
Identification	of	outcome-related	driver	
mutations	in	cancer	using	conditional	co-
occurrence	distributions	

	

Victor	Treviño*1,	Emmanuel	Martínez-Ledesma	2,	José	Tamez-Peña	1	

1	Escuela	de	Medicina,	Tecnologico	de	Monterrey,	Av.	Morones	Prieto	3000	Pte.	

Monterrey,	Nuevo	Leon	64710,	Mexico.		

2	Department	of	Genomic	Medicine,	The	University	of	Texas	MD	Anderson	Cancer	Center,	

Houston,	TX	77030,	USA.	

*	corresponding	author.	

	 	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 16, 2016. ; https://doi.org/10.1101/075408doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 16, 2016. ; https://doi.org/10.1101/075408doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 16, 2016. ; https://doi.org/10.1101/075408doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 16, 2016. ; https://doi.org/10.1101/075408doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 16, 2016. ; https://doi.org/10.1101/075408doi: bioRxiv preprint 

https://doi.org/10.1101/075408
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/075408
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/075408
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/075408
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/075408
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

Abstract	

The	methods	proposed	for	the	detection	of	cancer	driver	mutations	are	based	on	the	

estimation	of	background	mutation	rate,	impact	on	protein	function,	or	network	influence.	

Instead,	we	focus	on	those	influencing	patient	survival.	For	this,	an	approximation	of	the	log-rank	

test	has	been	systematically	applied	even	though	it	assumes	a	large	and	similar	number	of	patients	

in	both	risk	groups,	which	is	violated	in	cancer	genomics.	Here,	we	propose	VALORATE,	a	novel	

algorithm	for	the	estimation	of	the	null	distribution	for	the	log-rank	test	independently	of	the	

number	of	mutations.	VALORATE	is	based	on	conditional	distributions	of	the	co-occurrences	

between	events	and	mutations.	The	results	using	simulations,	comparisons	with	other	methods,	

TCGA	and	ICGC	cancer	datasets,	and	validations,	suggests	that	VALORATE	is	accurate,	fast,	and	can	

identify	known	and	novel	gene	mutations.	Our	proposal	and	results	may	have	important	

implications	in	cancer	biology,	in	bioinformatics	analyses,	and	ultimately	in	precision	medicine.	
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Introduction	

Cancer	is	a	genetic	disease	characterized	by	the	progressive	accumulation	of	mutations	1.	

The	recent	sequencing	technologies	are	revolutionizing	cancer	medicine	with	the	rich	

characterization	of	genetic	mutations	2.	International	efforts,	such	as	The	Cancer	Genome	Atlas	

(TCGA)	and	the	International	Cancer	Genome	Consortium	(ICGC),	have	been	established	to	

scrutinize	several	cancer	types	by	generating	large	amounts	of	cancer	genomics	data	3.	

Nevertheless,	because	of	its	intrinsic	complexity,	there	is	a	need	for	more	advanced	and	precise	

methods	for	the	analysis	of	these	data	to	gain	deeper	understand	this	deadly	disease.	

One	fundamental	problem	in	cancer	genomics	is	the	detection	of	functional	mutations.	In	

this	context,	the	progressive	accrual	of	mutations	1	and	its	heterogeneity	4	have	fueled	the	

theories	of	clonal	expansion	5	in	which	‘driver’	mutations	have	functional	roles	that	confer	cell	

fitness	advantages	whereas	‘passenger’	mutations	are	the	result	of	the	inherent	random	

mutational	process	6,7.	The	detection	of	driver	genes	is	challenging	because	the	observed	

frequency	of	gene	mutations	is	relatively	low	for	most	of	the	genes	8.	Moreover,	the	detected	

gene	driver	mutations	explain	only	a	fraction	of	mutations	per	patient	1,8	suggesting	that	novel	

methods	to	detect	driver	mutations	are	still	needed	even	though	other	genetic	alterations	may	

also	be	present	(such	as	copy	number,	fusions,	and	epigenetic	alterations).	

Most	of	the	methods	to	detect	driver	mutations	that	have	been	proposed	9	can	be	

classified	according	to	its	main	concept	in	(i)	methods	that	identify	recurrent	gene	mutations,	and	

(ii)	methods	that	identify	the	impact	of	the	disrupted	protein	function.	For	recurrent	gene	

mutations,	methods	such	as	MutSigCV	10	and	OncodriveCLUST	11	use	specific	‘null’	models	to	

estimate	background	mutation	rates	and	recognize	those	failing	the	null	model.	Indeed,	these	

ideas	have	been	applied	also	to	non-coding	regions	12.	In	addition,	there	is	a	subclass	of	methods	

focused	in	recurrent	gene	mutations	per	network	modules	such	as	HotNet2	13.	To	detect	the	

functional	impact,	for	example,	SIFT	14	and	MutationAssessor	15	look	at	disruptions	in	evolutionary	

conserved	functional	domains,	which	can	be	assessed	per	variant.	Contrary,	OncodriveFM	16	

examines	a	set	of	variants	evaluating	whether	functional	impacts	per	variant	is	shifted	toward	high	

impacts.		

The	methods	mentioned	above	consider	mutations	in	a	cellular	or	molecular	view	where	

the	effects	take	place	locally	assumed	to	improve	the	fitness	of	the	tumor	cell	to	its	

microenvironment.	Nevertheless,	there	are	gene	mutations	that	violate	the	model	assumptions	
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complicating	its	identification.	For	example,	when	the	functional	effect	of	a	mutation	is	unknown,	

or	when	a	mutation	is	indeed	similar	to	those	evolutionary	conserved	but	that	in	the	human	

context	are	damaging	17.	On	the	other	hand,	model	parameters	may	be	over-simplified,	such	as	

the	replication	timing	that	has	been	shown	to	be	highly	influenced	in	a	cell	type-specific	manner	18.	

In	addition,	there	could	be	other	situations	more	difficult	to	model	such	as	mutations	appearing	in	

recurrent	tumors	19,	tissue	invasion	or	metastasis	20–22,	or	co-occurring	alterations	23.	Some	of	

these	will	clearly	have	an	effect	on	tumor	development	and	time	to	death,	metastasis,	or	

recurrence.	Therefore,	to	overcome	some	of	these	limitations,	here	we	adopted	a	‘long-term’	

population	risk	view	in	which	mutations	may	influence	patient	survival.	This	is	important	because	

the	precise	identification	of	mutations	relevantly	associated	with	clinical	outcome	could	be	crucial	

for	treatment	and	precision	medicine	24.	

Generally,	the	identification	of	gene	mutations	associated	with	survival	is	done	by	forming	

two	risk	groups	splitting	those	subjects	carrying	the	mutation	from	those	who	not.	The	differences	

in	time	to	death	between	these	risk	groups	is	used	to	detect	the	relevant	mutated	genes.	The	

statistical	significance	of	this	time	difference	is	usually	estimated	by	computing	the	Log-Rank	

statistic	followed	by	the	computation	of	its	probability	of	being	zero	25.	Commonly,	this	p-value	is	

approximated	by	Gaussian	or	c2	distribution	25.	This	procedure,	which	will	be	referred	as	the	

‘Approximate	Log-Rank	Test’	(ALRT),	assumes	that	both	populations	have	a	similar	number	of	

subjects	and	that	this	number	is	large	26.	In	cancer	genomics,	however,	these	assumptions	are	

generally	not	met	because	the	frequency	of	mutations	in	a	gene	across	patients	is	generally	low	8.	

