigned lower, but non-zero weights, allowing some 238
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contribution of their signal. 239

Euclidean distances are then calculated from these weighted inner products and 240

kWIP outputs a matrix of pairwise distances between samples, which are easily 241

visualised and may be used for sample classification and to cluster samples into groups. 242

These distance matrices are amenable to quantitative comparison of genetic distance to 243

geographic or environmental distances, for example using mantel tests or generalised 244

dissimilarity modelling. We show high concordance between PCAs obtained using SNP 245

data and those using kWIP. It is possible that population genetic statistics, including 246

FST , could be recovered using kWIP via a genealogical interpretation of PCA, as is 247

proposed and shown possible for SNP datasets [26]. 248

We have demonstrated the applicability and effectiveness of kWIP using simulations 249

and several published datasets. Through simulations, we quantify how the novel 250

weighting improves accuracy specifically in cases where genetic differentiation or 251

sequencing depth is low (Fig 2a). With data from the 3000 rice genome dataset [23], we 252

reconstruct known relationships between samples and sequencing runs, such as 253

membership of samples to major genetic groups of Oryza sativa, and the correct 254

clustering of runs with their replicates (Fig 3). Using a population re-sequencing 255

experiment in Chlamydomonas [24] we precisely recreate a visualisation of population 256

relatedness, arguably improving resolution compared to a reference-genome based 257

variant calling approach (Fig 4). This dataset was suitable for comparison because the 258

original authors had based their analysis not only on variants recovered by read 259

alignment against the published reference genome, but attempted to recover and use 260

additional variation by assembling leftover reads that did not match the reference into 261

contigs and calling additional variants between these contigs. This approach, while 262

reducing reference-genome bias, required extensive sequencing depth to enable de-novo 263

assembly; the authors chose around 200-fold coverage, which in turn enabled us to 264

assess kWIP’s performance at various sequencing depths (Fig 5). 265

A current frontier is to efficiently characterise complex metagenome samples. Most 266

studies to date resort to methods of reduced representation. Recently, methods 267

conceptually similar to kWIP have been applied to calculate metagenome similarity [17]. 268

We show that kWIP is able to detect structure between microbial communities based on 269

16S rDNA amplicon sequencing data, at least as well as current practice (Fig 6). It 270
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should be possible to apply kWIP to random shotgun sequencing data from such samples. 271

Besides the similarities between metagenomes, the calculation of intra- and inter-sample 272

diversity is often of interest. The ability to calculate these measures efficiently and de 273

novo would be useful because assembling metagenomes accurately is difficult. Estimates 274

of complexity and diversity are currently mostly gene based, but could also be made 275

efficiently at the k-mer-level leveraging sketched data structures. 276

The key innovation of kWIP is the combination of a fixed-sized, probabilistic data 277

structure (sketch) for counting k-mers with an entropy-weighted inner product as a 278

measure of similarity between samples. By virtue of their fixed size, sketches enable 279

rapid arithmetic operations on k-mer counts. Sketches enable kWIP to rapidly aggregate 280

across a populations to derive weights, and to efficiently compute the inner products. 281

These benefits outweigh the possibility of collisions between k-mers, which in any case 282

have been observed to be rare [18] given appropriate sketch size. Sketching data 283

structures are commonly used for k-mer counting (for example Count-Min 284

Sketches [18,19], and Bloom Filters [27]), but have not been widely adopted in 285

alignment-free sequence comparison. 286

Weighting of inner products between sketches allows us to account for non-uniform 287

information content of each k-mer. kWIP weights by Shannon entropy of 288

presence/absence frequency across a population. This provides an assumption-free 289

estimate of the information content of each k-mer. By down-weighting both rare k-mers 290

introduced by rare variants or sequencing errors, as well as k-mers present in most or all 291

samples, we are reducing the contribution of k-mers that carry less information. It is 292

possible that other weighting functions that assume various population parameters 293

could provide a more faithful estimate of the information content of each k-mer. The 294

application of word-specific weighting has precedence in text processing, where it has 295

been used to account for varying importance of words in a document [28]. However, 296

because we intend kWIP to be used in situations where such parameters are either 297

unavailable or potentially inaccurate, we prefer that our weighting is free of assumptions. 298

