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ABSTRACT (309/350): 48 

Background 49 

We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 50 

(NF1) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor 51 

suppressor function is challenging because the loss may occur via mechanisms that do not involve 52 

mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status, 53 

phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may 54 

alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which 55 

tumors will benefit from synthetic lethal molecules. 56 

 57 

Results 58 

We developed a strategy to predict tumors with low NF1 activity and hence tumors that may 59 

respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas 60 

(TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with 61 

whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier 62 

detected NF1 mutated tumors (test set area under the receiver operating characteristic curve (AUROC) 63 

mean = 0.77, 95% quantile = 0.53 – 0.95) over 50 random initializations. On RNA-Seq data transformed 64 

into the space of gene expression microarrays, this method produced a classifier with similar 65 

performance (test set AUROC mean = 0.77, 95% quantile = 0.53 – 0.96). We applied our ensemble 66 

classifier trained on the transformed TCGA data to a microarray validation set of 12 samples with 67 

matched RNA and NF1 protein-level measurements. The classifier’s NF1 score was associated with NF1 68 

protein concentration in these samples. 69 

 70 

Conclusions 71 
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We demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in GBM. The 72 

ensemble classifier performed well for samples with very high or very low NF1 protein concentrations 73 

but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless, high-74 

performing and validated predictors have the potential to be paired with targeted therapies and 75 

personalized medicine. 76 

 77 

BACKGROUND: 78 

Genomic tools allow investigators to devise therapies targeting specific molecular abnormalities in 79 

tumors. One such alteration is the loss of neurofibromin 1 (NF1), an important tumor suppressor that 80 

regulates the activity of RAS GTPases [1,2]. Heterozygous mutation or deletion of NF1 causes 81 

neurofibromatosis type 1 (NF), one of the most frequently inherited genetic disorders [3]. NF patients 82 

often develop plexiform neurofibromas (PNs), benign nerve tumors for which the only therapy is 83 

surgery. However, resection is often impossible due to the tumor’s intimate association with peripheral 84 

and cranial nerves [4]. PNs can transform to malignant peripheral nerve sheath tumors (MPNSTs), which 85 

are chemo- and radiation-resistant sarcomas with a dismal 20% 5-year survival [5]. In addition, patients 86 

with NF are susceptible to a broad spectrum of other tumors including low-grade/pilocytic 87 

astrocytomas, pheochromocytomas, optic nerve gliomas, and juvenile myelomonocytic leukemias [6]. 88 

Many aggressive non-NF associated (sporadic) tumors have recently been shown to harbor NF1 89 

mutations, including glioblastoma (GBM), neuroblastoma, melanoma, thyroid, ovarian, breast, and lung 90 

cancers [7]. Therefore, somatic and inherited loss of NF1 function is emerging as a driver of tumors from 91 

different organ sites.  92 

Several groups including our own have been working to develop therapeutic approaches to target 93 

tumors with loss of NF1. Previously, our lab developed a high throughput approach using yeast and 94 

mammalian screening platforms to identify tool compounds and drug targets for cancer cells in which 95 
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NF1 loss drives tumor formation. Our pipeline identified small molecules that selectively kill or stop the 96 

growth of MPNST cells carrying a mutation in NF1 or yeast lacking the NF1 homolog IRA2 [8]. We also 97 

developed an assay in yeast to identify the targets of our lead tool compounds and found that one of 98 

these compounds (UC-1) shares a mechanism (phosphorylation of RNA Pol II CTD Ser2/5) with 99 

experimental drugs in clinical trials [8]. UC-1 impacts CTD phosphorylation, which is regulated by the 100 

CTD kinase Ctk1, the yeast homolog of human Cdk9. We showed that deletion of CTK1 was synthetic 101 

lethal with loss of the yeast NF1 homolog IRA2. Furthermore, we have found that inhibitors of this 102 

process (dinaciclib, SNS-032) can inhibit other types of RAS-dysregulated tumor cells [9].  103 