To	address	these	issues,	a	precise	estimation	of	the	null	distribution	is	required.	However,	this	is	

challenging	since	there	is	no	analytical	form	of	the	log	rank	statistic	(to	our	knowledge)	and	the	

number	of	combinations	is	astronomically	high	even	for	a	low	number	of	subjects	and	mutations,	

making	exact	estimations	of	the	null	distribution	computationally	impractical.	Therefore,	due	of	

the	lack	of	statistical	and	computational	tools,	the	ALRT	is	commonly	applied	as	can	be	seen	in	

cancer	genomics	data	portals	(see	Correlate	Clinical	vs	Mutation	in	‘Clinical	Analyses’	from	any	

cancer	type	within	http://firebrowse.org).	Recently,	a	method	that	accelerates	the	estimation	of	

the	null	distribution,	ExaLT,	has	been	proposed	in	which	the	number	of	combinations	is	reduced	

under	certain	circumstances	controlled	by	a	precision	parameter	27.	However,	this	algorithm	is	still	

prohibitively	slow	even	for	moderated	population	sizes	(around	n=200)	and	precision	values.	

Consequently,	there	is	yet	a	need	for	fast	and	accurate	methods	to	estimate	the	null	distribution	
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and	the	probability	of	associations	of	between	mutated	genes	and	cancer	survival	time,	which	may	

help	the	discovery	of	novel	genes,	mutations,	and	provide	important	insights	to	cancer	biology.	

Here	we	propose	VALORATE	(Velocity	and	Accuracy	for	the	LOg	RAnk	TEst),	a	novel	

algorithm,	which	quickly	provides	a	precise	and	accurate	estimation	of	the	empirical	null	

distribution	and	the	probability	value	of	the	Log-Rank	statistic	being	zero	regardless	of	the	

population	size	and	the	fraction	of	mutations.	We	first	validate	the	accuracy	and	velocity	of	

VALORATE	in	simulated	and	cancer	data.	Then,	we	apply	VALORATE	to	analyze	the	gene	mutations	

associated	with	survival	times	in	61	cancer	datasets	including	more	than	40	cancer	types	from	

TCGA	and	ICGC,	which	cover	11,655	and	2,779	cancer	samples	respectively.	We	note	that,	

regardless	of	the	method,	the	significance	can	be	influenced	by	hypermutated	samples.	Next,	we	

show	comparisons	of	the	estimations	of	VALORATE	and	the	ALRT	suggesting	that	the	ALRT	may	

detect	many	false	positives	and	false	negatives	genes.	As	a	consequence	of	these	differences,	we	

observe	that	the	proportions	of	genes	associated	with	low-	and	high-risk	groups	are	largely	

different.	We	find	that	genes	associated	with	survival	using	VALORATE	were	mostly	cancer-type	

specific.	From	the	identified	genes,	many	are	well-known	cancer	genes	but	many	others	are	novel	

associations.	These	results	seem	to	be	reliable	because	significant	genes	appear	to	be	expressed	in	

the	mutated	tissues	and	its	mutations	have	high	functional	impacts.	We	conclude	that	VALORATE	

is	a	valuable	tool	for	cancer	genomics	and	may	be	useful	for	other	statistical	applications.		

	

Results	

Validation	of	the	VALORATE	algorithm	

The	VALORATE	algorithm	shown	in	Figure	1	(see	details	in	Materials	and	Methods)	is	based	

on	the	postulate	that	the	log-rank	distribution	L	will	be	highly	dependent	on	k,	the	number	of	co-

occurrences	of	events	and	mutations	when	the	number	of	subjects	in	one	group	is	very	low	or	

presumably	when	there	is	a	highly	unbalanced	number	of	subjects	between	groups.	Thus,	L	is	a	

weighted	sum	of	conditional	distributions	Lk.	The	procedure	is	fast	to	compute	because	Lk	can	be	

estimated	by	sampling.	

To	show	the	accuracy	of	VALORATE	in	the	estimation	of	the	log-rank	distribution,	we	used	

simulations	comparing	the	exact	distribution	of	all	possible	combinations	of	the	log-rank	statistic	

with	the	distribution	estimated	by	VALORATE.	A	representative	simulation	shown	in	Figure	2A	
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suggests	that	VALORATE	can	accurately	estimate	the	log-rank	distribution,	and	it	is	consistent	in	a	

variety	of	simulated	scenarios	(Supplementary	Figure	1).	As	expected,	the	most	extreme	statistics	

of	the	distribution	were	not	observed	due	to	random	sub-sampling	(Supplementary	Figure	2).	This	

small	caveat	is	not	an	issue	because	the	estimated	p	values	according	to	our	procedure	for	these	

extreme	statistic	values	would	be,	correctly,	close	to	0	and	the	observed	statistics	close	to	these	

extremes	are	accurately	sampled	(Figure	2B,	and	Supplementary	Figure	1B).		

To	show	the	accuracy	of	the	VALORATE	procedure	regarding	the	p-value	estimations,	we	

ran	some	simulations.	The	results	show	that	when	the	assumption	of	a	similar	number	of	subjects	

in	the	two	groups	are	met	(n=100	subjects	and	n1=50	mutated),	as	in	the	ALRT,	the	p-values	

estimated	by	the	ALRT	and	VALORATE	are	highly	similar	and	highly	correlated	independently	of	

the	co-occurrence	k	(Supplementary	Figure	3).	However,	when	the	number	of	subjects	between	

groups	becomes	more	dissimilar	(n1	=	30,	14,	or	7),	the	differences	in	p-value	estimations	turn	

higher,	which	correlates	with	changes	in	the	symmetry	and	shape	of	the	overall	log-rank	

distribution.	Moreover,	the	differences	in	p-value	estimations	also	depend	on	the	number	of	

events	co-occurring	in	the	mutated	risk	group	(Supplementary	Figure	3).	For	example,	in	an	

extreme	case	when	n1=7	where	the	number	of	events	in	the	mutated	group	was	k=0	(so	the	7	

mutated	samples	are	censored),	the	ALRT	estimated	a	p-value	of	0.15	whereas	VALORATE	

estimated	1.8x10-4	(Supplementary	Figure	4).	Contrary,	in	a	case	where	k=1,	the	ALRT	estimated	a	

p-value	of	3.5x10-6	whereas	VALORATE	estimated	0.27.	For	these	estimations,	VALORATE	used	

n1=7	estimated	distributions	Lk,	whereas	the	ALRT	uses	one	χ2	distribution.	

The	above	results	indicate	that	the	VALORATE	procedure	can	accurately	(i)	approximate	

the	exact	L	distribution	independent	of	the	shape	of	the	log-rank	distribution	and	(ii)	calculate	the	

correct	p-values	since	they	converge	to	the	ALRT	when	n1	is	similar	to	n/2.	This	proposes	that	

VALORATE	is	superior	to	the	ALRT	for	estimating	the	probability	of	the	difference	between	two	

survival	curves,	especially	in	the	cases	where	n1	departs	from	n/2.	

Then,	we	evaluated	the	precision	of	VALORATE	on	repeated	runs	across	different	values	of	

sampling	sizes	from	103	to	106.	The	results	show	that	at	ss=10,000,	different	runs	are	almost	

indistinguishable	indicating	high	precision	(Supplementary	Figure	5).	Even	for	ss=1,000,	the	shape	

of	the	distribution	is	highly	similar	to	that	in	ss=1,000,000	showing	that	the	procedure	is	consistent	

and	robust.	Nevertheless,	at	low	sampling	size,	two	runs	may	display	slight	differences.	Although	

the	differences	in	the	estimation	of	the	distribution	and	hence	the	p-values	should	be	small,	it	is	
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preferable	to	use	larger	sampling	sizes	to	avoid	small	fluctuations	between	runs.	Therefore,	we	

used	ss=100,000	for	the	cancer	data	analyses.		

To	evaluate	VALORATE	in	cancer	data	including	the	estimation	of	p-values,	we	compared	

the	calculations	against	those	provided	by	ExaLT,	which	is	based	on	three	different	approaches.	

