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Abstract

Measuring the functional consequences of protein
variants can reveal how a protein works or help unlock
the meaning of an individual’s genome. Deep mutational
scanning is a widely used method for multiplex
measurement of the functional consequences of protein
variants. A major limitation of this method has been the
lack of a common analysis framework. We developed a
statistical model for estimating variant scores that can be
applied to many experimental designs. Our method
generates an error estimate for each score that captures
both sampling error and consistency between replicates.
We apply our model to one novel and five published
datasets comprising 243,732 variants and demonstrate its
superiority, particularly for removing noisy variants,
detecting variants of small effect, and conducting
hypothesis testing. We implemented our model in easy-
to-use software, Enrich2, that can empower researchers
analyzing deep mutational scanning data.

Introduction

Exploring the relationship between sequence and
function is fundamental to enhancing our understanding
of biology, evolution, and genetically driven disease.
Deep mutational scanning is a method that marries deep
sequencing to selection amongst a large library of protein
variants, measuring the functional consequences of
hundreds of thousands of variants of a protein
simultaneously. Deep mutational scanning has greatly
enhanced our ability to probe the protein sequence-

function relationship [1], and has become widely-used
[2]. For example, deep mutational scanning has been
applied to comprehensive interpretation of variants
found in disease-related human genes [3], understanding
protein evolution [4-8], and probing protein structure
[9,10] with many additional possibilities on the horizon
[2].

In a deep mutational scan, a library of protein
variants is first introduced into a model system [11].
Model systems that have been used in deep mutational
scanning include phage, bacteria, and yeast. A selection is
applied for protein function or another molecular
property of interest, altering the frequency of each
variant according to its functional capacity. Selections can
be growth-based or implement physical separation of
variants into bins, as in phage display or flow sorting of
cells. Next, the frequency of each variant in each time
point or bin is determined by using deep sequencing to
count the number of times each variant appears. Here,
the variable region is either directly sequenced using a
single- or paired-end strategy, or a short barcode that
uniquely identifies each variant in the population is
sequenced instead [11,12]. Analysis of the change in each
variant’s frequency throughout the selection yields a
score that estimates the variant’s effect. Scoring the
performance of individual variants is distinct from a
related class of methods that quantify tolerance for
change at each position in a target protein [13]. Those
approaches enable a different set of biological inferences
that we do not seek to address here.

Fundamental gaps remain in our ability to use deep
mutational scanning data to accurately measure the
effect of each variant because practitioners lack a
unifying statistical framework within which to interpret
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their results. Existing methods are diverse in terms of
their scoring function, statistical approach, and
generalizability. Two established implementations of
deep mutational scanning scoring methods, Enrich [14]
and EMPIRIC [15], calculate variant scores based on the
ratio of variant frequencies before and after selection.
This type of ratio-based scoring has been used to quantify
the effect of noncoding changes in promoters as well
[16]. However, while intuitive and easy to calculate, ratio-
based scores are highly sensitive to sampling error when
frequencies are low. For experimental designs that
sample from more than two time points to improve the
resolution of changes in frequency, ratio-based scoring is
insufficient so a regression-based approach has been
used instead [3,17-19]. Both ratio and regression analyses
can incorporate corrections for wild type performance
[7,14,15,18,20] or nonsense variants [15,17] at the
expense of restricting the method to protein coding
targets only.

The lack of a common standard for calculating scores
makes comparison between studies difficult, and existing
bespoke methods are not applicable to the diverse array
of experimental designs currently being used.
Furthermore, no existing method quantifies the
uncertainty surrounding each score, which limits the
utility of the data. For example, one of the most
compelling applications of deep mutational scanning is to
annotate variants found in human genomes with the goal
of empowering variant interpretation [3], where
estimation of the uncertainty associated with each
measurement in a common framework is crucial. At best,
current approaches employ ad hoc filtering of putative
low-quality scores, often using manually determined
read-depth cutoffs.