An inner product between k-mer counts has long been used in the field of 299

alignment-free phylogenetics, where it is referred to as the D2 statistic. There have been 300

many derivatives of the D2 statistic that seek to enhance its accuracy where 301

evolutionary distance is large and sites may have mutated multiple times (e.g., DS
2 , and 302
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D∗2 [29–31]). Theortical work has extended the D2 statistic to calculate phylogenies 303

from NGS data [32,33]. Use of enhanced models of sequence evolution is not necessary 304

where mutation events occur at independent sites, as is usually the case within 305

populations. kWIP does not attempt to re-create evolutionary histories, but rather 306

estimates the similarity of genetic material as it exists today. This is sufficient and even 307

desirable for many of kWIP’s intended uses. When validating experimental metadata, 308

one seeks to establish whether similarity between sequencing runs matches expectations. 309

This is particularly true for metagenome samples, where variation can be in both 310

abundance and type of organisms, and their respective genetic sequences. In these cases, 311

estimating present variation between sample genomes, rather than how this variation 312

came to be, is of importance. 313

Currently, kWIP’s strength is estimating genetic similarity between sequencing runs. 314

Because kWIP operates reference- and alignment-free, all genetic material present in the 315

sample, the hologenome, will contribute to the analysis. This means that care must be 316

taken that only the organisms of interest have been sequenced. However, we note that 317

k-mers that are considered undesirable and chosen to be excluded from the analysis 318

could easily be masked, for example by setting their weight in the weight vector to zero. 319

Because kWIP weights k-mers, and hence genome content, based on their frequency 320

in the population being analysed, these weights change when the population changes. 321

This allows for iterative workflows: In a first, all inclusive step the large groupings and 322

outliers are detected; subsequently, subgroups can be analysed with increased resolution. 323

An important application of kWIP, and the WIP metric, is sample classification, 324

where one seeks to compare a sample to some set of known samples. Methods that 325

enable rapid verification of genetic resources, such as stock center accessions, or cell 326

lines, prevent expensive and possibly catastrophic mis-identifications. Sample 327

classification is different from sample clustering as comparisons typically need only be 328

made against a core set of reference samples rather than computing all pair-wise 329

distances between the samples. Inner product kernels have been used to classify protein 330

sequences [34,35]. To better adapt kWIP to classification problems, tree-like structures 331

of kernels [36] or sketches [37,38] could be explored. 332

kWIP is purposefully designed to operate free of assumptions, or prior knowledge. It 333

is comparing data as presented in the sequencing reads without attempting to 334
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reconstruct or approximate the underlying genomes. One could think of several ways of 335

incorporating additional knowledge, which may improve kWIP’s power to determine 336

relatedness between underlying genomes. One could, for example, apply ”smoothing” to 337

the k-mer counts, with the goal of differentiating between k-mers that are genuinely not 338

in the genomes of a sample and those that were not observed due to low coverage 339

and/or stochastic sampling; smoothing is used in natural language modelling [39]. Also, 340

it is possible that alternative distance metrics, such as the Jaccard or Manhattan 341

distances, improve the performance of kWIP, which currently uses Euclidian distance. It 342

may further prove valuable to explore spaced seeds [8, 13], or alternative metrics 343

including those considering inexact matches [35,36]. 344

Estimating the genetic relatedness between a broad collection of natural accessions 345

provides a basis for ecological or functional studies and should be a first step towards 346

solutions in breeding and conservation. In most population level experiments, technical 347

sources of error are dwarfed by the error from insufficient sampling [40]. This is 348

especially true when rare or cryptic lineages are present, and in conditions of 349

non-random mating where population structure is substantial. Such population level 350

noise can only be overcome by broad studies with large numbers of samples, ideally by 351

also merging experiments [41]. When individuals from real-world populations are 352

collected, or collated, there is normally non-uniform genetic relatedness. Initially, one 353

seeks to group samples into more closely related families or more distantly related 354

populations, to then develop core sets for further detailed studies. Genetic outliers 355

occur. They can represent misidentifications and cryptic species and should be excluded. 356

