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The potential to understand fundamental biological processes from gene expression data has grown 
parallel with the recent explosion of the size of data collections. However, to exploit this potential, 
novel analytical methods are required, capable of handling massive data matrices. We found current 
methods limited in the size of correlated gene sets they could discover within biologically 
heterogeneous data collections, hampering the identification of multi-gene controlled fundamental 
cellular processes such as energy metabolism, organelle biogenesis and stress responses. Here we 
describe a novel biclustering algorithm called Massively Correlated Biclustering (MCbiclust) that 
selects samples and genes from large datasets with maximal correlated gene expression, allowing 
regulation of complex pathway to be examined. The method has been evaluated using synthetic data 
and applied to large bacterial and cancer cell datasets. We show that the large biclusters discovered, 
so far elusive to identification by existing techniques, are biologically relevant and thus MCbiclust has 
great potential use in the analysis of transcriptomics data to identify large scale unknown effects 
hidden within the data. The identified massive biclusters can be used to develop improved 
transcriptomics based diagnosis tools for diseases caused by altered gene expression, or used for 
further network analysis to understand genotype-phenotype correlations. 
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INTRODUCTION 

Present gene expression datasets typically contain thousands of samples, each measuring tens of 

thousands of genes. Moreover, the size of the currently generated sample-gene matrices continues to 

increase dramatically with the advances of more economical high throughput technologies. These 

extensive datasets hold the promise for the discovery of novel regulatory networks underlying 

fundamental physiological and pathological cellular processes governed by multitudes of genes, such 

as cellular energy and redox metabolism, organelle biogenesis and integrated stress responses (1–5). 

Indeed, while quantitative models of networks involving genes on relatively small scale have been 

now well established (see e.g. (6–9) for examples related to metabolism), bioinformatic discovery 

approaches capable of handling large datasets are in critical need of development. 

Currently, extracting information on biological processes from genomic, transcriptomic and proteomic 

datasets relies on a pipeline including (i) identification of frequent genomic mutations or differentially 

represented transcripts or proteins, followed by (ii) pathway and network analysis methods using 

gene-set, pathway or network databases (for a recent reviews see e.g. (10)). A number of effective 

approaches for both stages of the analysis have been developed, but they have considerable 

limitations.  

First, differential expression algorithms (11, 12) are used to filter experimental data to find genes with 

significant alterations, producing lists that can be sorted into biologically relevant groups using gene 

set enrichment analyses. Recent developments, such as gProfiler (13) or GSEA (14) extended the 

value of this approach by considering a ranked or continuous scale of gene expression differences, as 

opposed to methods using unranked sets of genes chosen with fixed gene expression p-value 

thresholds (e.g. DAVID (15)). However, interactions and potential co-regulation of genes are not 

considered in these approaches, thus they can only be used to assign previously determined fixed 

gene sets enriched in the data. Most functionally annotated pathways represent normal physiology, 

thus the use of these methods excludes the possibility to discover novel functional groups relevant to 

stress and pathologically relevant pathways. One approach to currently overcome this limitation is to 

apply methods incorporating databases with rich information on gene or protein interactions, such as 

BioGRID (16), IntAct (17), STRING (18) or GeneMANIA (19), and identifying networks with altered 

gene expressions. Numerous examples using this approach exist, such as GeneMANIA (19), 

ReactomeFIViz (20), STRING (18), ResponseNet (21), NetBox (22), MEMo (23) and EnrichNet (24). 

Whilst these approaches were proven successful in identifying altered core pathways in several 

pathologies, since they are based on prior knowledge of network components and structures, they 

have limited potential to discover novel co-regulated large scale networks determining cellular 

phenotypes. In this paper we argue that large scale differences in gene expression, for instance 

between different physiological and pathological states, go undiscovered due to these limitations and 

that novel methods discovering large-scale gene correlations are needed. 

Another difficulty is that the now common large datasets used for network discovery are typically not 

produced by experimental design based on a priori knowledge but are more often mass data 
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collection projects containing vastly heterogeneous samples. In many cases it is unclear how to divide 

these samples into subclasses, due to the many unknown factors distinguishing subtypes with 

different gene expression patterns. Hierarchical clustering has notably been used to find related 

subgroups of samples, notably first by Eisen (25) but also by Perou (26) who used this technique to 

identify the intrinsic subtypes of breast cancer. These standard clustering techniques however are 

only useful at finding strong patterns within the data, since they cluster all the samples against all the 

genes or vice versa, risking to omit more global weaker patterns, due to high noise. Modes of gene 

regulation could be present in only a subset of samples, with genes being conditionally co-regulated 

only on specific cellular or environmental signals (27). With only a subset of samples having this 

regulation, standard clustering techniques would not detect this co-regulation in the noise of the data. 

Thus our second consideration for developing a method solving this problem and discriminating 

heterogeneous samples with co-regulated genes in large datasets was to use biclustering algorithms. 

