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Abstract

What does it take to convert a heap of sequencing data into a publishable result? First, common
tools are employed to reduce primary data (sequencing reads) to a form suitable for further analy-
ses (i.e., list of variable sites). The subsequent exploratory stage is much more ad hoc and requires
development of custom scripts making it problematic for biomedical researchers. Here we de-
scribe a hybrid platform combining common analysis pathways with exploratory environments.
It aims at fully encompassing and simplifying the “raw data-to-publication” pathway and making
it reproducible.
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1 Introduction
Trees, rivers, and the analysis of next generation sequencing (NGS) data are examples of branch-
ing systems so ubiquitous in nature [1]. Indeed, numerous types of NGS applications (i.e., vari-
ation detection, ChIP-seq, RNA-seq) share the same initial processing steps (quality control, read
manipulation and filtering, mapping, post-mapping thresholding etc.) making up the trunk and
main branches of this imaginary tree. Each of these main branches subsequently gives off smaller
offshoots (variant calling, RNA-, ChIP- and other “seqs”), that, in turn, split further as analyses
become focused towards the specific goals of an experiment. As we traverse the tree, the set of
established analysis tools becomes increasingly sparse and it is up to an individual researcher to
come up with statistical and visualization approaches necessary to reach the leaves (or fruits) rep-
resenting conclusive, publishable results. Consider transcriptome analysis as an example. Initial
steps of RNA-seq analysis (in our tree allegory these are trunk and main branches), such as quality
control, read mapping, transcript assembly and quantification, are reasonably well established. Yet
completion of these steps does not produce a publishable result. Instead, there is still the need for
additional analyses (progressively smaller branches of our tree) ranging from simple format con-
version to statistical tests and visualizations. Thus every NGS analysis can in principle be divided
into two stages. (1) The first stage involves processing of raw data using a finite set of common
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generic tools. This stage can be scripted and automated and also lends itself to building graphical
user interfaces (GUIs). (2) The second stage involves a much greater variety of tools that need to be
customized for every given experiment (in many cases there are no tools at all and custom scripts
need to be developed). As a result it is not readily coerced into a handful of automated routines or
generic GUIs.
The main motivation for this work was the development of a system where biomedical researchers
can perform both stages of data analysis: initial steps using established tools and exploratory and
data interpretation steps with ad hoc approaches. Merging both steps into a unifying platform
will lower entry barriers for individuals interested in data analysis, significantly improve repro-
ducibility of published results, ease collaborations, and enable straightforward dissemination of
best analysis practices.

