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We report a newly-identified bias in CLIP data that results from cleaving enzyme 

specificity. This bias is inadvertently incorporated into standard peak calling 

methods [1], which identify the most likely locations where proteins bind RNA. 

We further show how, in downstream analysis, this bias is incorporated into 

models inferred by the state-of-the-art GraphProt method to predict protein RNA-

binding. We call for both experimental controls to measure enzyme specificities 

and algorithms to identify unbiased CLIP binding sites.  
 

The peak-calling process in CLIP experiments derives peaks from raw 

sequences [1]. Bound RNAs are cleaved by RNase T1, which cuts at accessible 

G’s; as a result, a majority of called peaks terminate at a G (Figure 1A). To 

demonstrate this, we analyzed CLIP data used in the GraphProt study [2] (see 

Supplementary Methods) and found the presence of the ‘terminating G’ effect. 

For each sequence in the peak and control sequences, we calculated the 

frequency of G’s at the last position. We found that there is a much higher 

frequency of G’s at the last position of the peak sequences as opposed to in the 

control sequences (Figure 1B). In the most extreme case, more than 90% of the 

last nucleotides in the peak sequences are G’s, as compared to 25% in the 

control sequences. In contrast, when we analyzed the raw sequencing data and 

its nucleotide frequencies, we did not observe a ‘terminating G’ effect (e.g., 

Figure 1C); suggesting that this bias is introduced in the peak-calling. In addition 

to the ‘terminating G’ bias, we also observed a ‘G-depletion’ bias in the peaks, in 
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concordance with Kishore et al. [3] (Supplementary Figure S1A). Complete 

results are in Supplementary Table S1. 

 

To investigate whether this bias is incorporated in computational models, we 

trained the state-of-the-art method for protein RNA-binding prediction, GraphProt 

[2], on their original data with three different flanks (denoted by peaks ± length): 

peaks flanked by 150bps– peaks+150 (as used in the original GraphProt study); 

peaks alone– peaks; and peaks without the last nucleotide– peaks-1 (see 

Supplementary Methods for details and justification). We tested the models 

through 10-fold cross-validation, as in Maticzka et al. [2]. We found that models 

which incorporated the terminating G’s improved their prediction accuracy, an 

improvement that was even more pronounced without the flanks (Figure 1D). The 

average AUC was 0.913 for peaks, as compared to 0.877 for peaks+150 (with a 

p-value = 0.00013, determined by the Wilcoxon rank-sum test, comparing results 

on 24 CLIP experiments). When we removed the last nucleotide from the peaks, 

the accuracy dropped significantly (Figure S1B); the average AUC for peaks-1 

was 0.887, as opposed to that of 0.913 achieved with peaks (p-value = 0.00087, 

using the same p-value test here and henceforth). When we investigated the 

underlying causes of this discrepancy, we observed that many of the highly 

weighted GraphProt features were encoding terminating G’s (Table 1). 

Remarkably, when we based our predictions solely on whether the sequence had 

a terminating G, we were able to achieve higher AUCs than that achieved by 

GraphProt for 5 (out of 24) experiments (Supplementary Figure S1C). Complete 

results are in Supplementary Table S2.  

 

To resolve the effect of this bias on inferred binding models, we modified the 

GraphProt algorithm to exclude features that encode terminating nucleotides 

(Supplementary Methods). We ran the modified version on the different flank 

lengths, as before, resulting in six combinations of algorithm version and flank 

length. As expected, the performance of the modified version decreased 

significantly as compared to the original algorithm: the average AUCs for 
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peaks+150, peaks, and peaks-1 were 0.870, 0.891, and 0.877, as compared to 

0.877, 0.913, and 0.886 for the original feature set, respectively (p-value = 

2.3⋅10-7) (Figure 1E). Surprisingly, the performance did not decrease significantly 

when the last nucleotide was removed: the average AUC for the modified version 

was 0.891 on peaks versus 0.877 on peaks-1 (p-value = 0.002) (Figure 1F; 

Figure S1D for a comparison of peaks+150 to peaks), implying that the modified 

version still captures the terminating G bias, albeit with less efficiency. To 

summarize, GraphProt’s performance decreased without having the terminating 

features, yet the remaining features still captured some of this bias. 

 

Conclusions 

Here we reported a newly identified bias in the CLIP analysis pipeline. The 

source of the technological bias comes from enzyme specificity [3], although it is 

truly introduced only in computational peak-calling [1]; this bias leads to 

prediction of  ‘new’ binding sites that result directly from this artifact, as 

demonstrated in the cross-validation results [2]. While the GraphProt prediction 

algorithm performs worse when terminating features are excluded from its 

feature set, it still benefits from having the ‘terminating G’ in the peaks and may 

also benefit from adjacent positions that are due to enzyme specificity. This 

finding implies that the observed bias cannot be easily removed computationally; 

distinguishing between the true protein binding preferences and the enzyme 

specificity may be impossible when the peaks are determined by both. Knowing 

the enzyme specificity in advance may allow us to deconvolve protein-binding 

signal from enzyme specificity and thereby accurately call unbiased peaks. 

 

Thus, to solve the specific bias of ‘terminating G’s’ in CLIP data, we call for an 

appropriate experimental control. Previous reported controls accounted for RNA 

expression levels, but no control measured the cleaving preference of the 

enzyme [3]. The experiment should measure the enzyme specificity without the 

presence of an RNA-binding protein. Having such a control will allow assignment 

of prior cleaving probabilities to genomic-loci in the peak-calling (as done in Uren 
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et al. [1] for other co-variants) and identification of unbiased binding sites. Such 

controls will lead to better algorithms to predict protein RNA-binding and thus 

more accurate prediction of new binding sites. 