Population re-structuring [40] balances the genetic diversity among a subset of 357

individuals for association studies. De novo sample groupings based on whole genome 358

relatedness also inform the selection of suitable reference individuals and/or building 359

the necessary reference genomes. The initial characterisation process must avoid biases 360

and have minimal per sample cost. The use of kWIP allows to base the analysis of 361

diversity among samples on low coverage, whole-genome sequence data and thus makes 362

these large, balanced study designs feasible. 363

More broadly, experiments are condemned to be inconclusive and irreproducible if 364

samples are somehow mislabeled or misidentified. An initial step in all analyses of 365

genetic or functional variation must involve the verification of sample identity [6]. This 366
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preliminary analysis should preferably use whole-genome sequence data, be de novo, 367

unbiased, and agnostic to sequencing protocol and technology. kWIP is an efficient 368

implementation of such a tool. 369

Availablity and Future Directions 370

kWIP is implemented in C++ and licensed under the GNU GPL. Source code and 371

pre-compiled executables are available from https://github.com/kdmurray91/kwip. 372

Documentation and tutorials are available from https://kwip.readthedocs.io. The 373

Snakemake workflows and Jupyter notebooks used to perform all analyses presented 374

here are available online at https://github.com/kdmurray91/kwip-experiments; 375

the respective software versions are noted within this repository. Currently, kWIP 376

performs all pairwise comparisons, which scales quadratically (O(n2)) with regards to 377

the number of samples. kWIP parallelises pairwise similarity calculations across cores of 378

a multi-threaded computer to ensure fast operation. Analyses of very large data sets, 379

i.e., beyond 10,000s of samples, will benefit from further optimisations to the 380

implementation of kWIP, including parallelisation across distributed memory systems 381

with MPI. For each pairwise comparison, the two sketches and the weight vector must 382

fit in main memory. This limits the size of the sketches and the number of pairwise 383

comparisons that will run efficiently in parallel on a given node. 384

Materials and Methods 385

We demonstrate kWIP’s performance with both real and simulated datasets. With 386

simulations we quantify the performance of kWIP. To demonstrate the utility of kWIP in 387

real-world, low-coverage, large-scale population genomics datasets, we analyse data from 388

the 3000 Rice Genomes Project [22, 23]. To show that kWIP estimates genetic similarity 389

as well as current best practice SNP-based methods, we re-analysed a population 390

genomics study on 20 strains of Chlamydomonas reinhardtii [24] with kWIP and 391

compare our result to the published results. Lastly, using data from a study on 392

root-associated microbiomes of rice [25], we show that kWIP is able to separate microbial 393

communities from 16S rDNA amplicon data at least as well as current best-practice 394
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methods in metagenomics. 395

We provide all information necessary to reproduce our work: the kWIP analyses 396

performed here are implemented in Snakemake workflows [42], which describe all steps 397

and software parameters; random seeds have been fixed where necessary. All 398

downstream analyses are available as Jupyter notebooks [43,44]. Both the Snakemake 399

workflows and Jupyter notebooks are available online at 400

https://github.com/kdmurray91/kwip-experiments; the respective software 401

versions are noted within this repository. 402

Simulations 403

We simulated several datasets to empirically quantify the performance of kWIP. Fifty 404

populations with 12 individuals each were simulated using scrm [45]. Branch lengths 405

within each population were normalised such that the mean pairwise genetic distance 406

(π) was equal. Branch lengths were then scaled over a range of π (between 0.001 and 407