To address these limitations, we present Enrich2, an
extensible and easy-to-use computational tool that
implements a comprehensive statistical model for
analyzing deep mutational scanning data. Enrich2
includes scoring methods applicable to deep mutational
scans with any number of time points. Unlike existing
methods, Enrich2 also estimates variant scores and
standard errors that reflect both sampling error and
consistency between replicates. We explore Enrich2
performance using novel and published deep mutational
scanning data sets comprising 243,732 variants in five
target proteins. We demonstrate that Enrich2’s scoring
methods perform better than existing methods
regardless of experimental design. Enrich2 facilitates
superior removal of noisy variants and improved
detection of variants of small effect, and enables
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statistically rigorous comparisons between variants.
Enrich2 is platform-independent and includes a graphical
interface designed to be accessible to experimental
biologists with minimal bioinformatics experience.

Results and discussion

Overview of Enrich2 workflow

We distilled the common features of a deep mutational
scan into a generalized workflow (Fig. 1). After the
experiment, each FASTQ file is quality filtered and
variants are counted. For directly sequenced libraries, this
involves calling the variant for each read (see Materials
and methods). For barcoded libraries, barcode counts are
assigned to variants using an additional file that describes
the many-to-one barcode-to-variant relationship. Next,
the counts for each variant are normalized and a score is
calculated that quantifies the change in frequency of each
variant in each selection. Finally, each variant’s scores
from replicate selections are combined into a single
replicate score using a random-effects model. Variant
standard errors are also calculated for each selection and
replicate score, allowing the experimenter to remove
noisy variants or perform hypothesis testing. Enrich2 is
designed to enable users to implement other scoring
functions, so long as they produce a score and a standard
error. Thus, Enrich2 can serve as a framework for any
counting-based enrichment/depletion experiment.

Scoring a single selection using linear regression
For experimental designs with three or more time points,
Enrich2 calculates a score for each variant using weighted
linear least squares regression. These time points can be
variably spaced, as in samples from a yeast selection
withdrawn at different times, or they can be uniformly
spaced to represent rounds or bins, as in successive
rounds of a phage selection. Each variant’s score is
defined as the slope of the regression line. For each time
point in the selection, including the input time point, we
calculate a log ratio of the variant’s frequency relative to
the wild type’s frequency in the same time point and
regress these values on time. Regression weights are
calculated for each variant in each time point based on
the Poisson variance of the variant’s count (see Materials
and methods). We estimate a standard error for each
score using the weighted mean square of the residuals
about the fitted line. We calculate p-values for each score
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Table 1: Datasets analyzed with Enrich2
Time Scored Reads Run Time
Target Assay Replicates Points Variants (millions) (HH:MM) Reference
BRCA1 Phage display 6 6 11,530 423 6:23 3]
BRCA1 Yeast two-hybrid 6 4 17,165 306
E4B Phage display 2 4 158,939 67 2:27 [21]
Neuraminidase Growth in cell culture 6* 2 6,834 24 0:08 [22]
C2 domain Phage display 3 1,081 48 1:17 This work
WW domain Phage display 2 4 48,183 33 10:32 [1]

* Three replicates each of two experimental conditions

using the z-distribution under the null hypothesis that the
variant behaves like wild type (i.e. has slope of 0).

A problem with linear regression-based scoring is that
the wild type frequency often changes non-linearly over
time in an experiment- and selection-specific manner
(Fig. 2). Existing linear model-based approaches subtract
the wild type score from each variant’s score [3,17]
ignoring this issue and potentially reducing score
accuracy. A solution for this problem, normalizing each
variant’s score to wild type at each time point, has been
proposed but remained untested with real data [18]. We
implemented per-time point normalization and compared
variant standard errors calculated with and without wild
type normalization for a total of 14 replicates in three
different experiments: a phage selection for BRCA1 E3
ubiquitin ligase activity, a yeast two-hybrid selection for
BRCA1-BARD1 binding, and a phage selection for E4B E3
ubiquitin ligase activity (Table 1). In all cases, wild type
normalization resulted in significantly smaller variant
standard errors (p = 0, binomial test, Table S1). Variants
that remain non-linear after normalization are poorly fit
by our regression model and have high standard errors.
Thus, they can easily be identified for further examination
or removal. For experimental designs that do not have a
wild type sequence, we normalize using the library size
instead of the wild type count.