The	results	are	highly	similar	between	different	methods	and	number	of	mutations	(Figure	2C)	

suggesting	that	the	p-value	estimations	from	VALORATE	are	also	accurate	in	cancer	data.	

The	computation	time	is	an	important	issue	because	genomics	data	is	being	generated	at	

high	rates	and	typical	analyses	may	involve	estimations	for	the	available	stratifications	(e.g.	cancer	

sub-types,	hormonal	status,	histological	grades)	and	within	systematic	pipelines	and	data	versions.	

Thus,	we	assessed	the	running	time	for	VALORATE	and	ExaLT	changing	the	main	parameter	

associated	with	accuracy.	Even	that	both	algorithms	are	different	in	essence,	this	test	illustrates	

the	time	scale	needed	and	how	it	grows.	The	Table	1	shows	that	VALORATE	run	more	than	10,000	

times	faster	than	ExaLT.	Besides,	the	running	time	of	VALORATE	does	not	grow	drastically.	

	

Comparison	of	detected	gene	mutations	

Recent	studies	have	suggested	that	the	ALRT	may	provide	different	and	false	results	for	

the	identification	of	cancer	gene	mutations	associated	with	outcome	27.	We	used	VALORATE	to	

compare	and	analyze	the	implications	in	the	use	of	a	more	appropriate	test	in	61	cancer	datasets	

from	the	TCGA	and	ICGC	(Supplementary	Table	1)	covering	14,434	samples,	528,124	genes	and	

3,103,054	mutations.	We	first	obtained	the	p-values	using	the	ALRT	compared	against	those	

provided	by	VALORATE	for	the	152,466	genes	having	more	than	3	samples	mutated	in	any	cancer.	

The	results	demonstrate	that,	overall,	the	p-values	are	highly	correlated	(Figure	3A),	which	further	

support	the	estimations	provided	by	VALORATE.	Nevertheless,	a	more	specific	analysis	over	the	

most	significant	region	(p	<	0.1)	shows	that	the	estimations	can	be	notably	different	(Figure	3B).	

Only	148	genes	(0.097%)	show	p-values	<	0.001	in	both	tests.	At	p	<	0.01,	the	ALRT	seems	to	call	

1.8	times	more	genes	as	significant	compared	to	VALORATE.	However,	we	observed	some	

differences	across	cancer	datasets	(Supplementary	Figure	6).	For	example,	some	cancer	types	

show	more	detections	in	the	ALRT	such	as	breast	cancer	(BRCA)	and	others	cancer	types	show	

more	detections	in	VALORATE	such	as	uterine	corpus	endometrial	carcinoma	(UCEC).	We	then	

observed	that	the	differences	in	p-value	estimations	between	the	ALRT	and	VALORATE	are	specific	

for	genes	having	few	number	of	mutations	(Figure	3C-D),	where	the	ALRT	assumptions	are	not	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 16, 2016. ; https://doi.org/10.1101/075408doi: bioRxiv preprint 

https://doi.org/10.1101/075408
http://creativecommons.org/licenses/by-nc-nd/4.0/


met.	Indeed,	the	differences	in	p-value	estimations	decrease	for	increasing	number	of	mutations	

(Supplementary	Figure	7).	This	indicates	that,	as	the	simulations	suggested,	the	use	of	the	ALRT	

estimation	is	progressively	detrimental	when	decreasing	the	number	of	mutations	on	cancer	data.	

	

Identification	of	outcome	associated	driver	mutations	in	cancer	

The	results	shown	above	may	have	important	implications	in	cancer	genomics	because	it	

raises	the	possibility	that	other	genes	can	be	identified	and	that	some	of	the	previously	identified	

genes	using	the	ALRT	could	be	suspicious.	We,	therefore,	selected	the	most	significant	genes	after	

correction	by	false	discovery	rate	(FDR	<	0.333).	We	observed	large	differences	in	the	selected	

number	of	genes	between	VALORATE	and	the	ALRT	(Supplementary	Figure	8A).	Only	7%	of	the	

genes	was	identified	in	both	tests	or	34%	when	considered	the	rank	of	top	genes	(Supplementary	

Figure	9).	Two	examples	of	such	discrepancies	are	shown	in	Figure	4	for	the	genes	RAB42	in	breast	

cancer	and	LMTK2	in	thyroid	cancer.	The	gene	RAB42	is	the	most	significant	reported	by	the	TCGA	

in	BRCA	(p=1x10-8,	q=9x10-6,	http://firebrowse.org,	doi:10.7908/C10Z72M8),	however,	in	

VALORATE	the	significance	is	marginal	(p=0.02)	and	not	selected	after	FDR	correction	(q=0.44).	

Contrary,	the	LMTK2	in	THCA,	which	is	significantly	mutated	by	frequency	using	MutSigCV	10	from	

TCGA	but	not	associated	with	time	to	death	using	the	ALRT	(http://firebrowse.org,	

doi:10.7908/C1542N2H),	is	the	most	significant	mutated	gene	using	VALORATE	(p=0.00026,	

q=0.075)	.	All	these	results	suggest	that	VALORATE	can	identify	genes	that	are	missed	by	the	ALRT	

and	mark	genes	whose	association	with	survival	can	be	spurious,	which	contributes	to	providing	

important	insights	in	cancer	biology.		

Nevertheless,	we	observed	an	apparent	excess	of	significant	mutations	in	uterine	corpus	

endometrial	carcinoma,	bladder,	and	colon	(China)	(UCEC,	BLCA,	COCA-CN	respectively)	having	

more	than	200	genes	associated	with	survival	according	to	VALORATE	(Supplementary	Figure	8A).	

The	number	of	significant	genes	was	weakly	associated	with	dataset	characteristics	such	as	the	

number	of	samples,	events,	or	censoring	(Supplementary	Figure	10).	Instead,	it	was	clearly	

associated	with	hypermutated	samples	(Supplementary	Figure	11),	which	represent	a	minor	

proportion	of	samples	with	an	exacerbated	number	of	mutations	28.	This	bias	could	not	be	

observed	using	the	ALRT	in	UCEC	because	there	were	no	significant	genes	after	FDR	correction.	

But	in	breast	cancer	(BRCA)	where	the	ALRT	detects	many	significant	genes	and	VALORATE	does	

not,	the	same	issue	arises	using	the	ALRT	(Supplementary	Figure	11).	This	result	proposes	that	
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hypermutated	samples	may	bias	the	survival	analyses	of	mutated	genes.	To	explore	this	further,	

we	re-analyzed	all	datasets	removing	the	top	5%	most	mutated	samples.	The	results	show	a	

substantial	reduction	of	detected	genes	(Supplementary	Figure	8B)	suggesting	that	indeed	

hypermutated	samples	influence	the	selection	of	many	genes	in	several	cancer	types	(except	

gliomas).	Therefore,	for	further	analysis,	we	used	a	refined	criterion	to	remove	hypermutated	

samples	avoiding	the	removal	of	samples	having	few	mutated	genes	(Supplementary	Figure	12	

and	Materials	and	Methods).		

