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Abstract

Marek’s disease virus is a herpesvirus of chickens that costs the worldwide poultry industry

over 1 billion USD annually. Severity of disease has increased over the last half century due

to evolution of the virus, a trajectory accompanied by reduced e�cacy of two generations4

of Marek’s disease vaccines. Whether continued evolution will erode the e�cacy of current

vaccines is an open question. We conducted a three-year surveillance study to assess the

prevalence of Marek’s disease virus on commercial poultry farms, determine the e↵ect of
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various factors on virus prevalence, and document virus dynamics on broiler chicken houses8

over short (weeks) and long (years) timescales. We extracted DNA from dust samples col-

lected from commercial chicken and egg production facilities in Pennsylvania, USA. Quanti-

tative polymerase chain reaction (qPCR) was used to assess wild-type virus detectability and

concentration. Using data from 1018 dust samples with Bayesian generalized linear mixed12

e↵ects models, we determined the factors that correlated with virus incidence. Maximum

likelihood and autocorrelation function estimation on 3727 dust samples were used to docu-

ment and characterize virus concentrations within houses over time. Overall, wild-type virus

was detectable at least once on 36 of 104 farms at rates that varied substantially between16

farms. Virus was detected in 1 of 3 broiler-breeder operations (companies), 4 of 5 broiler

operations, and 3 of 5 egg layer operations. Marek’s disease virus detectability di↵ered by

production type, bird age, day of the year, operation (company), farm, house, flock, and

sample. Operation (company) was the most important factor, accounting for between 12%20

and 63.4% of the variation in virus detectability. Within individual houses, virus concen-

tration often dropped below detectable levels and reemerged later. The data presented here

characterize Marek’s disease virus dynamics, a prerequisite in determining whether current

vaccine protection will be eroded by future virus evolution.24

Keywords: Marek’s disease virus; surveillance; epidemiology; virulence evolution; vaccine

escape
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Introduction

Marek’s disease, caused by Marek’s disease virus (Gallid herpesvirus II ), was first described28

over a century ago as a relatively mild polyneuritis condition in chickens. Over time the

disease has increased in severity due to evolution of the virus (Osterrieder et al., 2006; Wit-

ter, 1997). Hyper virulent strains of the virus, termed “very virulent plus” strains, can be

collected today that are capable of killing all unvaccinated chickens within ten days of ex-32

posure (Read et al., 2015). Since the development of the first vaccine against this disease,

mass vaccination has been a key feature in sustaining industrial-scale poultry production

(Davison and Nair, 2004). These vaccines are described as “leaky”, because they protect

vaccinated hosts from developing symptoms of disease, but they nonetheless allow for in-36

fection and onward transmission of the virus (Islam et al., 2008; Ralapanawe et al., 2016;

Witter et al., 1971). This feature of Marek’s disease vaccination may have played a key

role in the pathogen’s evolutionary increase in virulence (Read et al., 2015). Moreover, the

increase in virulence has been accompanied by a reduction in vaccine e�cacy (Witter, 1997).40

Two generations of Marek’s disease vaccines have been undermined by virus evolution, and

this evolutionary trajectory has been well documented (Witter, 1997). Marek’s disease virus

might therefore be the single best system for studying the e↵ects of mass vaccination on

evolutionary reductions in vaccine e�cacy. Whether the e�cacy of existing vaccine control44

strategies will decline in the future is an open question (Nair, 2005), whose answer partially

depends on the ecology of the virus. This is because evolutionary outcomes can vary greatly

depending on ecological details, which in this case depend on where in the industry the
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evolution is occurring (Atkins et al., 2013). Nevertheless, very little is known about the48

distribution of the virus across the industry. Here we surveilled virus across the industry by

sampling dust (the infectious vehicle) from commercial chicken facilities located throughout

Pennsylvania from 2012 to 2015. We used these data to ask where Marek’s disease virus

is found, how its prevalence di↵ers across the industry, and how its concentration changes52

within flocks over time.

Early e↵orts to quantify Marek’s disease virus prevalence in the field used serological

data to determine that infection was extremely prevalent (Biggs et al., 1972; Chubb and

Churchill, 1968; Ianconescu and Samberg, 1971; Witter et al., 1971). Clinical disease and56

production losses coupled with these observations motivated near-universal vaccination in

commercial poultry farming in the United States and many other nations. More recently,

virus prevalence has been inferred from disease data (Dunn and Gimeno, 2013; Kennedy

et al., 2015; Purchase, 1985; Witter, 1996), but the reliability of these methods are limited60

by biases inherent in disease data generally (King et al., 2008) and these data in particular

(Kennedy et al., 2015). The development of quantitative polymerase chain reaction (qPCR)

protocols specific for Marek’s disease virus have made it possible to detect and quantify

virus collected from field settings (Baigent et al., 2016; Gimeno et al., 2014; Walkden-Brown64

et al., 2013a). Of the three studies that have used qPCR methods to study field samples,

two were performed in unvaccinated (Wajid et al., 2013) or mostly unvaccinated (Walkden-

Brown et al., 2013b) chickens, and the third found extremely low prevalence of Marek’s

disease virus while looking in only a single sector of poultry farming (Ralapanawe et al.,68
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2015). These results might therefore be of limited value with regard to understanding the

evolution of Marek’s disease virus in the field. Here we performed quantitative polymerase

chain reaction (qPCR) on samples collected from chicken farms throughout Pennsylvania,

USA, to directly examine Marek’s disease virus dynamics on commercial poultry farms. The72

farms used in this study encompass much of the diversity of industrial-scale commercial

chicken-meat and egg production.