Biclustering techniques were first applied to gene expression by Cheng and Church (28), but the 

technique itself dates back to the 1970's in the work of Hartigan who referred to it as direct clustering 

(29). Biclustering algorithms select a subset of the rows and columns of a data matrix such that a 

particular measurement describing the quality of the bicluster is maximised. It is not known a priori 

how many significant biclusters there are within a data matrix, and the number and size of found 

biclusters depend on (i) the definition of bicluster, (e.g. correlation of gene expression across samples) 

(ii) the method of measuring its quality, and (iii) the method for searching for biclusters. There are a 

large number of existing biclustering algorithms involving different quality metrics as well as search 

heuristics for finding them (30), but we have found them of limited use for the scope of finding large 

co-regulated gene sets in a subset of samples within massive datasets. Mean square residue score 

for evaluating biclusters (28) is used in many biclustering techniques (MSB (31), FLOC (32), BiHEA 

(33), etc.). As a quality metric it does find biologically relevant biclusters but is limited to finding 

bicluster involving a simple shift in gene expression between samples but not patterns which involve 

more pronounced scaling of gene expression (34). Moreover, most of these methods are not 

computationally efficient on very large datasets, since finding biclustering has been shown to be an 

NP-hard problem (35), much more difficult than normal clustering. Accordingly, existing biclustering 

algorithms are adept at finding many small sized biclusters involving relatively few genes but not 

suitable for discovering large scale biclusters. 

Here we describe the development of a conceptually novel biclustering algorithm, based on 

evaluating correlated gene expression across large sets of heterogeneous samples. The approach, in 

contrast to previous methods, is (i) computationally efficient to be applied to large data matrices 

containing whole genome transcriptomic data of more than a thousand samples, and (ii) capable to 

identify correlated, biologically relevant large gene sets and subsets of heterogeneous samples where 

the gene set is being differentially regulated. The method addresses key questions in genome biology. 

First, by quantifying correlations and expression levels of the discovered gene sets the method can be 

applied to classify samples. In addition, the gene sets can be used for discovery of large networks, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 15, 2016. ; https://doi.org/10.1101/075374doi: bioRxiv preprint 

https://doi.org/10.1101/075374
http://creativecommons.org/licenses/by-nc-nd/4.0/


controlled by master transcriptional regulators, which thus likely determine fundamental cellular 

phenotypes. 
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MATERIAL AND METHODS 

The MCbiclust workflow 

Massively correlated biclustering (MCbiclust) is a stochastic iterative search based method that uses 

Pearson’s correlation coefficient as a quality metric to find biclusters (Fig. 1). ). The basic strategy is 

to start with around 1000 seed genes and a small number of seed samples, then through random 

replacement of samples find a bicluster that can be then expanded. MCbiclust is specifically designed 

to find biclusters composed of large numbers of genes and samples within data sets. The hypothetical 

ideal bicluster is one whose genes are highly correlated across all samples in the bicluster, and it is 

not important whether these correlations are positive or negative. The algorithm is stochastic and 

each run will end with a different massively correlated bicluster being discovered. So generally the 

method is run many times, typically up to a thousand, to discover the key large-scale biclustering 

structure within the given data collection. All the biclusters discovered are compared to determine how 

many different biclustering groupings exist. 

For each individual run, the algorithm starts with an initial seed of 1000 genes that are either chosen 

randomly for discovering general large-scale features in the data collection, or are chosen for 

functional relevance to direct the discovery of biclusters (for instance a mitochondrial related gene 

set). Each run starts with a random seed of 10 samples. A greedy search is then undertaken where 

individual samples are randomly replaced by other samples, with the aim of always increasing the 

overall correlation score of the bicluster. Once 10 samples have been determined that maximize the 

bicluster correlation score, the pipeline focuses on the genes involved to further maximize this score. 

Hierarchical clustering of the genes is carried out, dividing the genes into 8 groups with tightly 

correlated genes over the samples, only the genes from the group which has maximum bicluster 

score are kept with all the other genes being removed. 

Now that the nucleus of a highly correlated bicluster has been formed, the bicluster is extended in 

terms of both samples and genes included. An “average gene expression vector” is determined from 

the bicluster, by dividing the genes into groups with hierarchical clustering and finding the average 

gene expression of this group across the 10 samples. The correlation of every gene measured to this 

average gene expression vector can be calculated forming a “correlation vector”. The genes can then 

be ordered by their values in the correlation vector (See Supplementary Fig. S1). Following gene 

extension, all the other samples within the data collection can be ranked according to how well they 

preserve the correlation of the bicluster. At each step the sample that preserves most the correlation 

is added, until all the samples have been ranked. MCbiclust therefore returns a ranked list of the 

samples and genes matching the pattern found in the bicluster. In order to determine which genes 

and samples are in the bicluster a method to threshold the bicluster is applied as described in 

Supplementary Methods. 