	

Significant	genes	and	risk	assessment	

After	removing	hypermutated	samples	and	using	an	FDR=0.333,	the	ALRT	calls	2,445	genes	

significant	while	VALORATE	calls	only	255	(Supplementary	Figure	13).	This	decrease	is	similar	

across	cancer	types.	Only	in	Gliomas,	we	observed	164	significant	genes	and	the	association	was	

not	related	to	hypermutated	samples	(Supplementary	Figure	14).	From	significant	genes,	212	were	

detected	in	both	tests	(Figure	5A).	Interestingly,	the	risk	associated	with	genes	between	tests	is	

different	(Figure	5B,	chi-square	test=2.2x10-16).	In	the	ALRT,	only	the	2%	of	identified	genes	are	

associated	with	low	risk	whereas	in	VALORATE	low-risk	genes	reach	28%.	We	observed	few	but	

more	low-risk	gene	mutations	in	cervical	squamous	cell	carcinoma,	esophageal	carcinoma,	

glioblastoma,	ovarian,	stomach-esophagus	cancers,	thyroid	cancer,	uterine	corpus	endometrial	

cancer	and	few	others	(CESC,	ESCA,	GBM,	OV,	STES,	THCA,	and	UCEC	respectively,	see	

Supplementary	Figure	15).	These	findings	may	have	implications	in	cancer	biology	because,	apart	

from	few	exceptions	such	as	IDH1	in	gliomas,	most	coding	mutations	detected	so	far	in	cancer	

have	been	associated	with	decreasing	survival	rates	using	the	ALRT	29.	Moreover,	these	results	

may	also	help	to	design	low-risk	biomarkers	in	other	cancer	types.	

	

Significant	genes	across	cancer	types	

It	is	expected	that	significant	genes	could	be	associated	with	survival	in	several	cancer	

types	because	it	is	well	known	that	some	genes	are	broadly	mutated	such	as	TP53,	PIK3CA,	PTEN,	

KRAS,	ARID1A	8,	and	others	(see	www.tumorportal.org).	Thus,	we	compared	the	significant	genes	

detected	by	VALORATE	across	cancer	types	(Figure	6).	At	FDR=0.333,	only	TP53	and	MUC4	were	

found	significantly	associated	with	survival	in	at	least	two	‘distinct’	cancer	types	(TP53	to	

GBMLGG,	LAML,	BOCA-FR,	BTCA-JP,	PRAD-UK,	and	MUC4	to	COCA-CN,	KICH,	and	KIPAN).	TP53	was	
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marginally	significant	(FDR	>	.33	and	p	<	0.05)	in	many	other	cancer	types	and	MUC4	in	a	few	

others.	Interestingly,	ATRX,	well-known	in	glioblastomas	30,	was	significant	in	gliomas,	

neuroblastoma,	and	pheochromocytoma/paraganglioma,	all	these	related	to	nervous	system.	

Some	genes	appear	significant	in	one	cancer	type	and	marginally	significant	in	others	types.	

Extreme	cases	are	MUC16,	MUC17,	PCLO,	and	DNMT3A	that	are	marginally	significant	in	few	more	

types.	Some	few	genes	appear	significant	in	datasets	that	are	composed	of	similar	cancer	types	

such	as	gliomas	(GBMLGG,	which	is	composed	of	glioblastoma	and	low-grade	gliomas),	stomach-

esophagus	(STES),	and	kidney	(KIPAN).	Apart	from	these	few	exceptions,	the	majority	of	the	genes	

seem	cancer-type	specific	(Figure	6)	even	when	the	significance	assumption	is	relaxed	

(Supplementary	Figure	16).	Remarkably,	we	did	not	observe	significant	survival	association	to	

other	well-known	cancer	genes	such	as	PIK3CA	(lowest	p=0.007,	q=0.5	in	UCEC),	BRAF	(lowest	

p=0.028,	q=0.98	in	KIRP),	and	FBXW7	(lowest	p=0.018,	q=0.99	in	MELA-AU).	From	the	77	genes	in	

Figure	6,	only	12	were	also	significant	in	the	TCGA	systematic	analyses	using	the	ALRT.	Overall,	

these	results	suggest	that	association	to	survival	is	a	different	feature	that	mutation	frequency	

supporting	the	exploration	of	association	to	a	broader	set	of	mutated	genes	rather	than	those	

detected	by	MutSigCV	or	similar	methods.	

	

Functional	Validation	of	Significant	Genes	

In	this	study,	43	genes	were	significant	only	in	VALORATE	and	can	be	considered	novel	

associations	(Figure	6).	In	addition,	many	significant	genes	were	highly	ranked	in	VALORATE	and	

obscured	by	its	rank	using	the	ALRT	(Supplementary	Figure	9).	Therefore,	we	asked	whether	the	

significant	genes	may	have	plausible	functional	roles.	For	this,	we	made	two	tests	regarding	gene	

expression	and	functional	impact	of	mutations.	For	the	first,	we	reasoned	that	if	a	mutation	in	a	

coding	gene	is	associated	with	survival,	the	gene	should	be	expressed.	The	Figure	6	shows	that	

most	of	the	significant	genes	are	expressed	at	some	level.	Some	genes	show	expression	levels	

around	15%	(relative	to	their	cancer)	but	the	expression	levels	across	tissues	are	highly	consistent	

(for	example	TP53,	MUC17,	FLG2,	TUBA3C)	suggesting	a	common	functional	level	of	expression.	

Moreover,	the	expression	of	mutated	samples	is	highly	similar	to	those	observed	in	its	cancer	

type.		

We	also	tested	the	possible	functional	impact	associated	with	the	mutations	of	significant	

genes	that	may	affect	active	sites,	interactions	with	other	proteins,	and	3D	folding.	This	can	be	
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corroborated	comparing	the	non-synonymous	mutations	against	conserved	sequences	in	homolog	

proteins.	For	this,	we	used	MutationAssesor	15,	which	summarize	the	functional	impact	into	

neutral,	low,	medium,	and	high	impact.	We	observed	that	the	mutations	in	the	identified	genes	

have	significantly	higher	impact	categories	than	randomly	chosen	mutated	genes	from	same	

cancer	types	and	a	similar	number	of	mutations	(Supplementary	Figure	17).		

All	these	results	suggest	that,	in	general,	coding	mutations	of	the	identified	significant	

genes	can	be	functional.		

	

Discussion	

A	fundamental	problem	in	cancer	genomics	and	precision	medicine	is	the	determination	of	

genomic	alterations	that	could	be	associated	with	survival	times.	The	selected	alterations	are	then	

the	seeds	for	research	studies	of	biological	mechanisms,	drug	discovery,	and	possible	treatments.	

The	identification	of	the	important	genomic	alterations	is,	however,	challenging	because	most	of	

the	observed	alterations	are	present	in	a	low	number	of	patients,	there	are	thousands	of	

alterations	to	test,	and	the	associations	need	to	be	tested	in	several	subject	strata	(grades,	

hormonal	status,	molecular	subtypes,	etc.).	It	has	been	recently	shown	that	the	statistical	

approximations	used	for	this	identification	in	cancer	genomics	are	inaccurate	27.	The	failure	is	

basically	due	to	the	low	number	of	patients	presenting	a	specific	alteration	that	generates	heavily	

unbalanced	population	sizes.	Although	an	accurate	tool	has	been	recently	proposed	27,	it	is	

prohibitively	slow	to	compute	in	practice.	In	this	work,	we	revisit	the	problem	of	estimation	and	

propose,	VALORATE,	a	novel	estimation	procedure	that	is	independent	of	the	number	of	

alterations.	We	show	by	simulations	that	VALORATE	is	fast,	precise,	and	accurate.	In	comparison	

with	another	method,	VALORATE	also	provided	accurate	p-values	in	cancer	data.	We	show	that	

VALORATE	is	accurate	when	comparing	largely	unbalanced	populations	and	highly	similar	to	the	

ALRT	when	the	populations	are	balanced.	Thus,	VALORATE	can	be	used	in	both	cases.	This	should	

facilitate	its	use	and	implementation	in	current	bioinformatics	pipelines	(see	Code	section	in	

Methods).		