However, relying on genetic data alone to identify tumors that may be susceptible to therapies 104 

targeting NF1 loss may leave a proportion of potentially actionable tumors unrecognized. NF1 tumor 105 

suppressor activity can be lost via mutation of the genomic locus, proteasome-mediated degradation, 106 

inhibition by miRNA, de novo insertion of an ALU element, and C→U editing of the NF1 mRNA [10–14]. 107 

This complexity presents challenges when trying to identify tumors that will benefit from molecules that 108 

exert synthetic lethality with dysregulation of NF1/RAS pathways. 109 

The Cancer Genome Atlas (TCGA) has released a large volume of data on several cancer tissues 110 

measured on a variety of genomic platforms. In the present study, we leverage TCGA GBM RNAseq 111 

expression data with matched mutation calls to construct a classifier capable of identifying an NF1 112 

inactivation signature. This strategy sidesteps the problem of functional characterization of mutations 113 

by evaluating a regulator’s downstream gene expression activity. We applied this signature to predict 114 

NF1 inactivation in a cohort of biobanked GBMs. In general, this approach can be translatable to any 115 

gene producing measurable downstream transcriptome-wide effects. 116 

 117 

METHODS: 118 

The Cancer Genome Atlas Data 119 
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We downloaded RNAseq and mutation data from TCGA Pan Cancer project from the UCSC Xena 120 

data portal [15] and subset each dataset to only the GBMs [16]. The data consists of 607 GBMs; of which 121 

291 have mutation calls, 172 have RNAseq measurements, and 149 have both RNAseq and mutation 122 

calls. Of these 149 samples, 15 have inactivating NF1 mutations (10.1%) and were used as gold standard 123 

positives in building the classifier (Supplementary Table S1). Additionally, to reduce dimensionality while 124 

avoiding unexpressed and invariant genes, we subset to the top 8,000 most variably expressed genes by 125 

median absolute deviation. We z-scored all gene expression measurements. This resulted in final matrix 126 

with dimension 149 samples by 8,000 genes. For use in platform independent predictions, we used 127 

Training Distribution Matching (TDM) to transform the TCGA RNAseq data to match a microarray 128 

expression distribution [17].  129 

 130 

Hyperparameter optimization 131 

Using the GBM RNAseq data, we trained logistic regression classifiers with an elastic net penalty 132 

using stochastic gradient descent to detect tumors with NF1 inactivation. We identified high-performing 133 

alpha and L1 mixing parameters using 5-fold cross validation ensuring balanced membership of NF1 134 

mutations in each fold. Briefly, alpha controls how weight penalty and the L1 mixing parameter tunes 135 

the amount of test set regularization by controlling the sparsity of the features. An L1 mixing parameter 136 

value of zero corresponds to the L2 penalty and a value of one corresponds to the L1 penalty, with L1 137 

bringing a sparser solution. We used python 3.5.1 and Sci-kit Learn for machine learning 138 

implementations [18]. 139 

 140 

Ensemble classifier construction and application to the validation set 141 
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After selecting optimal hyperparameters, we constructed 500 classifiers that would compose our 142 

ensemble model. Specifically, across 100 different random initializations, we subset the full TCGA GBM 143 

data into 5 folds and trained a single classifier for each training fold. 144 

We borrowed terminology from the epidemiology field to describe data partitioning. We trained our 145 

models on a “training” partition and assessed model performance on a “test” partition, which refers to 146 

the held out cross-validation fold. The independent “validation set” refers to the GBM dataset 147 

generated in a different lab (see Figure 1A).  148 

Because of the small number of gold standard positive training examples, we were concerned about 149 

the stability of our model solutions. Therefore, we constructed an ensemble classifier from the 500 150 

models. Specifically, we assigned each classifier a weight using the specific randomization’s “test set” 151 

cross-validation AUROC. Lastly, for the final NF1 inactivation prediction, we used the mean of the 152 

weighted predictions across all iterations as the NF1 inactivation prediction. We applied this ensemble 153 

classifier to the validation set in which NF1 protein levels were directly measured. 154 