The biclusters discovered are often complex and thus we have used two key approaches to interpret 

them in terms of either the samples or genes involved. Samples are analyzed by doing Principal 
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Component Analysis (PCA) across gene values across the 10 most prominent samples. The first 

principal component (PC1) is then used to visualize each of the samples within the bicluster ranked 

according to correlation. Generally such plots split the samples into two forks with anti-correlated 

gene expression between two groups of genes identified (see Supplementary Fig. S3). The key 

approach employed to analyze the genes within a bicluster in order to help identify its biological 

nature is gene enrichment analysis. Although it can be seen later that bicluster interpretation often 

needs investigation driven by intuition based on considering both the samples and genes involved. 

Detailed information about the algorithm can be found in Supplementary Methods and in the Vignette 

accompanying the Bioconductor package developed to perform custom MCbiclust analysis. 

Synthetic Data and Benchmarking  

A synthetic dataset was created using an adapted version of the method used in (19) for the 

biclustering method FABIA, using the R package `FABIA’. This method implants a set number of 

multiplicative biclusters that match the FABIA model, into a dataset. This was done by creating 8 

separate synthetic datasets, using the FABIA model. Each dataset contained only 1 bicluster, on 

average containing approximately 500 genes and 130 samples, and each dataset was mean centered 

according to the genes before being combined. Eight biclusters were chosen so that the final 

synthetic dataset contained 1000 genes and 1059 samples. Enforcing sample exclusiveness to a 

single bicluster was done primarily to make the comparison between the different bicluster algorithms 

feasible. If a sample belonged to two or more biclusters, due to each bicluster affecting a large 

number of the genes, there would be a significant number of genes belonging to both biclusters and 

this overlap of genes could potentially confound the classification of samples to their correct bicluster. 

MCbiclust was compared with the FABIA (36), FABIAS (36), biMax (37), CC (38), Plaid (39), ISA (40), 

FLOC (41) , QUBIC (42) and CPB (43) biclustering methods (See Supplementary Table 1). These 

methods were chosen due to their availability of access as R packages on bioconductor, or due to the 

quality metric similar to the one utilised in MCbiclust (CPB). CPB was run with a python script 

available at http://bmi.osu.edu/hpc/software/cpb/index.html. 

Workflow to compare biclusters obtained with different methods 

Fig. 2A provides an overview of how the results of each biclustering method (shown as biclusters F1 

to F8) were compared to the real biclusters present in the synthetic data (shown as A1 to Ax where x 

is the variable number of biclusters predicted). First, a similarity matrix is constructed where all 

possible predicted biclusters from the results are compared to all of the 8 known biclusters in the 

synthetic data. The Jaccard score is used since this is appropriate for comparing the similarity 

between two different sets (being equal to the number of elements in the intersection of the two sets 

divided by the number of elements in the union of the two sets). Identical sets will have a Jaccard 

score of 1.0 and completely different sets will have a Jaccard score of 0.0. Once all predicted 

biclusters are compared to all known biclusters in the matrix, the Hungarian or Munkres algorithm is 

used to efficiently determine the most optimal matching of predicted biclusters to known biclusters  
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which maximises the sum of the scores (44). At this point each real bicluster (S1 to S8) would be 

matched to its most optimal predicted bicluster (A1 to A8) by the method. With this matching complete, 

traditional measurements of accuracy, false positive and true positive scores can be used both for the 

samples matched and the genes matched, and receiver operating characteristic (ROC) curves can be 

plotted.  

Analysis on E. coli Many Microbe Microarray database (M3D): 

 MCbiclust was applied to a extensive E. coli K-12  microarray data set from the Many Microbe 

Microarray database (M3D) (45). This dataset includes 907 samples and 7459 probes measured with 

Affymetrix microarrays and collated from a wide range of experimental setups from 39 different 

researchers, uniformly normalized using robust multi-array average (RMA). To find biologically 

relevant biclusters the MCbiclust pipeline was run 1000 times on random gene sets. 

Analysis on Cancer Cell Line Encylopedia (CCLE): MCbiclust was applied to the CCLE dataset (46) 

composed of 969 samples with gene expression levels measured as mRNA using Affymetrix U133 

plus 2.0 arrays and probe sets, again using uniform RMA normalization across all the samples. To 

study mitochondrial related biclusters, MCbiclust was run 1000 times on the 1098 MitoCarta (47) 

genes known to be related to mitochondria. MCbiclust was additionally run 1000 times on random 

gene sets containing 1000 genes to find biclusters affecting general pathways. 
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RESULTS   

MCbiclust is uniquely designed to identify large biclusters  

In order to validate MCbiclust and compare its performance with other biclustering methods, we have 

used a synthetic data set, modeling large biclusters, and a custom scoring system (See Materials and 

Methods and Fig. 2A). The dataset contained 8 known biclusters (on average a matrix of 130 samples 

and 500 genes), and 10 biclustering methods were tested (see Supplementary Table 1). Comparison 

of the known biclusters with the found biclusters was carried out as previously described ((36), see 

Fig. 2A). Based on these similarity analyses the quality of bicluster identification of each method was 

assessed. Table 1 shows the average true and false positive rates (TPR, FPR), precision, F1 score 

and a consensus score (36), taking into account the sum of the Jaccard index similarities of the 

predicted biclusters to their matched known biclusters, divided by the larger set. In addition, the 

consensus score includes a penalty for finding incorrect number of biclusters.  