We	demonstrate	that	the	ALRT	generates	poor	results	under	unbalanced	populations.	This	

agrees	with	previous	results	26,27.	Furthermore,	our	simulations	demonstrate	that	the	ALRT	

overestimates	the	significance	for	higher	values	of	co-occurrences	(k)	and	underestimates	the	
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significance	for	lower	values	of	co-occurrences	even	in	the	same	number	of	mutations	(n1).	This	

could	explain	the	large	differences	in	genes	called	significant	between	the	ALRT	and	VALORATE	

across	cancer	types.	

Using	VALORATE,	we	identified	that	hypermutated	samples	may	bias	the	estimation	of	p-

values.	This	issue	is	related	to	two	factors.	First,	VALORATE	is	a	univariate	procedure	and	suffers	its	

same	caveats,	it	tests	the	alterations	in	one	gene	(or	locus)	at	the	time	being	blind	to	other	

alterations.	Second,	the	biology	of	the	relation	cancer-mutation-patient-survival	is	complex.	In	

UCEC	for	example,	hypermutated	samples	show	high	survival	times	and	censored.	Contrary,	in	

BRCA,	the	hypermutated	samples	present	poor	survival.	Here,	we	first	removed	top	5%	most	

mutated	samples	to	demonstrate	the	impact	of	the	hypermutated	samples.	Then,	we	refined	the	

criteria	avoiding	the	unnecessary	removal	of	samples	to	yield	more	fair	estimations.	Nevertheless,	

the	decision	whether	to	remove	samples,	how	many,	and	which,	deserves	attention.	

In	datasets	that	are	generated	by	the	union	of	cancer	types	such	as	stomach-esophagus	

(STES),	colorectal	(COADREAD),	pan-kidney	(KIPAN)	and	others,	we	observed	similar	p-value	

estimations	of	the	mutated	genes	in	individual	datasets	compared	to	the	merged	datasets.	

However,	we	observed	164	significant	genes	in	gliomas	(GBMLGG)	while	only	19	and	2	genes	were	

significant	in	low-grade	gliomas	(LGG)	and	glioblastomas	(GBM),	respectively.	This	could	be	related	

to	the	fact	that	LGG	shows	higher	survival	than	GBM,	so	genes	that	are	more	frequently	mutated	

in	LGG	or	GBM	showing	some	degree	of	relation	with	survival	would	likely	be	significant	in	

GBMLGG.	Nevertheless,	we	noted	that	significant	genes	in	GBMLGG	are	not	necessarily	significant	

or	marginally	significant	in	LGG	or	GBM	(Supplementary	Figure	18).	Thus,	the	significance	in	

GBMLGG	seems	to	be	a	reflect	in	gain	of	power	given	the	aggregated	number	of	samples.	

Surprisingly	many	cancer	types	do	not	show	significant	gene	mutations.	It	is	possible	that	

the	small	sample	size	could	affect	some	cancer	datasets.	For	example,	in	Papillary	thyroid	

carcinoma	(THCA-SA),	we	analyzed	only	15	samples.	Nevertheless,	in	other	cancers	like	breast,	

bladder,	and	skin	cancer	(BRCA,	BLCA,	and	SKCM),	no	significant	genes	were	found	associated	with	

survival	time	at	FDR=0.333	even	though	that	these	datasets	include	more	than	900,	400,	and	340	

samples	respectively.	This	indicates	that	more	focused	analyses	in	different	strata	are	needed	in	

these	cancer	types.	Another	example	is	CLLE-ES	where	no	genes	significant	were	found	using	218	

patients,	but	some	of	the	top	ones	(EGR2,	ASXL1,	NOTCH1,	POT1,	and	NXF1)	have	been	reported	

recently	31	using	more	than	450	patients.	So	it	is	likely	that	we	are	detecting	fewer	genes.		

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 16, 2016. ; https://doi.org/10.1101/075408doi: bioRxiv preprint 

https://doi.org/10.1101/075408
http://creativecommons.org/licenses/by-nc-nd/4.0/


As	a	proof	of	concept,	we	focused	in	coding	mutations,	however,	it	is	known	that	copy	

number	alteration	(CNA)	are	also	related	to	survival	29,31.	Thus,	further	analyses	should	focus	also	

on	CNA	data.	

Some	mutational	biomarkers	have	been	proposed	for	few	cancer	types	31.	In	this	context,	

we	find	that	some	genes	previously	identified	using	the	ALRT	may	change	its	significance,	that	

others	may	climb	up	in	rank,	that	a	considerable	proportion	of	genes	provides	low-risk	odds,	and	

that	hypermutated	samples	may	influence	the	identification.	These	results	suggest	that	novel	or	

refined	cancer	biomarkers	can	be	identified.	

Based	in	our	simulations	and	analysis	in	cancer	data,	we	demonstrated	that	VALORATE	is	

fast,	precise,	and	accurate	to	estimate	the	p-value	of	the	difference	of	two	survival	curves	using	

the	log-rank	statistic	even	in	cases	when	the	number	of	subjects	in	survival	groups	are	highly	

unbalanced.	We	conclude	that	VALORATE	is	a	novel	and	useful	tool	in	cancer	genomics	and	other	

statistical	analyses.	

	

Methods	

The	VALORATE	algorithm	

It	is	assumed	that	there	are	two	groups	of	individuals	and	that	for	each	patient	we	know	

their	follow-up	time	and	whether	that	time	represent	an	event	(e.	g.	death,	metastasis,	

recurrence)	or	not	(censored).	n	represents	the	total	number	of	individuals	and	n1	the	individuals	

in	the	mutated	group.	There	would	be	then	r	distinct	ordered	times	and	j=1..r	represents	each	of	

these	times.	Let	Rj	be	individuals	at	risk	that	have	not	yet	presented	the	event	and	R1j	those	at	risk	

for	the	mutated	group.	In	each	time	j,	there	would	be	Oj	events	(zero	or	more),	and	O1j	events	for	

the	mutated	group.	Under	the	null	hypothesis	of	no	difference	between	groups,	O1j	is	

hypergeometric,	so	the	expected	number	of	events	in	the	mutated	group	is	E1j=R1j*Oj/Rj	25.	The	

log-rank	statistic	is	then	the	sum	of	differences	between	the	expected	and	the	observed	number	

of	events	25	as	

𝐿 = 𝑂$% − 𝐸$%

(

%)$

	 (1)	

Under	certain	assumptions	(high	number	of	samples,	not	so	few	events,	and	similar	group	

sizes	26),	the	mean	of	L	is	zero,	and	its	variance	is	
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𝑉 =
𝑂%𝑅$%(𝑅% − 𝑅$%)(𝑅% − 𝑂%)

𝑅%.(𝑅% − 1)

(

%)$

	

	

(2)	

Thus,	a	L2/V	follows	a	c2	distribution	with	one	degree	of	freedom	and	this	fact	can	be	used	

to	estimate	the	p-value	of	L	being	zero	equivalent	to	no	difference	in	the	survival	curves.	