 155 

Validation Sample Acquisition 156 

Thirteen flash-frozen, de-identified GBM samples were obtained from the Maine Medical Center 157 

Biobank. Samples were received on dry ice and stored at -80°C until isolation of DNA/RNA/protein. To 158 

isolate DNA, tumor fragments of approximately 20 mg in mass were harvested on an aluminum block 159 

pre-chilled on dry ice. Samples were then immediately transferred to a mortar and pestle containing a 160 

small volume of liquid nitrogen. The fragments were pulverized in the mortar and pestle, and the liquid 161 

nitrogen was allowed to evaporate. Next, samples were immediately processed with a 162 

DNA/RNA/Protein Purification Plus kit (Norgen Biotek) following the standard operating protocol for 163 

animal tissue. DNA concentration and quality were assessed using an ND-1000 (Nanodrop), a Qubit 164 

Fluorometer (Thermo Scientific), and a Fragment Analyzer (Advanced Analytical Technologies). To 165 
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isolate RNA, -80 C tumor fragments were placed in 5-10 volumes of RNAlater-ICE Frozen Tissue 166 

Transition Solution (Ambion) and placed at -20°C until RNA extraction with a mirVana miRNA isolation 167 

kit, without phenol, following the standard operating protocol (Thermo Scientific). Samples were 168 

homogenized using a manual homogenizer in the presence of mirVana lysis buffer. RNA concentration 169 

and quality were determined using a Qubit Fluorometer (Thermo Scientific) and a Fragment Analyzer 170 

(Advanced Analytical Technologies). To isolate protein, small tumor fragments were pulverized and lysed 171 

in approximately 3 volumes of ice-cold radioimmunoprecipitation assay (RIPA) buffer (150 mM sodium 172 

chloride, 1% v/v nonidet P40, 0.5% w/v sodium deoxycholate, 0.05% w/v sodium dodecyl sulfate, 50 mM 173 

Tris pH 8.0) containing 1 mM sodium orthovanadate, 1 mM sodium fluoride, 1 mM 174 

phenylmethylsulfonyl fluoride, and 1X protease inhibitor cocktail (0.1 μg/mL leupeptin, 100 μM 175 

benzamidine HCl, 1 μM aprotinin, 0.1 μg/mL soybean trypsin inhibitor, 0.1 μg/mL pepstatin, 0.1 μg/mL 176 

antipain). Samples were passed through a 25 ⅝ g needle and subsequently sonicated on ice to promote 177 

efficient lysis and DNA shearing. After a 30 minute incubation on ice, lysates were cleared by 178 

centrifuging at 16100 x g for 20 minutes. HEK293T, U87-MG, and U87-MG cells treated with 1 179 

micromolar bortezomib (Selleckchem) and 10 micromolar MG132 (Selleckchem) were also prepared in 180 

RIPA buffer. Protein samples were stored at -80°C until analysis. 181 

 182 

RNA Microarray 183 

After RNA isolation and QC, samples were labeled for the GeneChip Human Transcriptome Array 2.0 184 

(HTA 2.0, Affymetrix). Labeling was performed with Affymetrix Proprietary DNA Label (biotin-linked) 185 

using a WT Plus Kit (Affymetrix) provided with the HTA 2.0, following the standard operating protocol for 186 

HTA 2.0, including PolyA controls. Hybridization, washing, and staining were performed with the WT Plus 187 

Kit, following the standard operating protocol for HTA 2.0. Washing and staining were performed using a 188 
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GeneChip Fluidics 450. Scanning was performed with a GeneChip Scanner 3000. These data were 189 

deposited in the Gene Expression Omnibus under accession GSE85033. 190 

 191 

Validation Sample Processing 192 

We applied a quality control pipeline [19] to all CEL files generated by the HTA 2.0.  All validation 193 

samples passed processing quality control, which included an inspection of spatial artifacts, MA plots, 194 

probe distributions, and sample comparison boxplots. We summarized transcript intensities using 195 

robust multi-array analysis (RMA) [20]. We determined batch normalization was unnecessary after a 196 

guided principal components analysis (gPCA) using sample processing date and array plate ID as 197 

potential batch effect confounders [21].  Lastly, we collapsed HTA2.0 transcripts into gene level 198 

measurements using the `collapseRows()` function with the “maxmean“ method from the R package 199 