When quantifying virus dynamics, it is important to appreciate that commercial poul-

try farming is highly structured (fig. 1). At its highest level, industrialized commercial76

chicken production is broadly divided into egg laying birds, broiler birds, and layer-breeder

or broiler-breeder birds. This distinction is important because the natural history, genetics,

and management practices can often di↵erent dramatically between these production types.

Further structure exists within these production types, because a single company, hereafter80

referred to as an “operation”, will often target particular sectors of the poultry market

(e.g. kosher, organic, live bird market, cage-free eggs, etc.) requiring di↵erent management

practices which can potentially impact virus dynamics. Biosecurity practices, equipment,

and feed mills are also often shared within operations, and so some operations may better84

control virus dynamics than others. Within an operation there is an additional layer of

structure because birds are reared on moderately small premises (farms) that are managed

by a single person or a small number of people. These people, often referred to as “growers”,

are in part responsible for monitoring and maintaining bird health, and thus their actions88

could in turn a↵ect virus dynamics. Within single farms, there are usually multiple houses.

5
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Within these houses, there are successive flocks of birds. Finally, within houses at any point

in time there may be variation between individual samples if the virus is not perfectly mixed

throughout the house. Our goal was to quantify the relative importance of these factors on92

the variation we observed in the prevalence of Marek’s disease virus. This is a critical first

step in evaluating risk factors both for disease outbreaks, and for virus evolution that might

undermine current vaccine strategies and lead to increased pathogen virulence.

Methods96

Background and sample collection

Marek’s disease virus is a herpesvirus (Calnek et al., 1970) that is transmitted through

inhalation of virus-contaminated dust (Colwell and Schmittle, 1968). Once inside a host,

the virus goes through an incubation period of one to three weeks, after which new virus100

particles are produced and shed from feather follicle epithelial cells (Baigent et al., 2005;

Islam and Walkden-Brown, 2007). The shedding of this infectious virus co-occurs with the

shedding of epithelial cells, and so the virus can be found in “chicken dust” (Carrozza et al.,

1973), a by-product of chicken farming made up of sloughed o↵ epithelial cells, feathers, fecal104

material, chicken feed, and bedding material (Collins and Algers, 1986). Once shedding is

initiated, it is believed to occur for the rest of the chicken’s life, although studies quantifying

virus shed have been limited to relatively young birds. We collected samples of chicken dust

from farms, and measured virus concentrations to gain insight into the virus’s dynamics in108
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the field.

We visited and collected dust from as many di↵erent farms as possible to gain insights

into whether and where the virus was detectable. Logistical constraints including those

imposed by biosecurity concerns, industry participation, total availability of farms, and time-112

varying presence of chicken cohorts resulted in a sampling schedule best described formally

as haphazard rather than random. After finding farms where virus was repeatedly detected,

we began collecting from these farms at approximately weekly intervals to quantify changes

over time (hereafter referred to as the “longitudinal data”). All samples collected during116

this study are being stored indefinitely at -80 �C.

All samples used in this study were collected by the authors. To mitigate the spread

of pathogens between poultry farms, only farms from a single operation were visited in a

single day. We wore hairnets, beard covers, plastic boots, and coverall suits while in poultry120

houses, and these materials were changed between each farm to minimize opportunities

for virus spread. Plastic 1.5 ml Eppendorf tubes were filled with dust by mechanically

“scooping” dust with the collection tube, or “brushing” dust with glove-covered fingers. To

prevent cross contamination of dust samples, gloves were changed between each sample. In124

Appendix A.1, we showed that the dust that collected on fan covers, or “louvers”, showed

less spatial variation in virus concentration than dust collected from ledge-like surfaces.

We therefore collected between two and six dust samples from fan louvers in each house

each visit. In total, we visited 104 unique commercial combinations of farm and operation128

(three farms changed operations during surveillance). These combinations were comprised
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of 29 broiler-breeder facilities, 52 broiler (meat-chicken) facilities, and 23 egg-laying facilities

(no egg-breeder facilities were included). This included a total of 13 operations, 101 unique

farms, 226 houses, 469 unique flocks, 4848 total dust samples, and 9498 total qPCR runs. To132

generate the subset of data that we used to quantify Marek’s disease prevalence we excluded

the longitudinal data, and the 103 samples for which bird age was unavailable. This left us

with 13 operations, 90 farms, 192 houses, 297 flocks, 1018 samples, and 1915 qPCR runs