2 Results and Discussion
To avoid “reinventing the bicycle” in designing our platform, we first evaluated already existing
systems that can be leveraged to fulfill our goals. For the first stage of the analysis we needed a
system that exposes existing common tools through a unifying interface and makes computational
infrastructure needed to perform large-scale analyses transparent to the user. There are several sys-
tems potentially satisfying these requirements including Genepattern [2], Mobyle [3], CyVerse [4],
Galaxy [5], and GenomeSpace [6]. These systems allows users to utilize a large number of tools
and workflows as well as record provenance ensuring reproducibility of analyses. However, these
systems are only as useful as their set of featured tools, and do not aid in ad hoc data exploration.
The number available choices for the second stage of the analysis (ad hoc exploration) is enormous.
One can simply use scripting languages, relational databases, spreadsheet applications, or com-
mercial packages to conduct data interpretation. One important feature we sought is the ability
for a system to record analysis steps in order to make final outcome reproducible. In this regard
two well established open environments designed specifically for reproducible data exploration
stood out as de facto standards in scientific computing: IPython/Jupyter [7] and RStudio [8].
In the end we proceeded with Galaxy (due to its considerable user base http://bit.ly/gxyStats) as
the underlying platform for management of data, tools, and infrastructure and Jupyter as an initial
data exploration plug-in (at the time of writing RStudio has also been integrated and being tested).
Galaxy is a web-based analysis environment that exposes tools using GUI, allows combining them
into workflows, and is supported by software and hardware infrastructure suitable for analysis of
very large multi-sample datasets. The benefit of Galaxy is that anyone with a web-browser can
perform analyses in a straightforward manner without being concerned with how or where un-
derlying software is executed. Jupyter (formerly known as IPython) is an interactive programming
environment allowing reproducible data analysis with over 40 programming languages (such as
Python, Julia, R, and others). It is built around the concept of Jupyter Notebook – a web application
allowing to combine executable programming language code with visualization, and explanatory
annotations in a single “live” document. The advantage of Jupyter is that there is essentially no
limit on what one can do as supported languages and underlying libraries enable the full spectrum
of data analyses. However, to be useful Jupyter requires programming and data management skills
as well as access to computational infrastructure. Table 1 contrasts the pros and cons of the two
platforms (Galaxy and Jupyter) and shows that their combination provides an almost “perfect”
analysis solution for biomedical domain.
How can these two very dissimilar applications, Galaxy and Jupyter, work together in practice?
In Galaxy, datasets corresponding to each step of analysis are recorded in the history as “history
items” (right panes of the interface in Fig. 1A and 1B). Once an analysis reaches the point where
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there are no tools available for the next step, it is time to switch to Jupyter. This is done by click-
ing a button adjacent to the dataset, which will start an isolated instance of Jupyter (or other so
called Interactive Environments, such as RStudio) directly within Galaxy interface. This instance
interacts with Galaxy’s Application Programming Interface (API) using custom methods for trans-
ferring data back and forth from Galaxy’s history. Jupyter’s “notebooks” allow ad hoc analyses to
be recorded automatically, providing the utmost level of reproducibility during data exploration.
After performing analyses the user can save the notebook as a Galaxy history item that can be
downloaded and used as a template for a new tool, it can be re-run with changed parameters on
different datasets and like any other history item it can be shared with other Galaxy users. Addi-
tionally, in the future it will be possible to export the code, aiding in rapid development of galaxy
tools. It can also be converted into a PDF documenting details of the analyses. Here we used
this functionality to generate Supplementary Files 1, 2, and 3 corresponding to the three examples
described below.
To demonstrate the utility of Galaxy/Jupyter integration we devised three examples. In all three
cases we break down the analysis in parts 1 (Galaxy) and 2 (Jupyter). For each example, part 1
involves processing and mapping of the sequenced reads. In the first example, we use a simple
combination of command line tools and Python scripting language to plot read coverage across
the HIV genome. In the second example, we leverage Python and R to normalize read counts and
shrink variance in an RNA-seq experiment. Finally, in the most complex example, we perform data
processing and replicate main summary figures from our previous study [9]. This third example
demonstrates the capabilities of Galaxy and Jupyter to process large, multi-sample datasets. In
this example Galaxy’s power is leveraged for mapping and processing of hundreds of datasets and
Jupyter is used for the final interpretation and replication of published figures. These examples
can be viewed in the supplemental PDFs, or they can be interacted with in a live Galaxy/Jupyter
instance by pointing your browser to the links indicated below.

2.1 Example 1: Building a genome coverage plot.

HIV-1 was re-sequenced from blood of a single individual across three time points with the ulti-
mate goal of tracking nucleotide substitutions of the viral genome through time (simulated reads
were generated for this example). After assessing the quality of the reads and mapping against
the HIV-1 genome with bwa [10] within Galaxy, we wanted to visualize read coverage across each
sample to decide if further analyses are warranted. However, the main public Galaxy server did
not have a dedicated tool for this purpose. Normally the analysis will stop at this point and only
by downloading data and analyzing them offline can one produce the coverage distribution graph
needed in this case. Integration of Jupyter to Galaxy changes this. Fig. 1A highlights each step
of this analysis resulting in the coverage distribution graph. The entire analysis can be seen in the
Galaxy history accessible at http://bit.ly/ie-hiv.