WGCNA [22]. We used the pd.hta.2.0 platform design file (version 3.12.1) and the Bioconductor package 200 

“hta20sttranscriptcluster.db” (version 8.3.1) to map manufacturer transcript IDs to genes. We 201 

performed all preprocessing steps using R version 3.2.3.   202 

 203 

Western Blotting 204 

Prior to sodium dodecyl sulfate polyacrylamide gel electrophoresis, protein sample concentration 205 

was determined using a Pierce BCA Protein Assay Kit (Thermo Scientific). Protein samples were prepared 206 

with 1X Laemmli sample buffer (50 mM Tris pH 6.8, 0.02% w/v bromophenol blue, 2% w/v SDS, 10% v/v 207 

glycerol, 1% v/v beta-mercaptoethanol, 12.5 mM EDTA) and 50 μg of tumor protein. Volumes were 208 

normalized with RIPA buffer including the protease/phosphatase inhibitors described above. SDS-PAGE 209 

was performed using a 4-15% Mini-PROTEAN TGX gel (Bio-Rad) for 1 hour at 120V. The samples were 210 

then transferred to a nitrocellulose membrane for 2 hours and 45 minutes at 400 mA in cold transfer 211 

buffer (384 mM glycine, 50 mM Tris, 20% methanol, 0.005% w/v sodium dodecyl sulfate. Following this, 212 
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the blots were then blocked in 5% w/v BSA or 5% w/v nonfat dry milk in Tris-buffered saline (137 mM 213 

NaCl, 2.7 mM KCl, 19 mM Tris, 0.05% v/v Tween 20, pH 7.4) for 25 minutes. Immunoblotting was 214 

performed with the following antibodies and conditions (vendor, species, diluent, dilution, incubation 215 

time, incubation temperature): anti-NF1 D7R7 (Cell Signaling, rabbit, 2% BSA, 1:1000, overnight, 4°C), 216 

anti-tubulin B-1-2-5 (Santa Cruz, mouse, 2% milk, 1:10000, 1 hour, RT), anti-EGFR D38B1 (Cell Signaling, 217 

rabbit, 2% milk, 1:1000-1:2000, 1h, RT), p-ERK ½ (p44/42 MAPK) #9101 (Cell Signaling, rabbit, 2% BSA, 218 

1:2000, overnight, 4°C), SUZ12 D39F6 #3737 (Cell Signaling, rabbit, 2% milk, 1:1000, overnight, 4°C). 219 

Anti-NF1 D7R7 was a kind gift from Cell Signaling Technologies, Inc.   220 

The binding of the primary antibodies was detected by incubation with secondary antibodies goat 221 

anti-rabbit HRP 1:20000 or goat anti-mouse HRP 1:10000 (Jackson Immunoresearch Laboratories Inc.) at 222 

room temperature in 2% milk in TBST and detection of HRP activity using Pierce ECL Western Blotting 223 

substrate (Thermo Scientific), or in the case of NF1, SuperSignal West Femto Maximum Sensitivity 224 

Substrate (Thermo Scientific).  The chemiluminescent signal was captured with MED-B medical x-ray film 225 

(Med X Ray Company Inc.). Between primary antibodies, the membrane was stripped twice for 10 226 

minutes at room temperature using a mild stripping buffer containing 1.5% w/v glycine, 0.1% w/v SDS, 227 

1% v/v Tween 20 at pH 2.2 (Abcam). One sample was eliminated due to low yield, and apparent 228 

degradation as determined by western blotting (all proteins examined were undetectable with the 229 

exception of tubulin, not shown). Densitometry was performed using Li-COR Image Studio Lite 5.0. 230 