MCbiclust has identified 6 out of 8 biclusters, and massively outscored the existing methods in 

precisely identifying large, so far hidden, large biclusters within the massive dataset. This includes 

outperforming FABIA, whose data model was used to design the synthetic data. ISA, which is 

designed to be used on large datasets, found over 500 biclusters, 8 of which were reasonable 

matches for the synthetic bicluster, thus it had a very large false positive rate, detecting small random 

biclusters. Even when considering only the correct 8 biclusters, ISA still had a lower performance than 

MCbiclust. For further evaluation of the different methods, we have plotted relative operating 

characteristics (ROC) curves for each synthetic bicluster. These results confirmed the higher 

sensitivity and specificity of MCbiclust compared to methods existing so far (see Supplementary Fig. 

S2). 

Importantly, MCbiclust has an additional unique feature compared to existing methods. Apart from 

finding biclusters, it also ranks samples according to the strength of correlation between genes found 

in the bicluster. Principal component analysis can be thus further used to determine subclasses of 

samples in the ranking space. PCA value versus ranking plots revealed the distribution of the 

clustered samples in a characteristic fork pattern (Fig. 3A), probably indicating the polar distribution of 

samples along the average expression of the gene sets, responsible for the high correlation (see Fig. 

3B, C, Supplementary Fig. S3 and Supplementary Methods).  

MCbiclust discovers biologically relevant gene expression patterns in E. coli data sets 

Next, we applied the algorithm to increasingly complex gene expression datasets from heterogeneous 

sample collections. First, we used an extensive E. coli K-12  microarray data set from the Many 

Microbe Microarray database (M3D) (45). The probes of this dataset cover ORFs or transcripts of 

unknown function as well as non-coding intergenic regions such as operon elements, 5’-UTRs, 3’-

UTRs and small RNAs. The E. coli K-12 model is currently the best characterised prokaryotic model 

for studying gene regulatory networks on different scales, including large gene sets controlled by ! 

factors and smaller sets by transcriptional regulators. In addition, the dataset contains a large number 
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of annotated experimental conditions, thus it was ideal for the initial characterization of MCbiclust’s 

ability to discover co-regulated gene sets in heterogeneous experimental conditions.  

By running MCbiclust 1000 times, starting from random gene sets of 1000 genes, silhouette width 

analysis revealed 3 large distinct biclusters from the resulting correlation vectors (Fig. 4A, B). These 

groups were denoted E1, E2 and E3 and were obtained after 656, 229 and 115 runs, respectively, 

with the numbers indicating the runs required to reach dominance of the bicluster. These biclusters 

were all large; after thresholding with a sample p-value of 0.05 they contained 4822, 4700 and 6086 

probes from 131, 130 and 96 samples, respectively.  

To understand the biological relevance of these biclusters, we first analysed the distribution of the 

samples in the found biclusters by PCA analysis and ranking according to the strength of correlation 

of gene expression (Fig 4C). As described above, the PCA versus ranking distribution plot typically 

gives a fork pattern, where the samples with highly correlated gene expressions are divided into high 

and low PC1 groups, where PC1 is mainly determined by the average expression level of the gene 

set defining the bicluster (see Supplementary Fig. S3). The plot allows the classification of the 

samples and helps to further determine correlations with sample types and experimental conditions. 

As shown in Fig. 4C, the samples identified in the E1 cluster were distributed along experimental 

conditions such as growth phase, aerobic/anaerobic status or treatment with antibiotics affecting 

growth. Cluster E2 clearly identified samples treated with a specific antibiotic, norfloxacin. In contrast,  

cluster E3 was determined by the highly deviant PC1 value associated with an outlier sample forming 

the upper fork of the distribution, while most of the samples remained in the lower half. Overall, the 

distribution analysis demonstrated the value of MCbiclust to identify biological (E1), pharmacological 

(E2) conditions, and outliers which otherwise would remain undetected (E3).  

To identify more details of gene regulation in the biclusters we performed custom gene set enrichment 

analysis based on a Mann-Whitney test (see Supplementary Methods) to identify gene ontology (GO) 

terms related to E.coli, including Sigma factors and other E. coli transcription regulators from EcoCyc 

(48) and RegulonDB (49) databases. Additionally, terms for probes targeting either coding genes or 

intergenic regions were added. E1 and E3 had a large number of associated significant terms, 175 

and 196, while E2 only had 25. Full tables of these terms are given in Supplementary Data. The 

custom analysis allowed the association of terms with positive and negative correlation vectors, 

informing on the average gene expression of pathways determining the distribution of samples in the 

upper or lower fork. The analysis revealed three important regulatory features. 