2.2 Example 2: Normalizing read counts for an RNA-seq experiment.

In this example we use a subset of RNA-seq data from a dataset published by Schurch et al. [11]
(SRA accession ERP004763) consisting of 48 replicates of two Saccharomyces cerevisiae populations:
wildtype and snf2 knock-out mutants. For simplicity we selected only two replicates for each wild-
type and snf2 knock-outs. Here we first use Galaxy’s existing RNA-seq tools to map reads against
the yeast genome using HiSat [12] and to compute the number of reads per gene region using
HTseq-count [13] (Fig. 1B; see Galaxy history at http://bit.ly/rnaseq-jupyter). Datasets are then
imported into Jupyter’s environment (cells 4 - 9; see Supplemental Document 2) where we first
merge datasets into a single table by joining them on gene names using Python’s Pandas library
(cells 10 - 12). We then proceeded to normalize the counts with DESeq2 [14] (cells 13 - 30) and as-
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sessed the effects of normalization and variance shrinkage on the data (cells 31 - 35; also see center
pane of Fig. 1B).

2.3 Example 3. Estimating mitochondrial bottleneck in humans.

In the third example we replicate the key analyses reported in a study of human mitochondrial
heteroplasmy transmission dynamics, previously published by our group [9]. The overall goal of
this study was to detect heteroplasmies (variants within mitochondrial DNA) and to trace their fre-
quency changes across mother-child transmission events using primary sequencing data generated
by [9] (mitochondria is transmitted maternally and heteroplasmy frequencies may change dramat-
ically and unpredictably during the transmission, due to a germ-line bottleneck [15]). The first part
of the analysis is performed using Galaxy’s mapping and variant calling workflow outlined in Fig.
2A. The goals of this part is to generate a preliminary list of sequence variants. The input data con-
sists of ≈118 Gb of data corresponding to 312 fastq datasets (SRA accession SRP047378) derived
from 156 samples 156 samples (39 mothers and 39 children, with two tissues analyzed per indi-
vidual, each tissue generating two fastq datasets for the forward and reverse read sets, together re-
sulted in the 312 original datasets; Fig. 2B, dataset 313). Using Galaxy, we combine all 312 datasets
into a single entity, a dataset collection, in order to avoid repetitive tasks (see Galaxy history at
http://bit.ly/jupyter-mt and Fig. 2B). The workflow maps the reads, performs de-duplication and
extensive filtering of resulting BAM datasets as well as identifies variable sites. The workflow re-
duces sequencing reads to a 160 Mb data matrix with over 2.6 million rows containing variants for
all 156 samples. Despite the fact that we have reduced the primary sequence data to a set of vari-
able sites, this dataset hardly resembles an interpretable result. At this point, exploratory analyses
must begin. Unfortunately it is also the point where users are forced to leave Galaxy, confounding
efforts for reproducibility of the analysis. With Galaxy/Jupyter integration, this deficiency can be
avoided. The second part of the analysis begins with starting a Jupyter notebook from inside the
Galaxy interface (see Supplemental Document 3). The goal of the analysis is to estimate the size of
the germ-line bottleneck and to detect the effect of maternal age on the frequency of heteroplasmic
variants observed in children (for details see [9]). In performing this analysis we first check for
even coverage across all samples (cell 24 of the notebook), and then we threshold the sites to retain
a set of 181 variants with the minor allele frequency (MAF) above 1% that do not display strand bias
calculated using Guo at al. formula [16] (cells 27 - 31). Next, we calculate the statistical significance
of these sites using a Poisson distribution as in Li and Stoneking [17], which is based on the vari-
ability of a given position across all samples (cells 32 - 35). These two calculations (strand bias and
statistical significance) are performed by implementing formulae from two publications directly in
Jupyter. This is a convincing example of utility for such an environment: it is impractical to write
dedicated tools based on these formulae in Galaxy because they will not be sufficiently general, yet
it makes perfect sense to do it in Jupyter on an as-needed basis. The notebook is stored as a history
item in Galaxy making the analysis permanent and perfectly reproducible (Fig. 2B, dataset 1417).
The analysis proceeds further by screening for contamination based on heteroplasmy frequency
distribution ( large number of heteroplasmies with a tight frequency distribution is indicative of
contamination [18]; cell 37) and tabulating the distribution of variants across individuals and tis-
sues (cell 57) and features of the mitochondrial genome (cell 60). At this point we arrive to one
of the main observations of the study (cell 67): the heteroplasmy frequency in children does not
diverge between tissues (Fig. 2C; pane A compared to mother, pane B) as they underwent fewer
mitotic segregations and were exposed to potential environmental effects for a shorter period of
time. In addition, there is a stronger correlation in allele frequencies between two tissues of mother
or a child than between mother and child for the same tissue (Fig. 2C; panes C and D) - a result
of the germ-line bottleneck. Finally, using formulas from Millar, Hendy, and co-workers [19] we
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estimate the size of the germline bottleneck to be at 40 segregating units (cells 70 - 75; Fig. 2D).
The final observation shown in cell 86 of the notebook highlights the positive correlation between
the age of the mother and the number of heteroplasmic sites, which has potential implications for
the higher rate in mtDNA diseases in children born to older mothers.