Briefly, intensity measurements for NF1 and tubulin were taken using equally-sized regions for all bands. 231 

The background was subtracted using the local median intensity from the left and right borders (size=2) 232 

of each measurement region. NF1 values were divided by tubulin intensity to adjust for protein loading.  233 

All measurement ratios were then normalized by dividing values by the “U87+PI” measurement for each 234 

blot, respectively. 235 

 236 
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Reproducibility of Computational Analyses 237 

We provide software with a permissive open source license to reproduce all computational analyses 238 

[23]. Ensuring a stable compute environment, we performed all analyses in a Docker image [24]. This 239 

image and source code can be used to freely confirm, modify, and build upon this work. 240 

 241 

RESULTS: 242 

Classifier performance 243 

Using 5-fold cross validation across a parameter sweep, we identified optimal hyperparameters at 244 

alpha = 0.15 and L1 mixing = 0.1 (Supplementary Figure S1). To assess model performance, we 245 

performed 100 random initializations of five-fold cross-validation. These models had mean test area 246 

under the receiver operating characteristic curve (AUROC) of 0.77 (95% Quantiles: 0.53 – 0.95) and a 247 

mean train AUROC of 0.997 (95% Quantile: 0.98 – 1.00) (Supplementary Figure S2). We repeated this 248 

procedure after TDM transformation (Supplementary Figure S3) and achieved comparable results with 249 

alpha = 0.15 and l1 mixing = 0.1 (mean test AUROC = 0.77, 95% Quantiles: 0.51 – 0.96; mean train 250 

AUROC = 0.998, 95% Quantiles: 0.99 – 1.00) (Figure 1). Because the validation set was measured by 251 

microarray, we used the classifier trained on TDM transformed data to construct our ensemble 252 

classifier.   253 

 254 

Identification and characterization of NF1 deficient glioblastoma tumor samples 255 

We characterized NF1 protein concentrations as well as other molecules involved in RAS signaling in 256 

the 12 GBM samples (Figure 2A). Two samples (CB2, 3HQ) had no apparent NF1 protein. Eight other 257 

samples had similar or less NF1 signal than the U87-MG NF1-low control (H5M, LNA, YXL, VVN, R7K, 258 

TRM, UNY, W31). Two samples (PBH, RIW) had equal or greater NF1 than the positive control, U87-MG + 259 

proteasome inhibitors (preventing NF1 degradation). We also observed variable EGFR content in these 260 
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samples, with non-existent to low levels (3HQ, YXL, R7K), or medium to large EGFR signal (CB2, H5M, 261 

PBH, LNA, YXL, VVN, RIW, TRM, UNY, W31). All GBM samples had high concentrations of phospho-262 

ERK1/2 signal relative to cell line controls. Samples with increased phospho-ERK1/2 may have greater 263 

Ras pathway activation. This can be attributed to multiple factors, including increased EGFR expression 264 

and/or NF1 inactivation.  265 

Our ensemble classifier predicted four samples to have NF1 inactivation (CB2, UNY, R7K, and 3HQ) 266 

and eight samples to be NF1 wildtype (W31, TRM, PBH, VVN, LNA, RIW, H5M, and YXL) (Figure 2B). 267 

Because two samples, (CB2 and H5M) were measured on both western blots (Figure 2C), we used the 268 

mean of their NF1 protein level across both experiments (Figure 2D). 269 

 One of the samples predicted to be NF1 inactive contains detectable NF1 protein (R7K), suggesting 270 

that this sample may have NF1 inactivation not detectable by assaying protein, have a different 271 

alteration that phenocopies NF1 loss, or is incorrectly predicted by the classifier. Conversely, there are 272 

three samples predicted to be NF1 wildtype that have low or undetectable protein (YXL, VVN, W31), 273 

which either indicates unknown elements that confound the detection of some NF1 dysregulated 274 

tumors or a classification error. 275 

 276 

Highly Contributing Genes 277 

We observed several genes that consistently contributed to the ensemble classifier performance 278 