(hereafter referred to as the “surveillance data”).136

On two farms, in addition to dust collection we collected data on airborne virus con-

centration and host infection status. Airborne virus concentration was assessed by securing

a total of six 1.5 ml Eppendorf tubes to the arms, hips, and legs of the authors during

routine dust collection. Tubes were oriented horizontally with tops pointing to the front140

of the collector’s body. The tubes were opened upon entering the house, and closed upon

leaving. This period lasted approximately fifteen to twenty minutes. These data are here-

after referred to as the “air tube data.” Feathers were also collected from individual birds

following a procedure approved by the Institutional Animal Care and Use Committee of The144

Pennsylvania State University (IACUC Protocol#: 46599). Two feathers were pulled from

the breast of each target bird. The pulpy distal end of each feather was clipped and placed

into individual Eppenorf tubes. Scissors used to clip feathers were sterilized between birds

using 70% isopropyl alcohol wipes. Ten total birds were sampled from each house during148

each visit (hereafter referred to as the “feather tip data”). Target birds for feather collection

were chosen such that they were spatially distributed throughout the house. Individual birds
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were selected at the discretion of the collector with a goal of random selection. To account

for the possibility of airborne virus contamination, we also had two control tubes, one that152

was left open during the collection of a single feather from a single bird, and one that was

left open during the collection of feathers from all ten birds.

qPCR

All samples were brought back to the lab and stored at 4 �C prior to processing. For dust156

samples, at the earliest convenience, typically within one week, we weighed out duplicate

2 mg samples of dust on a Mettler Toledo balance (Cat # 97035-620). Virus DNA was

extracted from dust samples using the Qiagen DNeasy Blood & Tissue kit (Cat # 69506).

The following changes were made to the standard “Animal Tissue” protocol. In step 1, we160

used 2 ± 0.2 mg of chicken dust, and we increased the amount of Bu↵er ATL to 380 µl. In

step 2, we incubated our samples overnight at 56 �C with constant shaking at 1,100 RPM on

a VWR symphony Incubating Microplate Shaker (Cat # 12620-930). In step 3, we doubled

the volume of ethanol and Bu↵er AL to 400 µl each. Between steps 3 and 4, we centrifuged164

samples at 17,000 RCF to pellet undigested dust to avoid clogging the spin column in step 4.

Lastly, in step 4, we bound the DNA to the spin column twice using half of our supernatant

each time. This last step was necessary because of the increased sample volume that was

generated from our modifications to steps 1 and 3. Air tube and feather tip samples were168

processed identically standard “Animal Tissue” protocol, with the exception of the added

centrifugation between steps 3 and 4. Unlike the dust samples, the entire template was used
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in initial DNA extraction, and so these samples were processed in singlicate.

Three types of live vaccine virus strains are used on Pennsylvania farms to control Marek’s172

disease. These strains are related but not identical to wild-type virus. Once vaccinated, a

bird can shed these vaccine strains (Baigent et al., 2005; Islam and Walkden-Brown, 2007),

and so we used the primer-probe combination of Baigent et al. (2016) that is capable of

quantifying wild-type virus in the presence of each of the vaccine strains. This assay targets176

a portion of the pp38 gene, which is present only in Marek’s disease virus serotype 1. Two of

these vaccine strains (HVT and SB-1) are di↵erent serotypes; their genomes do not contain

a pp38 gene, and therefore they do not amplify in the qPCR assay. The third vaccine strain

(Rispens) is a serotype 1 virus, as are wild-type strains, and all have a pp38 gene. The180

qPCR was designed to target a region of the pp38 gene that contains a single nucleotide

polymorphism that di↵ers between Rispens virus and all sequenced wild-type strains. The

Rispens virus did amplify minimally in the qPCR, resulting in minor fluorescence. We were

nonetheless able to accurately determine the presence and quantity of wild-type virus when184

it was present at a ratio of as low as 1 copy per 10 Rispens virus copies (Appendix A.2).

Below this ratio, the wild-type virus was often still detected, but the estimate of its quantity

became biased. In appendix A.3 we show that this interference was unlikely to a↵ect our

conclusions.188

All qPCR assays were run on a 7500 Fast Real-Time PCR System machine (Cat #4351107).

The pp38-FP and pp38-RP primers and the pp38-Vir(1) probe from Baigent et al. (2016)

were used at concentrations of 300 nM, 300 nM, and 100 nM respectively. We used the

10
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PerfeCTa qPCR FastMix, UNG, Low ROX reaction mix (Cat #95078), and we followed the192

standard protocol with the exception of adding bovine serum albumin (BSA) from Sigma

Aldrich (Cat #B4287) to a final concentration of 1 µg/µl. The final reaction volume con-

tained 21 µl of master mix and 4 µl of DNA template. Our cycling conditions included an

initial denaturation at 95 �C for 20 seconds, followed by 40 two-step cycles of denaturation196

at 95 �C for 3 seconds and annealing/extension at 60 �C for 30 seconds. All assays were

carried out using ‘ABI Sequence Detection Software’ version 1.4. We used the prMd5pp38-1

plasmid provided by John Dunn at the Avian Disease and Oncology Lab as a standard. For

all qPCR runs, a quantification curve was generated using five serial tenfold dilutions of the200

standard in duplicate, and C

T

numbers were translated into DNA copy numbers using this

quantification curve. As a positive control, each run contained a well of Marek’s disease

virus DNA extracted from an in vivo infection. As negative controls, each run contained

a well with distilled water, and a well with a high concentration of Rispens virus DNA.204