First, the upper fork of E1 was driven by the correlated overexpression of genes with positive 

correlation vector values. Accordingly, those genes are predicted to drive an aerobic metabolic 

phenotype characteristic of slow growth in late log or stationary bacterial cultures or biofilms (see Fig. 

4C). The terms cover wide range of metabolic pathways comprising biosynthetic routes of all major 

cellular components, lipids, proteins and ribonucleotide acids (see Supplementary Data), likely 

representing a specific global metabolic phenotype associated with the aerobic conditions in these 

experiments.  
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Second, the significant terms from E2 are relatively few and had relatively large p-values. Thus we 

looked at additional features of the genes determining the bicluster. Intriguingly, the average 

correlation vector values were distributed according to the position of genes in the E. coli genome (Fig. 

4D). Indeed, Fig. 4E shows that this association can be explained by up-regulation of genes close to 

the origin of replication, which gradually decreased with the distance from the ORI. Examination of the 

conditions of the samples in this bicluster (see Fig. 4C) revealed that they have been grown in the 

presence of norfloxacin, a DNA gyrase inhibitor that prevents the division of the strands of E. coli DNA 

during replication, thus there would be two strands of DNA close to the ORI and a single strand 

further away, hence the gene dosage would be double around the ORI compared to genes further 

away resulting in this large-scale transcriptional difference in gene expression. Interestingly, a similar 

effect has been recently shown to exist in Streptococcus pneumonia by (50) but to our knowledge this 

is the first instance that reveal the effect in E. coli. 

Finally, when we examined the terms which drive correlations in all three biclusters, the most 

significant associations were found with probes targeting either gene encoding or intergenic regions, 

which showed strong anti-correlation (Fig. 4F, Supplementary Data). Since average gene expression 

levels primarily determine PC1, our results show that expression of RNAs from intergenomic regions 

tend to exert inhibitory effects. This result is indicative of small non-coding regulatory RNAs that are 

intergenic inhibiting coding genes involved in biosynthetic processes and cell proliferation.  

Altogether, MCbiclust therefore revealed three large-scale biologically relevant biclusters in the 

examined E.coli dataset: (i) one with terms linked to global metabolic changes during cellular growth 

in aerobic conditions, (ii) one showing how DNA gyrase targeting drug treatment stalls large-scale 

DNA replication and affects global gene expression and (iii) one that discovers a hidden sample 

preparation anomaly that seriously affects global gene expression in a single Affymetrix chip and 

possible other chips less severely (suggesting these chips should be removed before further analysis 

of this data collection). The results clearly indicate the value of MCbiclust to expose global trends in 

co-regulation of bacterial gene expression and other effects that cause changes in large-scale 

correlated gene expression within subsets of the biological samples. 

MCbiclust reveals cancer subtypes in the Cancer Cell Line Encylopedia data set 

Next, in order to validate MCbiclust on highly complex and heterogeneous eukaryotic gene 

expression data, we have used a recently created cancer microarray dataset comprising ~1K cancer 

cell lines from diverse tissues of origin (Cancer Cell Line Encyclopedia, CCLE, (46)). Gene expression 

level heterogeneity between samples in this set arises from two main sources: (i) de-regulated gene 

expression triggered by the oncogenic genetic lesions and (ii) expression patterns distinctive of the 

tissue of origin of specific tumours. Here, due to the larger genome and sample numbers as 

compared to the E. coli dataset, we assumed that selection of the initial gene set might have 

substantial impact on the biclusters found and thus we have followed two different strategies. First, as 

described above we have run MCbiclust 1000 times utilising random gene sets, in order to discover 

potential large scale regulations affecting a subset of samples. In addition, however, we also sought 
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to characterize specifically the regulation of multi-gene controlled global processes such as cellular 

metabolism and organelle biogenesis. Cancer evolution is known to involve radical rearrangements of 

cellular metabolism, in recent years deregulation of cellular energetics has even been recognised as 

an important hallmark of cancer (51). The aerobic glycolytic phenotype of many cancers for producing 

ATP has long been recognised, but it is less well understood how changes in mitochondrial 

biogenesis (here defined as co-regulation of the transcription of nuclear encoded mitochondrial genes, 

NEMGs) and hence energetic function affects cancer growth and survival. Thus our aim here was to 

investigate mitochondrial involvement in cancer using MCbiclust. Therefore, in the second instance 

MCbiclust was run on the CCLE dataset another 1000 times using a gene set composed of 1098 

MitoCarta (47) genes, classified as NEMGs.  

Silhouette analysis identified two distinct biclusters (R1 and R2) using random gene sets and one 

distinct bicluster (denoted M1) when using the MitoCarta gene set (see Fig. 5A and Supplementary 

Fig. S4). These biclusters can be directly compared by plotting the average correlation vectors of 

each measured gene in the genome between individual biclusters, as shown in Fig. 5B. Overall, we 

have found that the M1 and R2 biclusters are highly similar, with both having mitochondrial genes with 

high correlation values, thus both random and function-specific initial gene selection led to the 

identification of essentially the same bicluster.  