0.1) to test the effect of mean pairwise genetic distance on kWIP’s accuracy. Genome 408

sequences were simulated with DAWG2 [46] and from those short read data for three 409

replicate sequencing runs per individual were generated at various mean coverages 410

(between 0.01- and 200-fold) using Mason2 [47]. We attempted to emulate the reality of 411

sequencing experiments by introducing random variation in read numbers between 412

replicate runs (coefficient of variation of 0.3). We then used khmer to count k-mers in 413

these simulated sequencing runs and estimated genetic similarity with kWIP, using both 414

the weighted (WIP) and unweighted (IP) metrics. 415

The performance of our metrics was measured relative to the true pairwise distances 416

between the simulated samples. The true distance matrix between samples was 417

calculated from the simulated, aligned sample genomes (which DAWG2 produces) with 418

scikit-bio. Sample-wise distances were replicated three times to allow comparison to 419

the distances obtained from the three simulated sequencing runs. Performance was 420

calculated as Spearman’s rank correlation (ρ) between all pairwise distances using 421

scipy [48]. 422
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Datasets 423

With several published datasets we demonstrate the performance and utility of kWIP in 424

real-world scenarios. In all cases, sequence data files for sequencing runs were obtained 425

from the NCBI Short Read Archive using sra-py [49]. Reads were extracted using the 426

SRA toolkit to FASTQ files. Low base quality regions were removed using sickle [50] in 427

single-end mode. Counting of k-mers into count files (sketches) was performed using the 428

load-into-counting.py script of khmer. Genetic similarity was estimated using kWIP, 429

using the WIP and IP metrics. 430

To assess how well kWIP recovers replicate samples and known sample hierarchies at 431

low sequencing coverage, we turned to publicly available sequence data from the 3000 432

Rice Genomes project [22,23]. Samples of the 3000 Rice Genomes project had been 433

sequenced on the Illumina HiSeq2000 platform with technical replicates of individual 434

sequencing libraries split between 6 or more sequencing lanes [22,23]. Furthermore, 435

there is a rather strong subdivision of rice (Oryza sativa) into subgroups. We compiled 436

100 sets of 96 runs, i.e., for each set we chose 16 samples with 6 replicate runs. We 437

ensured that 8 samples each were described by [22] as belonging to the Indica and 438

Japonica subgroups of O. sativa. We estimated the genetic similarity between runs in 439

each of these 100 sets with kWIP. The true distances between the different runs in the 440

3000 rice datasets are not known, but a topology and sample hierarchy can be inferred 441

from the metadata. We hence assessed the performance of kWIP in accurately clustering 442

replicates and recovering population structure against a mock distance matrix that 443

reflects the expected topology. We created a distance matrix in which each run had a 444

distance of zero to itself, a distance of 1 to each of its technical replicates (i.e., the other 445

sequencing runs belonging to the same sample), a distance of 2 to each run from other 446

samples in the same rice group (Indica or Japonica), and a distance of 4 to each run 447

from a sample belonging to the respective other rice group. We then used scipy to 448

calculate Spearman’s rank correlation between this mock matrix and each distance 449

matrix obtained from real data using kWIP. A paired Student’s t-test was performed 450

between the estimates of relatedness from the WIP and IP metrics with the t.test 451

function in R. We used hierarchcal clustering to visualise these relationships, performed 452

in also R with the hclust function. 453
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We use whole genome sequencing data on 20 strains of Chlamydomonas 454

reinhardtii [24] to show the ability of kWIP to detect more subtle population structure 455

and to examine the effect of sample sequencing depth (coverage) on the accuracy of 456

kWIP in a real-world dataset. Genetic relatedness between the 20 Chlamydomonas 457

reinhardtii samples from this study was estimated with kWIP using the WIP metric. 458