As previously mentioned, Rispens virus DNA can result in minor fluorescence, and so this

Rispens-virus-positive well was used to set the critical threshold of our qPCR. In practice,

this meant that the critical threshold was set to just above the fluorescence value of this

well at cycle 40. The standard deviation between technical replicates of a dust sample was208

estimated to be 0.319±0.006 log10 units of virus per mg dust, which is approximately equiv-

alent to a 2.09 ± 0.03 fold standard deviation in virus concentration (Appendix A.4). This

error estimate included multiple sources of variation, including heterogeneity within a dust

sample, in the DNA extraction e�ciency, and in the qPCR amplification and quantification.212
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The standard deviation between biological replicates was 0.556± 0.022 log10 units, which is

approximately equivalent to a 3.60±0.18 fold standard deviation (Appendix A.4). Our tests

to confirm the accuracy of our qPCR approach are summarized in Appendix A.5.

Statistical analysis216

Analysis of the surveillance data

To study the variation in the presence and absence of Marek’s disease virus across chicken

dust samples it was useful to treat the results of our qPCR tests on dust samples as binomial

data. Feather tip data were treated similarly (Appendix A.6). Our qPCR data was inter-220

preted as binomial data with those qPCR runs that had at some point crossed the qPCR

florescence threshold treated as positive outcomes, and those that had not treated as nega-

tive outcomes. This method was similar in e↵ect to running a traditional PCR and checking

for the amplification of a target using gel electrophoresis. In practice, our limit of detection224

was approximately 100 template DNA copies per mg of dust (Appendix A.5), which is close

to the concentration of virus that would be expected if about 20 to 50 chickens were infected

per flock of 30,000 chickens and virus was randomly mixed throughout the dust (Appendix

A.7).228

To account for the lack of balance in our sampling scheme, we analyzed our data using

generalized linear mixed e↵ects models (Gelman and Hill, 2009). For this analysis, we

excluded the data that were collected from five farms at regular intervals (i.e. the longitudinal

data), because we were concerned that these farms would have outsized importance on factors232
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such as seasonal patterns and flock to flock variation. We additionally excluded samples

where bird age was unavailable (103 samples). Depth of coverage on the remaining farms

ranged from 1 to 90 dust samples, with a median of 6 (fig. 2). Our models had random

e↵ects for “Operation”, “Farm”, “House”, “Flock”, and “Sample” to account for these levels236

of clustering in the data. We were also interested in whether virus dynamics di↵ered between

broiler, broiler breeder, and layer farms, and so we included a fixed e↵ect of “Production

type”. We allowed for seasonal variation in virus dynamics by including fixed e↵ects on

the sine and cosine of the collection date, transformed such that one year corresponds to a240

period of 2⇡. This method fit a sigmoidal curve with a flexible amplitude and o↵set that was

constrained to have a cycle period of one year. Lastly, we included an e↵ect of cohort age

by using a spline function on bird age. This approach allowed us to fit a non-linear e↵ect of

age while nonetheless taking advantage of the computational benefits of generalized linear244

models (Härdle, 1990; Huang and Stone, 2003). This spline contained knots at cohort ages

of 21, 42, 100, and 315 days. These ages were selected for their biological and empirical

relevance: virus concentration in shed dust first peaks around 21 days post infection (Islam

and Walkden-Brown, 2007; Read et al., 2015), commercial broiler cohorts in our data were248

typically processed at around 42 days of age, the longer-lived broilers in our data were

typically processed at around 100 days, and the halfway point for our oldest flock sampled

was 315 days. In practice, the spline was generated using the “bs” function in the R package

“splines”. We generated five candidate models consisting of the full model that contains all252

of the factors listed above, the three models that lacked exactly one of these fixed e↵ects,
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and one model that lacked the random e↵ect of “Sample”. We did not explore the e↵ect

of removing the higher level random e↵ects. Instead, we explored the importance of each

random e↵ect by examining the magnitude of its estimated e↵ect.256

We analyzed the generalized linear mixed e↵ects models using Bayesian methods. There

are several advantages to this approach, including readily interpretable confidence intervals

on all model parameters (Hadfield, 2010), the ability to incorporate many random e↵ect

levels (Bolker et al., 2009), and the ability to perform model parameter estimation in the260

presence of quasi-complete separation (Gelman et al., 2008). This analysis was done in the

R statistical computing language (R Development Core Team, 2014), using the function

‘MCMCglmm’ (Hadfield, 2010) with family set to “categorical”, and “slice” sampling. A

caveat of this approach was that every parameter in the model including both fixed and264

random e↵ects required the specification of a prior distribution.