Next we performed the same custom gene set enrichment analysis (see Materials and Methods) done 

on each of the average correlation vectors as with the E. coli data.  As shown in Supplementary data, 

the M1 and R2 biclusters define a functional group of genes highly related to the mitochondrial 

respiratory chain, but also ribosomes, ribosome biogenesis. This most likely represents activation of a 

novel gene regulatory pathway in a subset of samples (Fig. 5C, D), coupling increased mitochondrial 

biogenesis to cell growth. On the other hand, the R1 bicluster is highly enriched in immune system 

components and their regulated genes, and particularly overexpressed in a subset of carcinomas of 

different tissue origin (see Fig. 6A, B).  

Finally, we further analysed the data to understand the potential association of the clustered gene 

expression patterns with the actual tissue of origin, pathology, genotype and pharmacological 

phenotype of the individual cancer cell lines. First, we mapped the relationship of the gene expression 

patterns of different cancer cell lines compared to the various biclusters. We ranked all samples 

according to the strength of correlations found in each bicluster, and plotted the rankings against the 

PC1 value for each sample. As shown above, PC1 values are mostly determined by the average 

gene expression values of a subgroup of genes in the bicluster (see Supplementary Fig. S3). Each 

bicluster was thus represented by the typical fork like distribution pattern (see Fig. 5C, D and Fig. 6A, 

B). This allowed us to overlay the tissue of origin and pathological subtype information on the 

distribution patterns. Whilst the mitochondrial M1 and R2 biclusters mainly separated cancer cell lines 

of hematopoietic origin from the rest of the tissues, the R1 bicluster had no tissue specificity. However, 

this bicluster was enriched in immune system related pathways and was typical to a subset of 

carcinomas (see Fig. 6A, B). Next, we calculated enrichment of locuses with gene copy number 

alterations (Fig. 6C) and pharmacological sensitivity to 24 anticancer drugs utilized in the CCLE study 
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(46) (Fig. 6D). Importantly, various copy number alterations were found to be specifically associated 

with each bicluster, probably indicating the genetic, oncogenic origin of the gene expression patterns. 

Strikingly, the distribution between the upper and lower fork of the pattern also determined significant 

differences between the sensitivity to the growth inhibiting effects of various anticancer drugs in each 

bicluster (Fig. 6D), indicating the potential therapeutical predicting value of MCbiclust based cancer 

sample classification. 

DISCUSSION 

MCbiclust outperforms other biclustering methods in terms of identifying large biclusters. The 

approach presented in this paper offers a new paradigm in the analysis of gene expression 

levels. This approach is pattern-centric, with large numbers of significantly co-regulated genes being 

sought unsupervised in a minority of the samples, once found both genes and samples can be ranked 

by how strongly an individual gene is being co-regulated in the pattern or how strong is this co-

regulation in the sample. It has been demonstrated that the patterns it finds are biologically relevant 

and meaningful and it has great potential use in the analysis of transcriptomic datasets and classifying 

samples in a novel, biologically relevant way, according to their large scale gene transcription pattern. 

A simple example for improving transcriptome analysis stems from the finding of a DNA replication 

effect hidden in the gene expression data within the M3D E. coli data set (Fig. 4D, E). By revealing this 

effect, MCbiclust now makes it possible to normalise for it, e.g. in order to remove bias, allowing 

analysis of other gene sets with low signal strength.  

Similar improvement in analysis can result from the finding in the third E3 bicluster. It is unusual in 

that a single sample with extreme global differences in gene expression has driven the formation of 

this bicluster. This sample was from an original study involving 16 Affymetrix arrays with 2 replicates 

over 8 conditions (52). Examining the images of the raw Affymetrix CEL files reveals that this sample 

(MGD1_t0_A.CEL) has very weak intensities over most of the chip compared to its replicate 

(MGD1_t0_B.CEL) and other samples within this study. This has probably arisen due to some 

problem with sample preparation since other aspects of the chip (such as spike-in concentration 

gradients) are normal. RMA normalization of this chip has brought these low gene expression values 

in line with other chips, but the normalization in turn causes a number of genes (mostly intragenic) to 

have abnormally high values. The resulting large-scale transcriptional pattern is what MCbiclust has 

detected within E3, and although not biological in nature, it does show the methods impressive power 

to find a single chip that has either sample or normalization issues within a very large data collection; 

thus potentially of use for data cleansing large –omics data collections. Interestingly Fig. 4C shows a 

few other samples within this data collection that potentially have similar sample preparation issues 

but not as extreme as this sample. 