Classic Multi-dimensional Scaling (MDS) of the kWIP distance matrix was performed 459

using the cmdscale function in R. We compare our MDS results against the principal 460

component analysis (PCA) of SNP genotypes as reported by [24]. For Euclidean 461

distance matrices, MDS is equivalent to PCA [51]. 462

We then examined the effect of sample sequencing depth (coverage) on the accuracy 463

of kWIP by randomly sub-sampling from the sequencing data of each sample. We 464

sub-sampled to coverages of between 0.01- and 200-fold average coverage (0.01, 0.1, 0.5, 465

1, 2, 4, 8, 12, 15, 25, 50, 75, 100, 150, 200) across samples using the sample command of 466

seqtk [52]. We attempted to preserve the coefficient of variation in read numbers that 467

existed in the original dataset (0.12) by sampling a random number of reads from the 468

appropriate normal distribution. Spearman’s rank correlation (ρ) was used to compare 469

pairwise distances calculated at each sub-sampled coverage to those from the original 470

dataset. 471

To demonstrate that kWIP can determine the relatedness of samples in a typical 472

metagenomic dataset, we used next generation sequencing data from a study on rice 473

root associated microbiomes [25] representing 16S rDNA amplicons from soil and root 474

samples. Relatedness between samples was estimated using kWIP with the WIP metric, 475

and MDS was performed as above. 476
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(a) (b)

Fig 1. Overview of the Weighted Inner Product metric as implemented in kWIP. k-mers
are counted into sketches (a). The frequencies of non-zero counts across a set of sketches
is computed, forming the population frequency sketch. We calculate Shannon entropy of
this population frequency sketch as the weight vector for the WIP metric (see equation
2).
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Fig 2. The effect of (a) average sample coverage and (b) average pairwise genetic
distance (π) on genetic similarity estimate accuracy. (a) low to moderate coverage
(2-30x) weighting increases accuracy, and the weighted metric obtains near-optimal
accuracy at 10x coverage compared to above 30x for the unweighted metric. (b) the
performance of the unweighted metric decreases rapidly as the mean pairwise distance
(π) between samples decreases, however this does not occur for the weighted metric
(WIP). The shadings indicate mean ± standard deviation of Spearman’s ρ across 50
replicate runs.
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Fig 3. Weighting improves replicate clustering accuracy. (a) and (b) show a
representative example demonstrating that the WIP metric (a) correctly clusters all sets
of 6 replicate runs into their respective samples (indicated by blue and green bars) while
the unweighted metric (b) cannot do so in all cases (indicated by red highlighting). (c)
shows rank correlation coefficients to expected relationships over 100 sets of 96 rice runs
for the WIP and IP metrics.
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(a) (b)

Fig 4. Genetic relatedness between samples of Chlamydomonas reinhardtii based on
data from [24]. (a) PCA of SNP genotypes reproduced from [24]. (b) Sample
relatedness calculated with kWIP. Note that in (a), “Sample CC-4414 (red) is obscured
behind the cluster of laboratory strains (light blue)” [24].
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Fig 5. The effect of average sequencing depth (genome coverage) on kWIPs estimate of
genetic relatedness between samples of Chlamydomonas reinhardtii (data from [24]). (a)
Spearman’s rank correlation between sub-sampled datasets and the full dataset across a
range of subset average genome coverages. (b) PCA plots of relatedness obtained using
kWIP on selected sub-sampled datasets. “full” refers to the entire dataset (i.e., Fig 4b),
while “0.1x” refers to a sub-sampled dataset with average coverage of 0.1 over the C.
reinhardtii genome (likewise for 1x, 2x, and so on). As noted in 4, a western (red)
sample is sometimes obscured behind the cluster of laboratory strains (light blue) [24].
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(a) (b)

Fig 6. Estimation of similarity between metagenomes. We used kWIP to examine the
data of [25]. We replicate their observations (a) of stratification of root-associated
microbiomes by rhizo-compartment (PC1) and experiment site (PC2). The separation is
even more pronounced in the kWIP result (b), especially by cultivation site.
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