Following Hadfield (2010), prior distributions for fixed e↵ects were univariate normal

distributions, and for random e↵ects were inverse Wishart distributions. For each fixed

e↵ect we used mean 0, and standard deviation 7. For each random e↵ect, we used scale268

5 and degrees of freedom 3. These prior distributions were set for practical, rather than

biological reasons, because less informative priors resulted in models that failed to converge

in a reasonable number of MCMC iterations. However, we explored the e↵ects of using

di↵erent parameters in the prior distributions and found that the results were qualitatively272

similar for other priors that were able to achieve convergence (Appendix A.8). Each model

was run for 4.1 ⇥ 106 iterations with a burn in of 1 ⇥ 105 steps, and a thinning interval of

14
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2 ⇥ 103. This resulted in 2000 parameter samples for each model run. This process was

repeated to generate a total of three chains for each model.276

Posterior convergence was tested in three steps, following the method used by Kennedy

et al. (2014). First, we visually examined trace plots for each model parameter to explore

whether the chains appeared to be mixing. Second, we tested for stationarity of the posterior

distribution using the stationarity test proposed by Heidelberger and Welch (1983). Third,280

we tested whether the between chain variances for parameter estimates were similar to the

within chain variances by using the test proposed by Gelman and Rubin (1992). Upon seeing

no obvious problems with convergence, we concluded that the chains had likely converged.

The models were compared using the Deviance Information Criterion (DIC). DIC is a tool,284

in many ways similar to the Akaike Information Criterion (AIC), that is useful for comparing

the relative goodness of fit of various models (Spiegelhalter et al., 2002). To foster model

comparison, we presented �DIC scores, which are the di↵erences in DIC between the best

model and each alternative model. Like AIC, there is no precise threshold for significance288

of �DIC scores, but (Bolker, 2008) argued that it is on the same scale as AIC. We therefore

followed the suggested rule of thumb for AIC (Burnham and Anderson, 2002) that �DIC

scores less than 2 suggest substantial support for a model, scores between 3 and 7 indicate

considerably less support, and scores greater than 10 suggest that a model is very unlikely. If292

the di↵erence in structure between the model with little support and the best fitting model,

for example, were to include an e↵ect of factor “x” that the poorer fitting focal model lacked,

the interpretation of a large �DIC would be that “x” is important to explaining the data.

15
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We also explored the importance of model factors using fraction of variance explained296

(R2) where the calculation of R2 was modified for use with generalized linear mixed models

(Nakagawa and Schielzeth, 2013). We presented marginal R2 and conditional R2 values that

describe the fraction of variance on the latent scale of the data that can be attributable to

fixed and fixed plus random e↵ects, respectively. We then extended this method to explore300

the contribution to R

2 that can be attributed to each single factor in the model. Credible

intervals for all estimates came from the posterior distributions of the fitted models.

We explored the statistical significance of di↵erences between production types by per-

forming pairwise comparisons on the estimated e↵ect sizes of production type. In practice,304

this was done by asking what fraction of samples from the posterior estimated a larger e↵ect

size for production type level 1 than for production type level 2 or the reverse. This value

was multiplied by two to account for it being a two-tailed hypothesis test. These tests were

performed for all three pairwise comparisons between broiler-breeders, broilers, and layers.308

Previous work has shown that Marek’s disease associated condemnation rates historically

varied across broad geographic area such as between states (Kennedy et al., 2015). We

explored whether there was evidence of clustering in virus detection across the finer spatial

scales found in our surveillance data. We did this by calculating distances and correlations in312

e↵ect sizes between each pairwise farm location. We then used the “lm” function in “R” to

generate two models. The first was an intercept only model that functioned as a null model.

The second was an intercept plus distance e↵ect model, where distance was transformed by

adding one and then taking the log10. The importance of distance was assessed by performing316
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a likelihood ratio test.

Analysis of the longitudinal data

To study the variation in Marek’s disease virus dynamics within a focal chicken house over

time, we used the quantitative values returned by qPCR analysis, rather than the presence-320

absence used for the surveillance data, because the quantitative data are more sensitive to

changes in virus concentration. We assumed lognormal error in these quantities, because

variation in qPCR data tends to occur on a log scale. In our analyses, we therefore trans-

formed the virus-copy-number-per-mg-of-dust data by adding one and log10 transforming324

that value. We explored the suitability of this lognormal assumption for our data in Ap-

pendix A.4. Additionally, many of our samples yielded virus concentrations below our limit

of detection. We thus performed our analyses while treating these data in two di↵erent ways,

first as a value of zero virus copies representing virus absence, and second as a value of our328

limit of detection representing virus presence at an undetectable level. Our limit of detection

was generally better than 100 virus copies per mg of dust (Appendix A.5), and so in practice,

we used this quantity as our value in the latter case. For this analysis, all samples that had

detectable virus below this quantity were treated identically to negative samples.332