Wild type non-linearity is not the only problem in
scoring a typical selection. Each time point has a different
number of reads per variant, and time points with low
coverage are more affected by sampling error. An
example of this issue is found in one of the replicate
selections for BRCA1 E3 ubiquitin ligase activity (Fig. 3A).
To address this problem, Enrich2 downweights time
points in the regression with low counts per variant.
Without weighted regression, the experimenter is forced
to choose between three undesirable options: using the
low coverage time point and adding noise to the
measurements, removing the time point and
complicating efforts to compare replicates, or spending

time and resources to re-sequence the time point.
Weighting avoids these undesirable options, achieving
lower variant standard errors as compared to ordinary
regression (Fig. 3B). To show that this effect is general
and not a feature of the specific BRCA1 replicate we
analyzed, we downsampled reads from a single time
point in the E4B E3 ubiquitin ligase data set. We find that
weighted regression reduces the mean standard error
regardless of the fraction of reads removed (Fig. 3C, D).
Finally, we show that weighted regression improves
reproducibility between replicates in the BRCA1 E3
ubiquitin ligase data set even in the absence of any
filtering (Fig. 3E, F).

For experiments with only two sequenced
populations or time points (e.g. “input” and “selected”),
Enrich2 calculates the slope between the two time point
log ratios, which is equivalent to frequently used ratio-
based scoring methods [14,15,20]. Unlike previous
implementations of ratio-based scoring, we provide
standard error estimates for each score using Poisson
assumptions (see Materials and methods).

A random-effects model for scoring replicate

selections

Deep mutational scans are affected by various sources of
error in addition to sampling error. One way to deal with
this problem is to perform replicates. Usually, each
variant’s score is calculated by taking the mean across
replicates, which ignores the distribution of replicate
scores. Furthermore, if an error is calculated, it is derived
only from the replicate scores’ distribution and ignores
any error associated with each replicate score. One
alternative is to combine replicate scores using a fixed-
effect model [23]. We examined this approach for the
BRCA1 E3 ubiquitin ligase data set (Fig. 4) and found that
because variant scores can vary widely between
replicates, this method dramatically underestimates the
standard error of the combined variant score. We
therefore implemented a random-effects model that
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estimates each variant’s score based on the distribution
of that variant’s scores across all replicates. This random-
effects model also produces a standard error estimate for
each variant that captures selection-specific error as well
as error arising from the distribution of replicate scores
(see Materials and methods).

The random-effects model furnishes variant scores
that are less sensitive to outlier replicates than a fixed-
effect model (Fig. 4). Additionally, standard errors
estimated by the random-effects model better reflect the
distribution of replicate scores, providing a better basis
for subsequent hypothesis testing. The same random-
effects model can be used for experiments with any
number of time points or replicates, or with any Enrich2
scoring function (Fig. S1). A key advantage of this
approach is that error is quantified on a per-variant basis,
unlike the usual approach of comparing replicate
selections using pairwise correlation [3,13,17]. This allows
experimenters to use replicate data to make inferences
about individual variants, rather than simply as a quality
control check for whole experiments.

Standard error-based variant filtering
Per-variant standard error estimates enable the removal
of variants with unreliable scores. This contrasts with
previous filtering schemes, which employed an empirical
cut-off for the minimum number of read counts for each
variant in the input library or throughout the selection
[1,3,21,22,24-29]. Read count cut-offs eliminate low-
count variants that may be unreliably scored due to
sampling error, but ignore other sources of noise and
may introduce a bias against variants that become
depleted after selection. Enrich2 retains low-count
variants and enables the experimenter to determine
which scores are reliable directly from the associated
standard error.