Nevertheless,	the	c2	approximation	yield	bias	estimations	when	n1	<<	n/2	27,	which	is	the	case	in	

cancer	genomics.	To	get	accurate	estimations	of	the	probability	of	the	two	survival	curves	been	

equal	when	n1	<<	n/2,	we	first	rewrite	the	equation	(1)	in	terms	of	events	ranked	by	time	and	their	

corresponding	mutated	group	27	as	

𝐿 = 𝑐% 𝑥% −
𝑛$ − 𝑥3

%4$
3)$

𝑛 − 𝑗 + 1

7

%)$

	

	

(3)	

where	cj=1	is	the	indicator	of	event	(death,	recurrence,	metastases)	or	cj=0	for	censored	

observations	(events	not	yet	observed)	ordered	by	time,	xj=1	for	subjects	that	are	included	in	the	

mutated	group	or	xj=0	for	those	who	are	not	mutated,	n	is	the	total	number	of	subjects,	and	n1,	

which	is	equal	to	∑xj,	is	the	total	number	of	subjects	mutated.	To	estimate	the	permuted	density	of	

the	test	statistic	L,	we	rearranged	equation	(3)	as	

𝐿 = 𝑐%𝑥% +
7

%)$

𝑐%
𝑥3

%4$
3)$

𝑛 − 𝑗 + 1

7

%)$

− 𝑐%
𝑛$

𝑛 − 𝑗 + 1

7

%)$

	

	

(4)	

where	it	is	evident	that	when	n1	<<	n/2,	the	Log-Rank	statistic	L,	should	depend	strongly	on	

the	left	term,	k	=	 𝑐%𝑥%7
%)$ ,	the	number	of	co-occurrences,	which	represent	events	(cj=1)	that	are	

also	mutated	(xj=1).	The	middle	term	also	depends	on	xj	but	it	is	more	robust	to	precise	positions	

of	xj=1	than	the	left	term,	which	is	highly	dependent	on	the	positions	of	xj=1.	The	right	term,	let	be	

s1,	is	constant.	From	(4)	it	follows	that	k-s1	<	L	<	k	for	a	particular	value	of	k.	This	observation	is	

important	because	it	points	out	that	the	overall	log-rank	distribution	can	be	seen	as	a	mixture	of	

distributions	that	depend	on	the	number	of	co-occurrences	k.	The	number	of	combinations	for	

each	co-occurrence	k,	although	highly	variable,	can	be	easily	calculated.	To	estimate	a	p-value,	the	

relative	proportion	of	combinations	of	the	co-occurrences	k	is	used	to	weight	the	relative	

contribution	of	the	middle	term	to	the	overall	distribution.	Furthermore,	the	distribution	of	L	

conditional	to	a	specific	value	of	k	(Lk	=	P(L|k))	can	be	estimated	by	random	sampling	

(permutations)	instead	of	an	non-conditioned	all-combinations	approach	used	by	other	methods	
32.	Consequently,	the	VALORATE	algorithm	(Figure	1)	estimates	the	distribution	of	L	by	a	weighted	
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sum	of	conditional	distributions	Lk	for	specific	values	of	k	such	as	L=	∑wkLk.	Where	k	varies	from	0	

to	min(n1,	d)	and	wk	is	the	proportional	contribution	of	the	combinations	for	particular	co-

occurrences	k.	Finally,	the	probability	of	a	specific	observed	statistic,	L(gene),	is	estimated	by	the	

area	of	the	right	(or	left)	fraction.	The	area	is	easily	estimated	summing	the	number	of	random	

samples	of	each	Lk	that	are	greater	(or	lesser)	than	L(gene)	multiplied	by	its	corresponding	weight	wk.	

Ties	can	be	broken	by	random	sampling	the	c	vector	in	tie	positions	during	the	estimation	of	Lk	

only	in	tie	positions	containing	mixtures	of	events	and	censored	observations.	During	the	

estimation	of	the	p-value,	we	estimate	the	average	log-rank	statistic	permuting	tie	positions.	

The	main	parameter	for	VALORATE	is	the	total	number	of	samples	(ss=sampling	size)	used	

for	the	estimation	of	the	whole	distribution.	For	each	value	of	k,	the	sampling	size	ssk	is	obtained	

weighting	ss	respect	to	the	probability	of	observing	k	(or	a	minimum	of	sampling,	ssmin,	or	all	

combinations	if	ssk	is	more	than	half	of	the	number	of	combinations	for	k).	We	commonly	use	

ss=100,000,	and	ssmin=1,000.	For	each	cancer	dataset,	this	procedure	was	used	to	obtain	L	for	each	

observed	value	of	n1	(usually	for	n1	>	3	or	n1=3	in	special	cases,	see	the	next	sections).	The	p-values	

have	to	be	multiplied	by	a	factor	of	2	for	two-tailed	tests,	which	was	used	for	comparisons	with	

the	ALRT.	

	

Cancer	mutation	data	

The	mutation	and	clinical	data	were	obtained	from	data	portals.	From	TCGA	(https://tcga-

data.nci.nih.gov)	specifically	from	the	FireBrowse	interface	(http://firebrowse.org/)	and	from	ICGC	

(https://dcc.icgc.org).	A	summary	of	the	used	data	is	shown	in	Supplementary	Table	1.	Overall,	61	

cancer	datasets	were	analyzed	(35	from	TCGA	and	26	from	ICGC)	covering	12,428	cancer	samples	

and	2,772,613	gene	mutations	(a	gene	may	be	mutated	more	than	one	time	per	sample).	Only	

mutations	carrying	a	clear	coding	effect	(missense,	nonsense,	frame-shift,	insertions,	deletions,	

and	splicing	changes)	were	used	avoiding	mutations	in	introns	and	untranslated	regions.	

	

Simulations	of	survival	data	and	mutations	

To	determine	the	accuracy	and	precision	of	VALORATE,	we	performed	simulations	

generating	random	c	vectors	for	specific	values	of	n,	n1,	and	d.	All	possible	values	of	L	were	
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calculated	corresponding	to	all	possible	combinations	of	the	x	vector.	Thus,	the	exact	distribution	

of	L	was	obtained	and	compared	to	the	distribution	estimated	by	VALORATE.	

	

Performance	analyses	

To	evaluate	and	compare	the	running	time	of	VALORATE,	we	used	the	glioblastoma	

dataset	reported	in	the	supplementary	data	from	Vandin	et	al.	27.	Specifically,	we	used	the	file	

tableR.txt	obtained	from	https://github.com/fvandin/ExaLT.	The	p-value	estimations	used	for	

comparisons	with	VALORATE	in	Figure	2	used	all	genes.	From	the	3	p-values	(LEFT,	RIGHT,	SUM)	

provided	by	ExaLT,	we	used	the	closest	compared	to	VALORATE.	The	estimations	of	CPU-time	

were	performed	for	4	genes	only	having	the	largest	number	of	mutations	and	that	are	estimated	

by	the	ExaLT	algorithm	(marked	as	FPTAS)	using	the	default	parameters.	Genes	used	were	PIK3R1,	

IDH1,	ERBB2,	and	SYNE1	having	12,	10,	9,	and	7	mutations	respectively.	

	

VALORATE	analyses	

For	the	simulations,	the	ss	parameter	used	is	specified	in	each	particular	experiment	and	

ssmin	was	1,000	unless	specified.	For	the	cancer	data	analyses,	we	used	ss=100,000.	We	focused	on	

genes	mutated	in	more	than	4%	of	the	patients.	Thus,	for	46	cancer	datasets	having	75	or	more	

subjects	with	survival	data,	only	genes	mutated	in	4	or	more	subjects	were	used.	For	the	15	cancer	

datasets	having	74	or	fewer	subjects,	only	genes	mutated	in	3	or	more	subjects	were	used.		