(Figure 3). Since we applied several classifiers to the validation set as an ensemble, we took the sum of 279 

all classifier’s gene weights across all 500 iterations to define these consistently contributing genes. 280 

Expression of genes such as TXNIP, ARRDC4, ISPD, C10orf107, and DUSP18 appear to be predictive of 281 

intact NF1 signaling. Among the list of genes that appear to be expressed in tumors with loss of NF1 282 

function are QPRT, ATF5, HUS1B, PEG10, HMGA2, RSL1D1, and NRG1. A full list of positive and negative 283 
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weight genes that were two standard deviations beyond the gene weight distribution is provided in 284 

Supplementary Table S2. 285 

We also performed over-representation analysis of the most influential genes in the classifier to 286 

identify gene ontology (GO) sets and pathways that may be predictive of NF1 status [25–28]. For high-287 

weight genes predictive of intact NF1 signaling, we observed GO sets involved in plasma membrane-288 

localized proteins (GO:0005886, GO:0071944, GO:0016324) and homeostasis (GO:0048871, 289 

GO:0001659, GO:0048873, GO:0031224), among others. Annotated pathways associated with genes 290 

from this dataset include hematopoietic stem cell differentiation, thyroid cancer, voltage-gated 291 

potassium channels, and RHO GTPase functional pathways.  292 

 For high-weight genes predictive of NF1 loss of function, we observed GO sets related to cellular 293 

adhesion (GO:0007155, GO:0098742), negative regulation of signaling (GO:0009968, GO:0023507, 294 

GO:0010648), and nervous system development (GO:0051962, GO0007416, GO: 0050808), among 295 

others. These genes were also enriched for elements of the phototransduction cascade and thyroxine 296 

production pathways.  297 

 298 

DISCUSSION:  299 

A machine learning classifier, based on gene expression data, can capture signal associated with the 300 

inactivation of a tumor suppressor.  Our classifier is able to detect subtle downstream changes in gene 301 

expression as a result of the tumor responding to NF1 loss of function. This finding supports using mRNA 302 

as a summary measurement capable of capturing system-wide responses to molecular events beyond 303 

transcription factor alterations. Machine learning has been applied to gene expression in a variety of 304 

studies with various goals [29–33]. In a similar study, Guinney et al. trained a classifier to model RAS 305 

activity in colorectal cancer and demonstrated its clinical utility by predicting response to MEK inhibitors 306 

and anti-EGFR based treatments [34]. With a wealth of signal embedded in gene expression and a 307 
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rapidly growing library of datasets, the performance of machine learning models is likely to rapidly 308 

improve. An increase in performance leads to more reliable clinical applications that would potentially 309 

predict the effectiveness of pathway-specific targeted therapies. 310 

While our classifier was able to predict NF1 inactivation status to an extent, its performance is far 311 

from being clinically actionable. A major difficulty in developing a reliable classifier in this case is 312 

contamination in gold standard positives and negatives. While we aim to detect NF1 inactivation events, 313 

our gold standard positives can only include samples with known NF1 mutation status. Conversely, we 314 

expect that negative samples (about 90% of the data) are also contaminated with NF1 inactivated 315 

samples due to protein loss and other mechanisms. We cannot determine scenarios where NF1 is 316 

inactivated beyond mutation at scale in the TCGA data. Another challenge with the construction of 317 

classifiers from such data is overfitting. Even after hyperparameter optimization we observed 318 

substantial overfitting (Figure 2), which has also been observed in competitions (see, for example, 319 

supplementary figure S2 of Noren et al. 2016 [35] in which the best performing algorithms also overfit). 320 

Finally with a small number of positive examples the model performance is unstable, which 321 

demonstrates high variability in gold standard samples used to train the model [36]. We employed 322 

ensemble classification to mitigate this issue. In summary, our results are promising but these challenges 323 

are substantial and significant work remains to reach a robust classifier with clinical utility. 324 