To assess whether standard error-based filtering
performs better than read count-based filtering, we
analyzed data from a deep mutational scan of the C2
domain of Phospholipase A2 (Table 1). Here, a library of
84,252 phage-displayed C2 domain variants was selected
for lipid binding over several rounds. This dataset was un-
analyzable using previous methods due to the apparent
extreme variability between replicate selections. We
compared filtering based on three different parameters:
Enrich2 variant standard error, read count in the input
round, and total read count in all rounds of selection. To
qguantify filtering method performance, we took the top
quartile of variants selected by each filtering method.
Then, we calculated the pairwise Pearson correlation
coefficient between variant scores for each possible pair
of the three replicates in the C2 domain data set (Fig. 5,

Page 4 of 17

Table S2). We found that standard error-based filtering
was the only method that recovered a replicable subset
of variants from this data set. In fact, input count filtering
selected a subset of variants whose scores were more
poorly correlated than the unfiltered set. We performed
a similar analysis on the much higher quality BRCA1 E3
ubiquitin ligase activity data set, and found that standard
error filtering performed better (mean pairwise Pearson
r* = 0.89) than input library count (r’ = 0.84) or total count
(r=0.84) (Table S3).

To further demonstrate the utility of standard error-
based filtering, we re-analyzed a deep mutational scan of
the influenza virus neuraminidase gene (Table 1). In this
experiment, 22 neuraminidase variants were individually
validated and used to assess the quality of the deep
mutational scanning data. Of these individually validated
variants, four had large variant score standard errors as
determined by Enrich2’s random-effects model (Fig. 6A,
Fig. S1, Table S4). Removing these high-standard-error
variants improved the correlation between the deep
mutational scanning scores and individual validation
scores from Pearson r’= 0.81 to r*= 0.87. Removal of
these scores also improved the correlation when variant
scores were calculated as originally described in the study
(Pearson r*=0.80 vs. r’ = 0.84) (Fig. S2) [22]. This suggests
that scores of variants with low Enrich2 standard errors
are more likely to reflect the results of gold standard
validation experiments, and supports the use of standard
error-based filtering for selecting candidate variants for
follow up studies.

Standard error-based hypothesis testing

An important challenge in analyzing deep mutational
scanning data is determining whether a variant behaves
differently from wild type or differently under altered
conditions. Enrich2 standard errors empower
experimenters to perform statistical tests for such
differences. By default, Enrich2 calculates raw p-values
for each score under the null hypothesis that the variant’s
score is indistinguishable from wild type using a z-test.
This allows the user to discriminate between variants
with extreme scores due to sampling error or other noise
from those that are confidently estimated to be different
from wild type. We note that Enrich2 provides raw p-
values, and users should correct for multiple testing using
their preferred method.

We can also use a z-test to determine whether
variants have different functional consequences under
altered experimental conditions. For example, deep
mutational scans of the neuraminidase gene were
conducted in the presence and absence of the small
molecule neuraminidase inhibitor oseltamivir (Table 1).
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The original study identified five “drug adaptive” variants,
defined as those that outperformed wild type in the
presence of oseltamivir [22]. These five drug adaptive
variants included three known oseltamivir resistant
variants. In our reanalysis, we identified 50 drug adaptive
variants including all five variants found in the original
study (Fig. 6B, Table S5). 36 of these 50 drug adaptive
variants also had a significantly higher score than wild
type in the absence of the inhibitor, and therefore might
be more likely to occur in natural virus populations. Our
results agree broadly with the original analysis, but by
using Enrich2 to calculate scores and standard errors for
variants across replicates, we were able to identify
additional variants that may be of biological interest.