We sampled from five broiler farms at approximately weekly intervals. One of our main

goals was to quantify how virus concentrations changed over the duration of a cohort, and

across di↵erent cohorts, and so we began by simply plotting the data. A similar plot was

generated for the air tube data. We then explored a cohort age e↵ect by fitting smoothing336
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splines to the raw data from each farm where the data are sorted by cohort age. Each spline

was fit in “R” using the function “smooth.spline”. We used the option “nknots=4” for this

function because this was the smallest number of knots that did not return an error. Very

similar conclusions were obtained using any number of knots from four to nine. We explored340

seasonality in these data by subtracting cohort age e↵ects from the raw data and plotting the

residual virus concentration. We assessed the degree of correlation between houses within

farms using the “cor” function in “R”. We also examined autocorrelations within houses

using the “acf” function for data within each house.344

Results

Surveillance data

Samples used in our model comparisons were collected from multiple operations that reared

broiler-breeder, broiler, and egg laying chickens. Samples were collected throughout the year348

from flocks of varying sizes, ages, and sexes in Pennsylvania (fig. 2). Among all samples

collected (combining surveillance and longitudinal data), wild-type Marek’s disease virus

was detected at least once on 36 of the 104 farms (fig. 3). Virus was detected in 1 of 3

broiler-breeder operations, 4 of 5 broiler operations, and 3 of 5 egg layer operations. The352

fraction of samples in which virus was detectable varied substantially among farms with

detectable virus, and less so between houses within a farm (fig. 3). Summary plots of virus

prevalence as a function of production type, bird age, date of sample collection, and bird sex
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Table 1: DIC table for models considered. “Mean deviance” is the average deviance of the
posterior. Note that the “Full model” is in bold to highlight that it was the best model
according to DIC.

Model name Mean Deviance Number of parameters DIC �DIC
Full model 336.9 17 494.5 0
No production type 339.7 15 497.1 2.5
No bird age 345.8 15 503.7 9.1
No collection date 341.2 10 499.1 4.6
No sample 450.1 16 575.3 80.7

can be found in Appendix A.9. Note, however, that a visual inspection of patterns in these356

data could be misleading because of potential confounding with other covarying factors. We

therefore used statistical models to further explore the e↵ects of these factors on the data.

Our analysis of the virus prevalence data using DIC scores revealed that our best model

was our most complicated model, which included e↵ects of production type, bird age, collec-360

tion date, and variation between dust samples (Table 1). Comparing our most complicated

model to the other models through �DIC using the rule of thumb suggested by Burnham

and Anderson (2002), we found moderate support for an e↵ect of production type, reason-

able support for an e↵ect of collection date, relatively strong support for an e↵ect of bird364

age, and overwhelming support for variation between dust samples. Taken together these

results suggest that, to varying degrees, each of these factors had detectable e↵ects on the

prevalence of Marek’s disease virus on farms.

We further explored the importance of these e↵ects by examining the fraction of variance368

in our data explained by each model factor for our best model (fig. 4). This showed that

the fraction of variance attributable to production type was highly uncertain, with the 95%

credible interval ranging from 1.5% to 38.4%. This large degree of uncertainty likely resulted
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from partial confounding between production-type e↵ects and operation e↵ects, and it may372

explain why support for an e↵ect of production type was only moderate. Indeed, exploring

the variance explained by these two factors combined, we found that they accounted for

between 26.7% and 74.4% of the variance. This confounding likely occurred because there

were relatively few operations in our study area.376

Fig. 5 shows the e↵ect sizes of production type, bird age, and collection date observed in

the full model. Virus prevalence was higher on broiler farms than on layer farms (p = 0.023),

but there was no statistically significant di↵erence between breeder and broiler (p = 0.268),

or breeder and layer farms (p = 0.150). During the first few weeks of a bird cohort the380

probability of detecting virus decreased, and then as birds continued to age this probability

began to increase. Note that after cohorts reached about 100 days, the median e↵ect was

close to neutral and the confidence intervals on the e↵ect size was fairly large (fig. 5 middle

panel). This uncertainty was likely because we have relatively few data from older cohorts.384

We additionally saw a seasonal pattern in Marek’s disease virus prevalence with a fairly wide

credible interval. Our probability of detecting virus was lowest in the winter months and

highest in the summer months (fig. 5 bottom panel).

Additionally, we found that the estimated e↵ect that “Farm” had on virus detection388

tended to be positively correlated for nearby farms, and this correlation decayed with distance

between farms (�2 = 28.5, d.f. = 1, p < 0.001). However, the e↵ect size was relatively small,

with a maximum correlation of 0.029± 0.004 for nearby farms and a decay of 0.014± 0.003

for every 10-fold increase in distance. Moreover, this correlation with distance might have392
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been a statistical artifact resulting from geographic clustering of farms belonging to the same

operation: no significant correlations by distance were detected between farms within single

operations. We therefore would suggest caution when interpreting the e↵ect of nearby farms

on Marek’s disease virus dynamics.396

Longitudinal data

The longitudinal data from five broiler farms revealed several patterns. These data visually

confirmed the conclusion from the surveillance data that virus densities varied substantially

between farms, and between flocks, but varied less between houses located on the same400

farm (figs. 6 and 7). This similarity between houses was also seen as a correlation of virus

quantities between houses within farms (average correlations between houses within each

of the five farms were 0.215, 0.320, 0.738, 0.763, and 0.918). The data also confirmed the

observation that virus densities tended to decrease during the early phase of a cohort, and404

tended to increase during the later phase of a cohort (Appendix A.11). This created “U”

shaped curves in virus concentration within cohorts (figs. 6 and 7). The initial decrease

might be explained either by a dilution of virus in dust early in cohorts, when birds were

shedding virus-free dust into holdover dust from the previous cohort, or by degradation of408

virus DNA early in flocks. The subsequent increase could then be explained by the hyper-

concentration of virus in dust later in cohorts, when birds were shedding dust that was highly

contaminated with virus. This pattern is not explained by di↵erences in sample humidity or

qPCR inhibition (Appendix A.13). Consistent with the surveillance data in which seasonal412
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e↵ects were small, we were unable to find any consistent seasonal e↵ect on Marek’s disease

virus dynamics in these data.