The performance of the classifier appears to be impacted by many NF1 related genes. For example, 325 

genes such as TXNIP and ARRDC4, which are both indicative of lactic acidosis, correlate with better 326 

clinical outcomes, and contribute to predicting tumors with intact NF1 signaling [37]. We also observed 327 

transcripts that are more highly expressed in brain tissue than either other normal tissue (ISPD, 328 

C10orf107), or more highly expressed in normal brain tissue than glioma (EPHA5) [38–40]. DUSP18 329 

contributes to the prediction of NF1 wildtype status and is a negative regulator of ERK phosphorylation, 330 

possibly by regulating SHP2 phosphorylation [41].  Over-representation analysis of these data 331 
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highlighted changes in potassium channel expression. It was previously demonstrated that NF1 wild-332 

type Schwann cells have altered K+ channel activity as compared to NF1-/- Schwann cells suggesting that 333 

this may be one factor by which NF1 mutant and wild-type cells can be distinguished [42]. 334 

Regarding prediction of NF1 inactivated tumors, we observed several genes that have been linked to 335 

cancer such as QPRT, which is highly expressed in malignant pheochromocytomas as compared to 336 

benign; RSL1D1 (CSIG), which stabilizes c-myc in hepatocellular carcinoma; PPEF, which is highly 337 

expressed in astrocytic gliomas as compared to normal brain tissue [43–45]; and PEG10, a poor 338 

prognostic marker and regulator of proliferation, migration, and invasion in several tumor types [46–48]. 339 

We also observed ATF5, a gene for which expression in malignant glioma is correlated with poor survival 340 

[49]. Knockdown of ATF5 in GBM cells causes cell death in vitro and in vivo [50]. Analysis of genes that 341 

contribute to the prediction of NF1 inactivation yielded several GO terms related to neural 342 

development. It is well established that loss of NF1 can result in abnormal neural development and/or 343 

tumorigenesis [14,51,52]. We also observed genes associated with the mesodermal commitment 344 

pathway, components of which are linked to the epithelial to mesenchymal transition in human cancer 345 

cells [53–55].  Analysis of this pathway may be informative in identifying tumors with NF1 loss because 346 

mesenchymal GBMs are enriched for tumors with NF1 loss [56]. 347 

 Our ensemble classifier was able to robustly detect the samples with the highest and lowest NF1 348 

protein concentrations, but it struggled with samples of intermediate NF1 concentrations. This could be 349 

a result of an enrichment of mechanisms causing NF1 inactivation beyond protein abundance, an 350 

overrepresentation of mesenchymal tumors in NF1 inactivated samples contaminating dataset splits 351 

[56], poor classifier generalizability, or incomplete data transformation between RNAseq and microarray 352 

data. Because training and testing performance were similar between transformed and non-353 

transformed data (see Figure 1 and Supplementary Fig S2) we don’t anticipate performance to be 354 

impacted much by platform differences or classifier generalizability. Nevertheless, we demonstrated the 355 
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ability of system-wide gene expression measurements to capture downstream consequences of a 356 

complex biological mechanism that would otherwise require several different types of data acquisition 357 

to capture.   358 

 359 

CONCLUSIONS: 360 

A machine learning classifier for transcriptomic data was able to detect signal associated with the 361 

inactivation of NF1, a tumor suppressor gene. The gene is an important regulator of the oncogene RAS 362 

and is inactivated frequently in GBM and in other tumors. The measurement of NF1 inactivity cannot be 363 

comprehensively captured by any single genomic characterization such as targeted sequencing or 364 

fluorescence in situ hybridization. This difficulty arises from diverse and complex biological mechanisms 365 

that inactivate the tumor suppressor in a variety of ways. However, we demonstrated that measuring 366 

system-wide RNA can capture subtle downstream changes that occur in response to NF1 inactivation. 367 