2.4 Summary

The above three examples highlight the power of combining ad hoc programmatic analyses with
a collection of robust tools already provided by Galaxy. In our opinion this have a potential to
revolutionize the ways in which biomedical data analysis is performed. In particular we see the
following implications:

1. Lowering entry barriers. At this point it is widely acknowledged that every biomedical re-
searcher should be able to at least try performing basic data manipulation and analysis tasks.
In practice they are often discouraged from doing this by lack of familiarity with systems such
as Jupyter or RStudio and may not know how to configure them for the initial use. Integra-
tion of Jupyter into Galaxy gives these users a “risk-free” opportunity to try and learn basic
exploratory skills without the need to install or maintain anything.

2. Allowing re-use and experimentation. Jupyter notebooks are designed to be shareable, just
like Galaxy’s workflows, histories, and datasets. This significantly simplifies re-use: one may,
for instance, simply import the notebook we developed in example 3, and apply it to their
own data. This also aids in experimentation: what would happen if in the analysis described
by [9] we use a different mapper and/or variant caller? It is easy to answer this question by
applying the existing notebook to a set of variant calls produced with an alternative workflow.

3. Increasing collaborative possibilities. Galaxy is popular with biologists due to the ability
to run complex analyses without the need to use the command line interface (CLI). How-
ever, this is also the reason why many computational scientists are skeptical and often avoid
the platform: they feel constrained without the ability to have the full control of tool exe-
cution and workflow construction. Integration of Jupyter will bring the two communities
closer: computational scientists and bioinformaticians will be able to develop analyses us-
ing interactive environments in the form of notebooks, which will immediately be usable by
biomedical researchers.