Three additional patterns were also detectable in the longitudinal data. First, virus

concentrations often dropped to below detectable levels, and returned to detectable levels at416

a later time point (figs. 6 and 7). Second, there was an autocorrelation in virus concentration

within single houses over time. This e↵ect was seen as an autocorrelation between samples

collected seven days apart (Acf(7)
avg

= 0.579, Acf(7)
min

= 0.226, Acf(7)
max

= 0.967),

although this correlation was also observed over longer periods (Appendix A.12). Third,420

during farm down time, when birds were absent from houses, there were many cases where

virus concentration did not change (figs. 6 and 7). Patterns consistent with the first two of

these observations were also seen in the air tube and feather tip data (fig. 8).

Discussion424

The historical evolution of Marek’s disease virus towards reduced vaccine e�cacy and in-

creased virulence was both economically important and academically interesting. Deter-

mining whether this evolutionary trajectory will continue depends critically on the factors

driving evolution, and thus depends on the distribution of Marek’s disease virus in the in-428

dustry. Here, we surveyed commercial chicken farms in Pennsylvania to generate the first

industry-wide dataset exploring the modern distribution of this virus. We found that the

virus was at detectably high densities in only a third of farms, that bird age, collection

date, and production type a↵ected the probability that we detected virus, and that the432
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vast majority of variation in the data was not attributable to those factors, but instead was

attributable to di↵erences between the companies, farms, houses, flocks and samples. Lon-

gitudinal sampling on five focal broiler farms revealed substantial autocorrelation in virus

density within houses over time, and demonstrated that virus concentrations often dropped436

to undetectable levels on farms but reappeared in future flocks. Taken together, these results

imply that selective pressures on the virus may be highly heterogeneous across the industry

and over time.

Previous studies on the evolution of Marek’s disease virus in the poultry industry have440

focused entirely on endemic virus persistence in broiler chicken houses (Atkins et al., 2013;

Read et al., 2015; Rozins and Day, prep). Our data, however, reveal that the virus can be

found in each of the sectors of chicken farming, including broiler, layer, and breeder chicken

facilities. The vastly di↵erent host genetics, rearing duration, host densities, vaccination444

strategies, and biosecurity measures of these di↵erent sectors imply the potential for vastly

di↵erent evolutionary outcomes depending on where evolutionary forces are most strongly

acting.

Conventional wisdom is that Marek’s disease virus is su�ciently pervasive that it should448

be considered ubiquitous (Dunn, 2013; O�ce International des- Epizooties, 2010; Purchase,

1976). This idea came from observations that the virus is highly stable in the environment

(Jurajda and Klimes, 1970), that problems with Marek’s disease can occur quickly and

without warning when there are issues with vaccine administration, and that vaccination452

does not preclude infection with and transmission of the virus (Islam and Walkden-Brown,
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2007; Purchase and Okazaki, 1971; Ralapanawe et al., 2016). It was further supported by

the historical ubiquity of antibody detection in production flocks (Biggs et al., 1972; Chubb

and Churchill, 1968; Ianconescu and Samberg, 1971; Witter et al., 1971). However, we found456

virus on only one third of farms. It may in fact be present on the other two thirds of farms

at densities below our detection threshold or at times when samples were not collected, or

it may instead be that modern farm practices have led to changes in the distribution of

the virus such that it is no longer ubiquitous on chicken farms. Many features of poultry460

farming have changed in recent decades that could have altered Marek’s disease virus ecology,

including vaccination strategies and cohort durations (Kennedy et al., 2015). Recent studies

in Australia (Ralapanawe et al., 2016; Walkden-Brown et al., 2013b), and Ethiopia (Bettridge

et al., 2014) have suggested that Marek’s disease virus may no longer be ubiquitous in those464

locations. Our study suggests that this trend may be more general, extending to commercial

poultry farming the United States. Introducing non-vaccinated sentinel birds could be a

way to directly challenge this finding. If confirmed, this suggests that selective forces acting

during sporadic outbreaks or acting in flocks with low prevalence of infection may play an468

important role in the evolution of the virus.

The importance of random e↵ects (i.e. operation, farm, house, flock, and sample) in

explaining the data suggests that substantial variation in virus dynamics can be explained

by factors that co-vary with these random e↵ects. For example, bird breeds, vaccination472

details, and average cohort durations may explain some of the variation between operations.