Improving classification performance is required before transitioning such a model into clinical use, but 368 

our method could be used to characterize cell lines or patient-derived xenograft (PDX) models with 369 

inactive NF1. Eventually, with more data and improved classification, we expect machine-learning 370 

models constructed on system-wide transcriptomics will translate into clinically relevant predictions that 371 

will guide targeted therapy. 372 
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FIGURES: 427 

 428 

Figure 1: Logistic regression classifier with elastic net penalty training and testing errors over 100 429 

iterations for Training Distribution Matching (TDM) transformation of The Cancer Genome Atlas 430 

Glioblastoma RNAseq data. (A) Schematic describing the terms used for training, testing, and validating 431 

our model. We applied 5-fold cross validation to the full dataset which consists of training and testing 432 

splits in each fold. The model is then applied as an ensemble classifier on a set of in-house samples 433 

(validation set) (B) Receiver operating characteristic (ROC) curve and shows the average training and 434 

testing performance of 5-fold cross validation. (C) The cumulative density of area under the ROC curve 435 

(AUROC) for training and testing partitions.  436 

 437 

 438 

 439 
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 440 

Figure 2: Performance of our classifier on a validation set. (A) Two distinct western blots for each of our 441 

twelve samples. The controls are U87-MG, an NF1 WT glioblastoma cell line that exhibits proteasomal 442 

degradation of the NF1 protein. U87+PI are U87-MG cells are treated with the proteasome inhibitors (PI) 443 

MG-132 and bortezomib to block proteasome-mediated degradation of NF1. We used the NF1/tubulin 444 

ratio normalized to U87+PI as our NF1 protein level estimate. (B) Prediction scores for each of the 500 445 

classifiers weighted by cross validation test set AUROC where a negative number indicates NF1 wildtype 446 

and a positive number is indicates NF1 inactivation. Increasing grayscale indicates higher observed NF1 447 

protein concentrations.  (C) We quantify protein against U87+PI and provide the mean of the weighted 448 

predictions. (D) Based on weighted predictions, we show the abundance of NF1 protein compared to 449 

U87+PI.  450 

 451 
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 452 

 453 

Figure 3: Genes that contribute to the classifier performance. Genes are shown ranked by their weighted 454 

contribution to the ensemble classifier. Weights are scaled to unit norm. The top 10 positive and top 10 455 

negative contributing high weight genes are given on the right. 456 

 457 
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 466 

 467 

Supplementary Figure S1: Non-transformed RNAseq results of The Cancer Genome Atlas Glioblastoma 468 

parameter sweep for stochastic gradient descent logistic classifiers with elastic net penalty. (A) Training 469 

and testing area under the receiver operating characteristic curve (AUROC) ass is given for each 470 

parameter tested. All accuracies are presented following 5-fold cross validation after 50 random 471 

initializations. (B) The l1 mixing parameter with the optimal alpha and (C) the classifier performance 472 

across all random starts for the best hyperparameters.  473 
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 481 

 482 

Supplementary Figure S2: Logistic regression classifier with elastic net penalty training and testing errors 483 

over 100 iterations for non-transformed The Cancer Genome Atlas Glioblastoma RNAseq data. (A) 484 

Receiver operating characteristic (ROC) curve and shows the average training and testing performance 485 

of 5-fold cross validation over 100 random initializations. (B) The cumulative density of area under the 486 

ROC curve (AUROC) for all training and testing partitions.  487 

 488 
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 489 

 490 

Supplementary Figure S3: Training Distribution Matching (TDM) transformation of RNAseq results of The 491 

Cancer Genome Atlas Glioblastoma parameter sweep for stochastic gradient descent logistic classifier 492 

with elastic net penalty. (A) Training and testing area under the receiver operating characteristic curve 493 

(AUROC) is given for each parameter tested. All accuracies are presented following 5-fold cross 494 

validation after 100 random initializations. (B) The l1 mixing parameter with the optimal alpha and (C) 495 

the classifier performance across all random starts for the best hyperparameters.  496 
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