An intriguing feature of MCbiclust is that by creating PC1 versus ranking plots, the distribution and 

classification of samples can be better understood. Thus MCbiclust first discriminates samples 

according to the strength of correlation of a specific gene set, thus recognizes classes of samples with 
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high and low correlation, indicating that a specific gene expression pattern is being regulated or not in 

in a specific class. However, since this regulation can be either positive or negative (creating anti-

correlation patterns, see Fig. 3), samples with higher expression of a subset of genes from the 

bicluster are clearly separated from samples having the gene set suppressed. This next level of 

classification, e.g. in the Mito bicluster, most probably reflects mitochondrial biogenesis (high in the 

upper fork samples), which is either activated or suppressed according to the metabolic needs of 

tumours (53). Such classifications have high chance of applicability both in discovery or clinical 

science based on gene expression data. For instance, since the correlation vector of the bicluster is 

known, expression of each gene of the genome, even outside the bicluster, can be correlated with it. 

Thus a correlation value can be associated which any gene, allowing the analysis of other cellular 

processes either acting upstream (e.g. master gene regulators of large gene sets or genetic changes), 

or downstream of the action of the bicluster. Of clinical relevance, correlation with clinical pathological 

phenotypes or as shown in Fig. 6C, D, differences in pharmacological sensitivity can be determined, 

thus probably allowing prediction of the phenotype of tumours. Interestingly, similar biclusters such as 

Mito and R1 in the CCLE dataset, predict slightly different tissue distribution (compare Fig.5C and D), 

indicating that the cellular phenotype is somewhat sensitive to small changes in the correlation 

vectors and the genes involved. Similarly, while the two biclusters predicted differential sensitivity 

between upper and lower fork samples to a common set of drugs (Fig. 6D), but bicluster specific 

drugs have also been found. 

Another feature, and possible weakness in the current method is that a few biclusters can dominate 

the results which might exclude other biclusters to be found. Probably this is responsible for MCbiclust 

missing 2 synthetic biclusters (Fig. 2). By enriching the algorithm, we need to build an adapted 

version of MCbiclust that is more capable of identifying these weak signaled biclusters. In addition, 

apart from further developing the mathematical system, it will be of value to seek applications across 

all areas of gene expression research, from gene network regulation to biomarker discovery. 
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TABLE AND FIGURES LEGENDS 
 

Table 1. Summary statistics for comparing the different biclustering methods. MCbiclust 
optimum refers to choosing the top samples and genes that maximise the Jaccard index to the known 
synthetic bicluster while threshold is the top samples and genes chosen from MCbiclust’s threshold 
method (see Supplementary Methods). 

Figure 1. Schematic overview of the MCbiclust pipeline. The schematic shows (i) the methods 
used to find a core bicluster how this process is repeated and compared by Silhouette analysis to 
identify the unique biclusters (upper panel); (ii)  how these biclusters are then extended (middle panel); 
and (iii) functionally and structurally analysed (lower panel). The overall description of the process is 
given in the Materials and Methods section, with full details of each step describes in Supplementary 
Methods. A key step in the bicluster analysis is the calculation of correlation vectors, which is further 
explained in Supplementary Fig. S1. 

Figure 2. Benchmarking of MCbiclust against previous biclustering methods. A. Outline of the 
evaluation pipeline. Known biclusters in the synthetic datasets are compared with the biclusters found 
with different biclustering methods. Jaccard Index and the Munkres algorithm is used to solve the 
assignment problem of matching the known synthetic biclusters with the found biclusters, from which 
statistical evaluations such as true and false positive rates (TPR, FPR) and relative operating 
characteristics (ROC) curves are produced. B. Heatmaps of the gene-gene correlation matrices for all 
the synthetic data, the known synthetic biclusters (S1-8) and the biclusters found with FABIA (F1-8) 
and MCbiclust (M1-6). Numbers of gene and samples are shown in parenthesis (gene, sample) to 
compare the sizes of real biclusters with the ones found with either method. 

Figure 3. First principal component versus correlation based ranking plots of samples in 
biclusters identified by MCbiclust. A. Fork patterns of the six biclusters found with MCbiclust in the 
synthetic data. Y axes show the first principal component (PC1) value for each sample in each 
bicluster. Principal component analysis was run on the most highly correlating samples and captures 
the correlation pattern present in the samples. X axes show the ordering according to how well the 
samples preserve this correlation. Ranking is obtained as described in the ‘Extending the bicluster – 
samples’ section of Supplementary Methods. B. Mean centered average gene expression values of 
the two separate gene groups in the samples of the two forks of bicluster M1 determining the 
correlation. Expression levels in the two gene groups follow an antiparallel pattern. Relationship of 
average gene expression to PC1 values are shown in Supplementary Fig. S3. C. Schematics showing 
the gene-gene heatmaps of the M1 bicluster showing the division of the genes into two groups with 
different regulation in the upper and lower fork samples. 