Conclusions

We developed a unifying statistical framework for
analyzing deep mutational scanning data that is
applicable to most experimental designs. We showed that
our statistical method is superior to existing methods for
removing noisy variants and detecting variants of small
effect, resulting in the identification of greater numbers
of biologically interesting variants and enabling
researchers to extract more from their datasets. We
implemented our method in Enrich2, a computationally
efficient graphical software package intended to improve
access to deep mutational scanning for labs without data
analysis experience. Enrich2 is extensible, so users can
implement and easily share new scoring functions as new
deep mutational scanning experimental designs are
developed.

Enrich2 builds upon previous approaches to
regression-based scoring which we improved in two
ways. First, per-time-point wild type normalization helps
reduce the effects of non-linear behavior under the
assumption that many sources of non-linearity affect
most variants similarly. Second, weighting each
regression time point based on variant counts helps
alleviate sampling error. In addition to these
improvements, Enrich2 combines replicate selections into
a single set of variant scores with standard errors to help
identify variants that behave consistently in a given assay.
Though variant score precision does not guarantee
accuracy, we showed that removing variants with high
standard errors from the neuraminidase data set did
improve the correlation between deep mutational
scanning results and gold-standard measurements.

Enrich2 standard errors can also be used to conduct
hypothesis tests comparing variants within a single
experimental condition or between multiple conditions.
When comparing variants between conditions, we
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assume that the distribution of scores between
conditions is roughly similar, but this assumption does
not hold in all cases. For example, the shape of the score
distribution is a function of the strength of the selective
pressure applied [7,8]. Thus, Enrich2 standard errors
should be used with caution when comparing variants
between differing selections unless the variant scores are
similarly distributed. A general method for normalizing
scores to facilitate comparisons across different
conditions or selection pressures remains an important
open question.

The use of deep mutational scanning is expanding
rapidly, and better tools for analysis will help it flourish.
As with other widely-used high throughput experimental
methods, a robustly implemented common statistical
framework reduces barriers to entry, ensures data
quality, and enables comparative analyses. We suggest
that Enrich2 can help deep mutational scanning continue
to grow by providing a foundation for meeting these
challenges and facilitating further exploration and
collaboration.

Materials and methods

Variant calling and sequence read handling
Enrich2 implements alignment-free variant calling [14].
Variant sequences are expected to have the same length
and start point as the user-supplied wild type sequence,
which allows Enrich2 to compare each variant to the wild
type sequence in a computationally efficient manner. In
addition to this alignment-free mode, an implementation
of the Needleman-Wunsch global alignment algorithm
[30] is included that will call insertion and deletion
events. Enrich2 supports overlapping paired-end reads
and single-end reads for direct variant sequencing, as
well as barcode sequencing for barcode tagged variants,

Calculating enrichment scores

For selections with at least three time points, we define
T, which includes all time points, and T', which includes
all time points except the input (ty). The frequency of a

variant (or barcode) v in time point t is the count of the
variant in the time point (¢, ;) divided by the number of
reads sequenced in the time point (N;).

for = N,
The change in frequency for a variant v in a non-input

time point t € T’ is the ratio of frequencies for t and the
input.
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_ Jue

rv,t - f
v,0

Instead of using this raw change in variant frequency, we
divide each variant's ratio by the wild type (wt) variant's
ratio.

rv,t _ Cv,tcwt,O

Twtt  Cvolwtt

Because the library size terms (N; and Ny) in the
frequencies cancel out, the ratio of ratios is not
dependent on other non-wild type variants in the
selection. In practice, we add %to each count to assist
with very small counts [31] and take the natural log of
this ratio of ratios.

L = lo ((Cv,t + %)(th,o + %))
709\ (o + D) (emee +2)

This equation can be rewritten as

1 1
Cyt + 5 Cy0 + 3

L,: = log (—1> —log (—1
Cwet T35 Cweo T3

If we were to regress L, on t € T', we note that the
second term is shared between all the time points and
therefore only affects the intercept of the regression line.
We do not use the intercept in the score, so instead we
regress on M,,; and use all values of t € T..