 

 

Acknowledgments 

This study was supported by NIH grant R01GM081871. 

 

 

 

 

Peaks+150 Peaks Peaks-1 

AUC = 0.788 AUC = 0.903 AUC = 0.823 

Feature R Feature R Feature R 

G 2 G 4 C, C 0 

AC 1 G 3 C 0 

GGA 2 G 2 G, G 0 

C 0 G 4 G, G 0 

AC 1 G 1 G G 1 

Table 1. AUC results and top features learned by GraphProt for protein 

C17ORF85. For three different flank length: peaks and flanks (peaks+150), 

peaks only (peaks) and peaks only without the last nucleotide (peaks-1), we used 

GraphProt to train a model (see Supplementary Methods). We report the 

accuracy of the models (gauged in 10-fold cross validation) and the top 5 

features. For each feature, we report the nucleotide composition and the R 

parameter by which it was generated. R is the neighborhood radius reachable 

from the nucleotide and thus G features with R>0 (grey background) encode a 

terminating G (for detailed feature encoding, see Maticzka et al. [2]).  
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Figure Captions 

 

Figure 1. Sequence biases in CLIP experiments and their effect on binding 

models learned in downstream analysis. A) Most binding site peaks from Elavl1 

CLIP-seq experiment terminate at a G (highlighted in red). B) Frequency of 

terminating G’s is much higher in peaks than in control sequences. The 

histogram is over the frequency of sequences ending with G’s. C) Most raw 

sequences do not terminate with a G, indicating the bias is introduced in the 

peak-calling. The nucleotide frequencies are per position of raw sequences from 

Elavl1 CLIP-seq experiment. D) GraphProt performance on CLIP experiments 

without flanks is much better due to terminating G’s being more visible (see 

Table 1). E) Without the features encoding terminating nucleotides, GraphProt 

performs worse, but not a worse as not having the terminating nucleotide in the 

data (peaks-1). The original and modified GraphProt performance on different 

flanks lengths is averaged over 24 CLIP experiments. F) For some experiments, 

GraphProt modified algorithm benefits from the terminating G even without the 

terminating features. For other experiments, the performance decreases to the 

level of not having the last nucleotide in the data (peak-1). 

 

Figure S1. Additional sequence biases in CLIP experiments and their effect on 

binding models learned in downstream analysis. A) In most CLIP experiments 

the frequency of G’s is much lower in the peaks than in the control sequences. 

The histogram is over the frequency of G’s. B) GraphProt performs significantly 

better on CLIP experiments without the flanks but with the last nucleotide than 

without it due to the terminating G’s (see Table 1). C) For some experiments, the 

AUC achieved by ranking G-terminated sequences is even higher that achieved 

by GraphProt. In most experiment it is higher than random (0.5). D) Modified 

GraphProt performs significantly better on peaks without the flanks despite the 

exclusion of terminating nucleotides features. 
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Supplementary Methods 

 

Datasets 

We downloaded 24 CLIP experiments from the GraphProt website 

(http://www.bioinf.uni-freiburg.de/Software/GraphProt/). The peaks were 

originally downloaded from the doRiNA database [4]. Control sequences were 

extracted from nearby regions on the same transcript (for details, see [2]). 

 

For model training and evaluation, we used the sequences with three different 

flank length, denoted by peaks±length: peaks+150, peaks and peaks-1. In 

peaks+150, each sequence is flanked by 150bp on both sides for accurate 

structure prediction. In peaks flanks were removed to make the impact of the last 

nucleotide more visible. The removal of the last nucleotide showed how the 

‘terminating G’ improved the accuracy of the models. 

 

Nucleotide distribution 

For each experiment in the original GraphProt study we calculated the frequency 

of terminating G’s (the frequency of G’s at the end of a peak out of all peaks). In 

addition, we calculated the frequency of non-G nucleotides in the peaks and 

controls. 

 

Running GraphProt 

For each dataset, we ran the algorithm as advised by the authors. For each 

experiment, 4 files were used: positives and controls for parameter optimization 

and positives and controls for training. We used the files ending with 

‘ls.positives.fa’ and ‘ls.negatives.fa’ for parameter optimization and 

‘train.positives.fa’ and ‘train.negatives.fa’ for model training. 

 

We first optimized the parameters using the command line “perl GraphProt.pl –

action ls –fasta <opt_peaks> -negfasta <opt_control>”. Following this procedure, 

we used the optimal values of epochs, lambda, R, D, bitsize and abstraction for 
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10-fold cross-validation. The command line: “perl GraphProt.pl –action cv –

epochs <epochs> -lamba <lambda> -R <R> -D <D> -bistize <bistize> -fasta 

<non_opt_peaks> -negfasta <non_opt_control>”. We extracted the AUC value 

from the results. To train a model and get the feature weights, we trained a 

model on the ‘train.positive.fa’ and ‘train.negatives.fa’ files with the optimized 

parameters. To get the association between feature ID numbers and sequences 

we used the ‘-V’ verbose option in EDeN, run as part of GraphProt.pl script. 

RNAshapes version 2.1.6 was used to comply with its invocations in GraphProt 

scripts [5]. 

 

P-value calculation 

P-values in the manuscript were calculated using Wilcoxon rank-sum test. 

wilcox.test function in R was used with “paired=TRUE” and 

“alternative=two.sided”. 

 

GraphProt Modification 

We modified GaphProt feature generation to exclude features encoding 

nucleotide k-mers at the end of the sequence. A feature is a pair of sub-graphs at 

distance d, each of radius r. If the size of one of the sub-graphs was smaller than 

r+1, we removed the feature from the feature set. 
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