3 Methods
Jupyter integration into Galaxy takes advantage of the recently developed and increasingly popu-
lar Docker virtualization platform (https://www.docker.com). It uses the Interactive Environment
(IE) plug-in functionality written for Galaxy that also allows integration of other similar tools such
as RStudio. The program flow is illustrated in Fig. 3. An IE primarily consists of an Entry Point
(IEEP) and an associated configuration file. The IE configuration allows for the setting that all data
transfer is done via SSL which is useful for production instances. Additionally, individual sites
can specify custom Docker images instead of the default provided Jupyter notebook, allowing ad-
ministrators to craft docker images more specific to their users. This image will be downloaded
and installed from the Docker Hub. The default Docker image is specifically crafted for use in con-
junction with the Jupyter Interactive Environment (see below). The IEEP launches a docker con-
tainer on a random port for communication, and configures it to access Galaxy through environ-
ment variables passed to the container. These pieces of information are stored so that Galaxy and
the Dockerized Jupyter web service can communicate securely, while isolated from the rest of the
Galaxy instance for security reasons. The container is built on top of the official jupyter/minimal-
notebook, and provides a Jupyter server, with its dependencies such as NumPy [20], SciPy [21] and
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Matplotlib [22]. Additionally the image contains several Jupyter kernels (different programming
language environments) such as R, Ruby, Haskell, Julia, and Octave. By providing a Docker image
with a full suite of scientific analysis tools and libraries, users are able to immediately perform
their analysis and calculations. In the Python kernel, additional packages can be installed with the
python package manager pip, the same is true for the other kernels with their associated package
managers. Moreover, tools that can be installed and run in a non-privileged user account can be
added to the container on demand. Once the container has launched on the backend, it is visu-
ally embedded inside the Galaxy interface, at which point it can be used to interactively program,
develop, and analyse data in any of the aforementioned programming languages. During Docker
container startup, a cron job is launched, monitoring whether the IE is still being used by check-
ing the network traffic. If the page with the Interactive Environment is closed, the Docker process
automatically terminates itself. Within the Jupyter Notebook, two important custom functions are
defined which enable the user to load data from the history or store data to the Galaxy history
using the Galaxy API [23]. The get function expects one parameter, the identifier of the dataset
as shown in the history. The put function automatically builds a connection to the host Galaxy
instance and transfers a specified file from inside the Docker container to the user’s history. The
flexibility is obvious: any dataset can be loaded into the notebook, datasets can be combined or
modified, and the results can be written back to the history. The entirety of Galaxy-IE communi-
cation occurs between the Galaxy host and the Docker container, without the need for the user to
upload or download data to their personal workstation. This is not only faster in most cases it has
also positive implications on data security as the data did not leave the compute center.
Notebooks can be saved to the Galaxy history at any time; once in Galaxy’s history they can be
inspected like any other Galaxy dataset, allowing for a read-only view of the analysis steps which
we run. Additionally, notebooks can be reused. A new Jupyter instance is created that retains the
stored work. This functionality ensures the reproducibility of data analysis and is therefore an
essential feature of the Jupyter Interactive Environment.

6

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 16, 2016. ; https://doi.org/10.1101/075457doi: bioRxiv preprint 

https://doi.org/10.1101/075457
http://creativecommons.org/licenses/by/4.0/


4 Acknowledgements
We are grateful to the members of Galaxy development team for their help with preparation of
this manuscript. All experimental procedures used to generate datasets used in Example 3 com-
ply with the principles of the Helsinki Declaration. All data has been collected under IRB Proto-
col No.30432EP. In this study patients at the pediatric outpatient clinic (located the Pennsylvania
State University Hershey Medical Center in Harrisburg, Pennsylvania) were approached by ex-
perienced coordinators and invited to participate. Samples were collected from participants pro-
viding verbal consent in the clinic. Only date of birth and date of collection were associated with
each sample. No personally identifiable information was recorded. This project was supported by
NIH/NHGRI Grant U41 HG005542 (JT and AN), a German Federal Ministry of Education and Re-
search grant 031A538A de.NBI (RB), and Collaborative Research Centre 992 Medical Epigenetics
grant SFB 992/1 2012 (RB). Additional funding was provided by Huck Institutes for the Life Sci-
ences at Penn State and, in part, under a grant with the Pennsylvania Department of Health using
Tobacco Settlement Funds. The Department specifically disclaims responsibility for any analyses,
interpretations or conclusions.