Ventilation rates, clean out e�ciency, and other hygiene factors may explain some of the
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variation between farms. Structural di↵erences and wind patterns may explain some of the

variation between houses. Microbial communities, developmental plasticity and stochastic476

e↵ects of virus transmission may explain some of the variation between flocks. Lastly, spatial

clustering of virus may explain some of the variation between samples. Our model analysis

showed that between about one quarter and three quarters of the variation in Marek’s disease

virus detection probability was attributable to the combined e↵ect of production type and480

operation. This suggests that factors outside the control of individual farm operators may

play a large role in Marek’s disease virus dynamics. It also suggests that any intervention

strategy intended to control virus evolution is likely to be ine↵ective unless implemented

through top-down measures.484

The observation that seasonality explained only a small portion of variance in Marek’s

disease virus prevalence contrasts with observations that Marek’s disease associated condem-

nation in broiler chickens has had clear seasonal patterns in the past (Walkden-Brown et al.,

2013b; Witter, 1996). However, seasonal patterns in condemnation have become less pro-488

nounced in recent years (Kennedy et al., 2015). The data we report here are consistent with

the theory that this decrease in seasonality is attributable to an overall decline in prevalence,

resulting in stochastic outbreaks playing a relatively larger role in dynamics than seasonal

forcing (Kennedy et al., 2015).492

An interesting question is whether virus populations are persisting within individual

houses and farms, or instead going through repeated extinction and recolonization events.

Our observation in the longitudinal data that there was a strong autocorrelation in virus
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concentration within houses over time (Appendix A.12) contrasted with the observation496

that virus densities were often undetectably low in one cohort but emerged as detectable

in the next (figs. 6 and 7). This reemergence might be due either to recolonization events

or to the epidemiological amplification of virus persisting within the house at undetectable

concentrations. Genetic techniques could be used to determine the relative contributions of500

these two factors.
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Figure 1: Depiction of the structure of poultry farming in our study. Multiple samples
were collected from a single flock, multiple flocks were reared in a single house over time,
multiple houses were located on a single farm, multiple farms were associated with a single
operation (company), and multiple operations were rearing chickens that typically belonged
to a single production type. This created a nested hierarchical structure in the data. The
total number of levels sampled for each hierarchy are shown as “S” for the surveillance data,
“L” for the longitudinal data, “A” for the air tube data, and “F” for the feather tip data.
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Figure 2: Summary plots of the surveillance data depicting the number of assays that were
performed as a function of production type (A), operation (B), farm (C), sex (D), month of
the year (E), bird age (F), and flock size (G). Also depicted are the approximate locations of
origin of each assay (H) and each farm (I). Note that to maintain farm location anonymity,
normal random variables with mean 0 and standard deviation 0.1 were added to the points
when plotting latitude and longitudes in H and I. In all plots, black color depicts breeder
facilities, red color depicts broiler facilities, and blue color depicts layer facilities.
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Figure 3: Fraction of tests with detectable virus separated by house. Di↵erent rows depict
di↵erent production types (top–breeders, middle–broilers, bottom–layers). Solid black lines
separate di↵erent operations. Dashed red lines separate di↵erent farms. Grey bars show
95% confidence intervals on the mean (Appendix A.10). Confidence intervals vary between
houses because of variable sample sizes. Note that prevalence estimates are from the raw
data, not corrected to account for potential confounding e↵ects from bird age, collection
date, flock, or sample.
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respectively. Note that only the values for the best model (Table 1) are shown.
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Figure 5: E↵ect sizes for fixed e↵ects. The top panel shows the median and 95% credible
interval for the three production types. The middle panel shows the median and 95% credible
envelope for the e↵ect of bird age on the probability of detecting virus in a dust sample. The
bottom panel shows the median and 95% credible envelope for the e↵ect of collection date
on the probability of detecting virus.
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Figure 6: Longitudinal surveillance data for three broiler farms in Pennsylvania. Each
panel is labelled “X-Y”, where “X” gives a unique farm identification, and “Y” gives a house
number on that farm such that each two character label is unique. Note that each of these
farms had two houses. All of these farms began associated with the same operation, but
farm “C” changed operations in the middle of our surveillance. The timing of this change is
denoted by an asterisk in the plot. All farms followed an “all-in, all-out” policy meaning that
houses had discrete periods of rearing and down time. To represent the presence or absence
of birds, white intervals cover periods when birds were present, grey intervals cover periods
when birds were absent, and blue intervals cover unknown periods. Each point represents
the log-mean virus concentration for that set of dust samples. Error bars are 95% confidence
intervals calculated as explained in Appendix A.10. The dotted horizontal line shows the
approximate qPCR limit of detection for a single test.
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Figure 7: Longitudinal surveillance data for two additional broiler farms in Pennsylvania.
Symbols, colors and layout as in fig. 6. Each of these farms had four houses. Farm “D”
was association with the same operation as the farms in fig. 6, but farm “E” was not. Note
also that farm “E” changed operations during our surveillance period, the timing of which
is marked with an asterisk.
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Figure 8: Air tube data (left column) and feather tip data (right column) for two broiler
farms in Pennsylvania. Symbols, colors and layout as in fig. 6. Note that the dynamics
in the air tube data and feather tip data are highly similar to one another, and are highly
similar to that of the corresponding houses in the surveillance data (fig. 6).
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