Figure 4. Biologically relevant biclusters discovered by MCBiclust in E. coli. A. MCbiclust was 
run 1000 times on the E. coli K-12 microarray data set from the Many Microbe Microarray database 
(M3D). Results are visualised in a heatmap of the correlation matrix from the correlation vectors. 
Hierarchical clustering reveals three large bicluster groups (E1-3). B. Correlation vectors are divided 
into three unique bicluster groups (E1-3) from the output of the silhouette analysis. The silhouette plot 
of the optimum number of clusters is shown as chosen by maximizing the average silhouette width of 
all the correlation vectors. C. PC1 versus sample ranking plots of the unique biclusters E1, E2 and E3. 
The plots have been overlaid with experimental conditions: aeration and growth phases for E1 (left 
panels), the gyrase inhibitor norfloxacin treatment for E2 (upper right panel) and the different strains 
used in the experiments for E3 (lower right panel). D. Plot of average gene expression values (median 
centered log2) close (<0.25 genome) versus far (>0.25 genome) to the origin of replication. The 
distribution of norfloxacin treated (red) and control (non treated, grey) samples are shown. E. 
Heatmap of correlation vector values for E2 in relation to genome position (oriC, origin of replication). 
F. Box plot of correlation vector values for all biclusters in coding (black) and intergenic (red) regions. 
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The non-parametric Mann-Whitney test was used to calculate significance between pairs of each 
bicluster. **** p<0.0001 

Figure 5. Biologically relevant biclusters in the Cancer Cell Line Encyclopedia (CCLE) 
microarray dataset. A. Heatmaps of the MitoCarta gene – gene correlation matrices across all the 
samples (left panel) and in the Mito bicluster of samples and genes established by the MCbiclust and 
Hicor algorithms (right panel), illustrating the biclustering process (see also Fig. 1 and Materials and 
Methods). Heatmaps and Silhouette plots of the distinct R1 and R2 biclusters identified using random 
initial gene sets are shown in Supplementary Fig. S4. B. A matrix of plots comparing the correlation 
vectors in all three distinct biclusters (Mito, R1 and R2). The diagonal plots show density histograms 
of the correlation values in the mitochondrial (blue) and non-mitochondrial gene sets (red) to the 
respective biclusters (Mito, upper left; R1 central; R2, lower right). Off-diagonal scatter plots show the 
relationships between the correlations of genes to the respective biclusters (Mito, R1 and R2, labelled 
left versus bottom) for mitochondrial (lower left triangle, blue) or non-mitochondrial genes (upper right 
triangle, red). C. PC1 versus sample ranking plots of the Mito and R2 biclusters, which are highly 
correlated (see scatter plots in panel B). The tissue of origin of the different sample cell lines is 
overlaid on the distribution plot. Clustered samples with the same tissue of origin are marked in the 
upper (Mito: H-L: hematopoietic and lymphoid, LI: large intestine; R2: H-L: hematopoietic and 
lymphoid) and lower (both Mito and R2: AG: autonomic ganglia, Breast, Bone) forks. 

Figure 6. Pathological relevance of biclusters in the CCLE dataset. A, B. PC1 versus sample 
ranking plots of the R1 bicluster. The tissue of origin (A) and tumour histology (B) of the different 
sample cell lines is overlaid on the distribution plots. Clustered samples with the same tissue of origin 
or histology are marked across the distribution plots (LI: large intestine, AG: autonomic ganglia, H-L: 
hematopoietic and lymphoid origins). C. Association of copy-number differences across the whole 
genome with the distribution of samples in the upper and lower forks in all biclusters. Chromosome 
numbers and genes (labelled at left) with differences significant with a p-value < 0.05 are shown. D. 
Association of differences in pharmacological sensitivity to anticancer drugs with the distribution of 
samples in the upper and lower forks in all biclusters. To represent pharmacological sensitivity the 
Amax value was used from the CCLE dataset, signifying maximum inhibition of growth for each drug 
treatment. Drugs (out of 24 tested, see main text and ref) with significant differences between the 
lower and upper forks of each bicluster are shown. All differences are significant with a p-value <0.05. 
Significance in C and D was calculated using a permutation method randomly reassigning samples to 
the upper and lower fork and recalculating the average difference in copy-number or Amax values 
between the forks, and using this to form the distribution from which the p-values were calculated.  
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Method Biclusters Found Consensus Score Genes F1 Samples F1 

MCbiclust optimum 6 0.4368  0.8145 0.6634 

MCbiclust threshold 6 0.3462 0.8043 0.5864 

FABIA 8 0.04106 0.1962 0.549 

FABIAS 8 0.02475 0.2498 0.2878 

biMax 8 0.002343 0.5697 0.01672 

CC 8 0.0001895 0.02177 0.03344 

Plaid 2 0.004164 0.1299 0.1747 

ISA 504 0.001191 0.3256 0.5459 

FLOC 8 0.0006008 0.06603 0.03746 

QUBIC 9 0.0003819 0.008219 0.2113 

CPB 

ISA best 

24 

8 

0.0001685 

0.07504 

0.02989 0.06277 

0.3256 0.5459 

     

Table 1.  

!
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