7

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 16, 2016. ; https://doi.org/10.1101/075457doi: bioRxiv preprint 

https://doi.org/10.1101/075457
http://creativecommons.org/licenses/by/4.0/


5 Tables

Feature Galaxy Jupyter Galaxy/Jupyter
Low barrier of entry for a naive user * *
Versatility of available tools * *
Provenance tracking * * *
Hardware backend for processing of large
datasets

* *

Attractive to experimentalists * *
Attractive to bioinformaticians and data scien-
tists

* *

Table 1: Congruence between Galaxy and Jupyter as a function of their pros and cons.
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6 Figure Legends
Figure 1. Overview of steps involved in performing analyses outlined in Examples 1 and 2. A.
Example 1. Right (green) side of Galaxy interface is the history pane. The analysis begins with
uploading three Illumina datasets (datasets 1 - 3) and a reference genome sequence (dataset 4).
Datasets are mapped to the reference genome with bwa-mem (datasets 5 - 7) and read groups are
assigned (datasets 8 - 10). This allows resulting BAM datasets to be merged into a single BAM file
(dataset 11). At this point the Jupyter IE is launched. Lower part of the notebook is visible in the
center pane showing the read coverage distribution for the three isolates (three different colors).
B. A similar screenshot for Example 2. Here Illumina reads for two RNA-seq replicates from wild-
type and snf2 knock-out are mapped against the Drosophila melanogaster genome (dm3) using
HiSat split mapper. Next, HTSeq-count takes BAM datasets generated by HiSat and, using gene
annotation for dm3 genome downloaded from the UCSC Table Browser (history dataset 9), com-
putes per-gene read counts. These counts are then imported to Jupyter (Center pane) to perform
normalization and variance shrinkage calculations using Bioconductor’s DESeq2 package.

Figure 2. Re-analysis of data from [9] using Galaxy and Jupyter. A. Workflow used in the analysis.
As an input the workflow takes a collection of paired illumina datasets and outputs an unfiltered
list of variable sites. B. Galaxy history showing all steps of these analyses. It only contains 12 steps
because we use dataset collections to combine multiple similar datasets into a small number of
history entries. This significantly simplifies processing. For example, collection 313 contains all
312 paired-end Illumina datasets generated for this study. This allows us to deal with just one his-
tory item instead of 312. The next item in the history is a collection of BAM datasets generated by
mapping each read-pair from collection 313 against human genome (hg38) with bwa-mem. These
BAM datasets are de-duplicated (collections 627), filtered (by only retaining reads mapping to mi-
tochondrial DNA, with mapping quality of 20 or higher, and mapped in a proper pair; collection
941), realigned to mitigate misalignment around indels on SNV calls (collection 1098), and used
to call variants with Naive Variant Caller [24]. Finally, we use Variant Annotator to process VCF
datasets generated by Naive Variant Caller and to create a list of variants (collection 1412) and
the concatenation tool to reduce collection 1412 into a single table (dataset 1413). This dataset is
used for further processing with Jupyter. C. The relationship of minor allele frequencies for het-
eroplasmic sites between tissues (panes A and B) and individuals (panes C and D). D. Estimates
for bottleneck size with (red) and without (blue) accounting for mitotic segregation.

Figure 3. Schematic representation of Galaxy/Jupyter architecture taking advantage of Docker
functionality.
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7 Supplemental materials
Supplemental Figure 1. Schematic representation of Galaxy/Jupyter architecture taking advan-
tage of Docker functionality.
Supplemental Document 1. A PDF version of Jupyter notebook for Example 1: Visualization of
read coverage across HIV genome.
Supplemental Document 2. A PDF version of Jupyter notebook for Example 2: Read count nor-
malization and variance shrinkage for an RNA-seq experiment.
Supplemental Document 3. A PDF version of Jupyter notebook for Example 3: Analysis of het-
eroplasmy dynamics in humans.
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Figure 1: Galaxy/Jupyter integration: Examples 1 and 2

13

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 16, 2016. ; https://doi.org/10.1101/075457doi: bioRxiv preprint 

https://doi.org/10.1101/075457
http://creativecommons.org/licenses/by/4.0/


Figure 2: Galaxy/Jupyter integration: Example 3
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Figure 3: Galaxy/Jupyter architecture
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