	

Selection	of	hypermutated	samples	

The	range	of	mutation	rates	per	cancer	type	is	dependent	on	particularities	of	each	cancer	

type	10.	For	instance,	the	median	of	the	number	of	mutated	genes	of	neuroblastoma	(NBL-US)	and	

thymus	cancer	(THYM)	are	1	and	9	respectively,	while	this	number	in	bladder	(BLCA)	and	

melanoma	(MELA-AU)	is	169	and	343	(Supplementary	Figure	12).	Accordingly,	to	avoid	removing	

samples	in	cancer	types	having	few	mutations,	hypermutated	samples	were	removed	if	they	have	

more	than	500	mutated	genes,	are	within	the	top	5%	of	most	mutated	samples,	and	the	number	

of	mutated	genes	is	larger	than	the	median	plus	four	times	the	median	absolute	deviation.	The	

specific	number	of	samples	removed	per	cancer	type	is	shown	in	Supplementary	Figure	12.		
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Functional	analyses	of	mutated	genes	

To	validate	whether	the	significant	genes	obtained	by	VALORATE	could	have	a	functional	

effect,	we	performed	two	analyses.	First,	we	reasoned	that	a	significant	gene	will	likely	be	

expressed	to	exert	a	functional	role.	Thus,	we	obtained	the	gene	expression	levels	from	TCGA	or	

ICGC	data	portals	of	available	cohorts	to	assess	the	overall	relative	expression	of	the	significant	

genes	including	the	comparison	between	all	subjects	and	those	mutated.	Microarray	or	RNA-Seq	

data	was	used	(Supplementary	Table	1).	Second,	we	thought	that	significant	mutations	should	be	

more	‘damaging’	than	random	mutations.	Therefore,	we	used	MutationAssessor	15	to	qualify	the	

level	of	the	functional	impact	of	mutations.	This	tool	classifies	mutations	according	to	evolutionary	

conservation	patterns	of	affected	amino	acids	in	homolog	proteins.	

Code	

The	VALORATE	code	was	mainly	implemented	in	R	with	some	portions	in	C.	VALORATE	is	

freely	available	for	download	and	usage	under	a	general	MIT	license.	Instructions	for	usage,	

example,	and	additional	information	can	be	found	at	https://github.com/vtrevino/valorate.		
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Tables	

Table	1.	Running	time	for	the	probability	calculation	of	4	genes	in	two	algorithms.	

	 VALORATE	 ExaLT	(FPTAS)	
Accuracy	 Parameter	

(ss)	
CPU	Time	

(sec)	
Time	

Growth	
Parameter	

(af*)	
CPU	Time	

(sec)	
Time	

Growth	
Low	 1,000	 0.10	 	 1,000	 563	 	
Modest	 10,000	 0.15	 1.5x	 100	 710	 1.3x	
Good	 100,000	 0.37	 2.5x	 10	 2,405	 3.4x	
High	 1,000,000	 2.24	 6.0x	 1	 34,910	 14.5x	
Extreme	 10,000,000	 14.28	 6.4x	 -	 -	 	

*	Approximation	factor	
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Figures	and	Legends	

	

	
Figure	1.	Overview	of	the	VALORATE	algorithm.	For	a	dataset	having	n	samples,	d	deaths,	and	a	

gene	having	n1	sample	mutations	coded	in	the	vector	x	of	mutated	subjects,	the	conditional	

distributions	Lk	are	estimated	by	random	sampling	x	over	k,	where	k	is	the	number	of	co-

occurrences	(events	that	are	also	mutated).	The	proportional	weight	of	each	Lk	can	be	estimated	

by	the	contribution	to	the	total	number	of	combinations,	which	for	a	given	k	can	be	calculated	by	

C(n-d,	n1-k)*C(d,	k),	where	C	is	the	combination	function.	The	overall	distribution	is	then	estimated	

by	a	weighted	sum	on	Lk.	Finally,	the	p-value	for	an	observed	log-rank	value	in	a	mutated	gene	can	

be	estimated	by	weighting	the	conditional	p	values	over	k.	
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Figure	2.	Accuracy	of	VALORATE.	(A)	Comparison	of	the	exact	log-rank	distribution	for	a	

simulated	dataset	with	the	distribution	estimated	by	VALORATE	using	ss=100,000.	The	simulation	

was	estimated	by	n=100	subjects,	d=10	events,	and	n1=7	mutations,	which	generates	

16,007,560,800	combinations.	(B)	Densities	in	logarithm	base	10	to	show	details	in	low-density	

regions	(above	3).	(C)	Comparison	of	the	p-values	estimated	by	VALORATE	and	those	estimated	by	

ExaLT	for	the	GBM	dataset	from	Vandin	et	al.	(2015)	shown	in	supplementary	material	(TableR.txt	

file	in	https://github.com/fvandin/ExaLT).	p-values	are	shown	in	negative	of	the	logarithm	base	10.	
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Figure	3.	Comparison	of	the	p-value	estimations	from	VALORATE	and	the	ALRT	in	cancer	

datasets.	(A)	p-Value	estimated	by	VALORATE	(horizontal	axis)	and	the	ALRT	(vertical	axis).	(B)	

Same	than	(A)	in	logarithm	base	10	scale	to	highlight	region	of	significance.	Only	genes	having	4	or	

more	mutations	are	shown.	(C)	The	p-values	for	genes	having	4	samples	mutated.	(D)	The	p-values	

for	genes	having	more	than	25	sample	mutated.	
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Figure	4.	Examples	of	differences	in	p-value	estimations.	(A)	RAB42	in	BRCA	from	TCGA.	

(B)	LMTK2	in	THCA	from	TCGA.	
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Figure	5.	Comparison	of	significant	genes	and	associated	risk.	(A)	The	genes	detected	in	

two	methods.	(B)	The	number	of	genes	associated	with	high-	and	low-risk.	
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Figure	6.	Significant	genes	across	cancer	types	detected	by	VALORATE.	(A)	Map	of	genes	

detected	(vertical)	across	cancer	types	(horizontal).	The	color	shades	(from	brown	to	orange	and	

cyan)	in	each	cell	correspond	to	FDR	q-value	when	less	than	0.9	in	which	case	the	number	of	

mutated	samples	is	also	shown.	In	cases	where	FDR	>	0.9,	the	p-Value	is	shown	in	shades	of	pink.	

The	bars	show	the	accumulated	number	of	cancer	types	for	genes	(left	bars)	or	genes	for	cancer	

types	(top	bars).	For	Gliomas	(GBMLGG)	and	Low-Grade	Gliomas	(LGG)	only	the	top	10	genes	are	

shown.	The	genes	marked	with	an	asterisk	(*)	have	been	reported	as	significant	in	FireBrowse	

(http://firebrowse.org)	.	(B)	Gene	expression	levels	of	the	significant	genes	in	those	cancer	types	

whose	FDR	>	0.9	and	whose	gene	expression	values	were	available.	The	filled	circles	represent	the	

median	(50%)	of	the	expression	level	and	the	continuous	line	the	25%	and	75%	using	all	samples.	

The	crossed	circles	represent	the	median	(50%)	of	the	expression	level	and	the	dotted	line	the	25%	

and	75%	from	the	mutated	samples.	The	smaller	hollow	circles	represent	the	lowest	expression	

value	from	the	mutated	samples.	 	
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Supplementary	Figures.pdf	–	Contains	all	supplementary	figures	and	legends.	

Supplementary	Table	1	-	Datasets.xlsx	–	Contains	the	details	of	cancer	datasets	used.	

Supplementary	Table	2	–	Gene	Estimations.xlsx	–	Contains	the	p-value	estimations	of	

mutated	genes	across	datasets.	

	

Supplementary	Figure	Legends	

Supplementary	Figure	1.	Comparisons	of	exact	and	estimated	log-rank	distribution	for	

varied	simulations.	The	black	line	represents	the	exact	distribution	whereas	the	colored	lines	

show	the	distributions	estimated	by	VALORATE.	The	values	of	n,	d	(ev),	n1,	and	a	total	number	of	

combinations	(comb)	is	included	in	the	top	of	each	panel.	The	top	8	panels	correspond	to	the	

distribution	of	8	simulated	scenarios	shown	in	nominal	units.	The	bottom	8	panels	display	

corresponding	distributions	in	logarithm	base	10	scale	to	highlight	local	modes	of	low	density.	

Supplementary	Figure	2.	QQ	plot	comparison	of	distributions.	The	distributions	

correspond	to	the	simulation	shown	in	Figure	2	of	the	main	paper.	The	exhaustive	distribution	is	

shown	in	horizontal	axis	while	the	VALORATE	distribution	is	shown	in	the	vertical	axis.	Each	dot	

corresponds	to	the	value	of	the	distribution	from	0%	to	100%	in	increments	of	1%.	The	extreme	

dots	around	+/-	6	marked	with	arrows	were	seen	in	the	exhaustive	calculation	but	not	observed	in	

the	random	sampling	of	VALORATE,	which	is	expected	due	to	random	nature	of	the	sub-sampling	

process.	

Supplementary	Figure	3.	Comparisons	of	p-value	estimations.	Each	row	of	panels	shows	a	

specific	simulation	varying	n1={	50,	30,	14,	7	}	respectively	randomizing	the	mutational	group	(x	

vector)	50,000	times	and	using	n=100	subjects	and	d=10	events.	The	left	column	shows	the	

observed	distribution	of	k	co-occurrences	(death	and	mutations),	followed	by	the	p-value	

estimations	in	linear	and	logarithmic	scales,	and	the	overall	L	distribution	estimated	by	VALORATE.	

The	ALRT	p-values	are	shown	in	the	horizontal	axis	whereas	the	VALORATE	p-values	are	shown	in	

the	vertical	axis.	Note	that	p-value	differences	are	dependent	on	n1	and	k.	Some	co-occurrences	

were	missing	within	the	50,000	random	vectors	in	n1=14	and	n1=7.	



Supplementary	Figure	4.	Examples	of	differences	in	the	p-value	estimation.	(A)	Shows	

the	estimated	p-values	from	the	ALRT	(horizontal	axis)	and	VALORATE	(vertical	axis)	for	a	

simulation	having	n=100,	d=10,	and	n1=7	(as	in	Supplementary	Figure	3).	Colors	correspond	to	the	

number	of	co-occurrences	(black=0,	red=1,	green=2,	blue=3,	cyan=4,	magenta=5,	and	6	and	7	

were	not	observed	in	this	sampling).	“*”	at	the	bottom	right	(black)	and	top	left	(red)	marks	two	

extreme	cases	shown	in	(B)	and	(C)	respectively.	(B)	The	estimated	p-value	using	VALORATE	of	

1.8x10-4	which	was	estimated	by	the	ALRT	as	p=0.15.	(C)	The	estimated	p-value	using	VALORATE	of	

0.27	which	was	estimated	by	the	ALRT	as	p=3.5x10-6.	

Supplementary	Figure	5.	Precision	of	VALORATE	at	different	values	of	sampling	size.	Two	

parameters	sets	(scenarios)	were	used.	The	top	2	rows	show	simulations	at	n=100,	d=10	(ev),	n1=7	

and	the	2	bottom	rows	at	n=300,	d=30	(ev),	n1=4.	Columns	show	different	values	of	the	sampling	

size	parameter	(ss)	corresponding	to	103,	104,	105,	and	106.	Each	panel	shows	two	runs	in	different	

colors.	Row	1	and	3	correspond	to	raw	scale	whereas	rows	2	and	4	correspond	to	logarithm	base	

10	scale	to	highlight	low-density	regions.	

Supplementary	Figure	6.	Differences	of	p-value	estimations	across	cancer	types.	Each	

panel	shows	a	cancer	type,	the	samples	used,	the	number	of	censored	samples,	the	average	

number	of	mutations	per	sample,	and	the	p-value	estimations	for	VALORATE	(horizontal	axis)	and	

the	ALRT	(vertical	axis).	Each	dot	corresponds	to	a	gene	in	the	dataset.	Only	genes	whose	p-value	<	

0.01	in	any	test	and	having	4	or	more	mutations	are	colored.		

Supplementary	Figure	7.	Differences	of	p-value	estimations	along	a	number	of	

mutations.	Each	panel	shows	the	p-value	estimated	in	VALORATE	(horizontal	axis)	and	the	ALRT	

(vertical	axis)	for	the	specified	number	of	samples	mutated	(from	3	to	more	than	25).	Colors	

correspond	to	cancer	types.		

Supplementary	Figure	8.	Number	of	significant	genes	at	FDR=0.333	across	cancer	types.	

(A)	Significant	genes	using	all	samples	in	VALORATE	and	the	ALRT.	(B)	Significant	genes	after	

removal	of	top	5%	most	mutated	samples.	

Supplementary	Figure	9.	Comparison	of	significant	and	top	genes.	(A)	q-value	of	genes	

significant	at	q-FDR	<	0.333	and	p	<	0.05	in	VALORATE	(horizontal	axis)	or	in	the	ALRT	(vertical	

axis).	(B)	Ranks	of	genes	in	(A).	



Supplementary	Figure	10.	Association	of	the	number	of	significant	genes	with	the	

numbers	of	samples.	Association	to	(A)	the	number	of	samples	used,	(B)	deaths,	(C)	censored,	and	

(D)	percentage	of	censoring.	

Supplementary	Figure	11.	Association	of	the	number	of	significant	genes	with	

hypermutated	of	samples.	The	panels	show	the	top	30	most	significant	genes	(having	lowest	p-

values)	in	the	vertical	axis	and	samples	in	the	horizontal	axis.	The	number	of	mutations	per	subject	

and	the	survival	days	is	also	shown	on	top	of	each	panel.	The	ordering	of	columns	corresponds	to	

the	significance	and	whether	the	gene	was	associated	with	low	risk	(green)	or	high	risk	(red).	The	

columns	were	ordered	by	the	number	of	mutations	in	low	and	high	risk	within	the	genes	shown.	

Supplementary	Figure	12.	Number	of	hypermutated	samples	removed	along	with	

mutated	genes	per	sample	and	cancer	type.	Each	dot	corresponds	to	a	sample	within	a	cancer	

type	(horizontal	axis).	Cancer	types	ordered	by	the	median	of	the	number	of	mutated	genes.	The	

number	of	samples	of	each	cancer	type	is	shown	in	parenthesis.	The	number	of	‘hypermutated’	

samples	removed	are	shown	above	the	line	marking	the	cut-off	used.	For	most	cancer	types,	a	500	

cut-off	value	was	used.	

Supplementary	Figure	13.	Number	of	significant	genes	per	cancer	type	after	removal	of	

hypermutated	samples.	

Supplementary	Figure	14.	Significant	genes	using	VALORATE	in	gliomas	are	not	related	to	

most	mutated	samples.	

Supplementary	Figure	15.	Risk	group	associated	with	significant	genes	using	VALORATE.	

Supplementary	Figure	16.	Top	genes	seem	cancer-type	specific.	(A)	Significant	genes	

relaxing	the	FDR	cut-off	to	FDR	<	0.999,	p	<	0.05,	and	maximum	10	genes	per	cancer	type.	(B)	The	

p-value	of	the	top	5	genes	per	cancer	type.	

Supplementary	Figure	17.	Functional	impact	of	the	mutations	in	significant	genes.	(A)	

Functional	impact	of	the	mutations	in	significant	genes.	(B)	Functional	impact	of	random	genes	

having	a	similar	number	of	mutations	within	the	same	cancer	types.	The	annotations	were	

obtained	from	MutationAssessor.	(C)	Statistical	analysis	of	the	differences	in	functional	impact.	

Supplementary	Figure	18.	Comparison	of	the	significance	of	genes	between	Gliomas	and	

Glioblastoma	and	Low-Grade	Gliomas.	The	figure	shows	the	p-value	estimated	by	VALORATE	in	

logarithm	base	10	scale	for	Glioblastoma	(GBM)	in	the	vertical	axis,	for	Low-Grade	Gliomas	(LGG)	



in	the	horizontal	axis	and	for	Gliomas	(GBMLGG)	in	the	size	of	the	bubble.	Top	genes	in	gliomas	

(GBMLGG)	are	labelled.	

	