1
Cyt + 2 )
1
Cwet T3

My, = log(

The score is defined as the slope of the regression line,

By. In practice, we regress on to facilitate

max T

comparisons between selections with different
magnitudes of time points (e.g., 0/1/2/3 rounds vs.
0/24/48/72 hours).

To account for unequal information content across
time points with variable sequencing coverage, we
perform weighted linear least squares regression [32].
The regression weight for M, ; is V,,,t_l, where V,, ; is the
variance of M,,; based on Poisson assumptions [31] and is
approximately

v 1 4 1
vt —
Cye + % Cwet T %

For selections with only two time points (e.g. input
and selected), we use the slope of the line connecting the
two points as the score. This is equivalent to the wild type
adjusted log ratio (L,,) derived similarly to L,, ; above.
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1 1
C 1 + = Cyi + =
L, = log (—U'Se 21> —log (—v'mp 21>
Cwt,sel + 2 Cwt,inp + 2
As there is no residual error about the fitted line, we
must use a different method to estimate the standard

error. We calculate a standard error (SE,,) for the
enrichment score L, under Poisson assumptions [20,31].

1 1 1 1

SE, =

1 1
Cv,sel + 2 th,sel + 2

1 1
Cy,inp + 5 Cwt,inp + 2

For experiments with no wild type sequence, scores
can be calculated using the filtered library size for each
time point t, which is defined as the sum of counts at
time t for variants that are present in all time points.

Random-effects model for combining replicate
scores

To account for replicate heterogeneity, we use a simple
meta-analysis model with a single random effect to
combine scores from each of the n replicate selections
into a single score for each variant. Each variant’s score is
calculated independently. Enrich2 computes the
restricted maximum likelihood estimates for the variant
score (B) and standard error (65) using Fisher scoring

iterations [33]. Given the replicate scores (,[?l-) and
estimated standard errors (6;) wherei = 1, 2, ..., n, the

estimate forﬁ at each iteration is the weighted average:
A A2\—1
2ie1 ﬂi(asz + 0; )

(62 + 3i2)_1

'3 =
The starting value for 2 at the first iteration is:

n
1 . =\ 2
AZ T —— b —
62 == (b= F)
=1
Enrich2 calculates the following fixed-point solution for
Gy
n (a2 4 22\ 2(p _ p)?
(62 +67) (B - B)
~ N2
_ Z?:1(052 + Uiz)

(62 + 512)_1

A2 _ A2
Osy1 = Os

r (82 + 51'2)_1

Because it is more computationally efficient to
perform a fixed number of iterations for all variant scores
in parallel than to test for convergence of each variant,
Enrich2 performs 50 Fisher scoring iterations. In practice,
this is more than sufficient for 62 to converge. We record
the difference &, = 62 — 62, for the final iteration and
identify any variants with high values for &5 as variants
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that failed to converge. No such variants were
encountered in the analyses detailed here.

Deep mutational scan of Phospholipase A2

A region proximal to both lipid binding sites of the C2
domain of Phospholipase A2 (PLA2) was targeted for
deep mutational scanning. Positions 94-97 of the C2
domain of mouse PLA2-alpha (ANYV) were fully
randomized using a doped synthetic oligonucleotide. The
library of C2 subdomains containing mutations was
cloned into the Avrll and PpuMI sites of wild-type C2
domain in pGEM. The library was subcloned into phage
arms and expressed on the surface of bacteriophage
using the T7 phage display system according to the
manufacturer’s instructions (Novagen T7Select 10-3b).
The library was amplified in BLT5403 E. coli and variants
were selected for their ability to bind to a lipid mixture
containing ceramide 1-phosphate (C1P) [34]. The mouse
PLA2-alpha cDNA was a generous gift from Michael Gelb,
University of Washington. NiSepaharose Excel, capacity
10 mg/mL, was purchased from GE. Other reagents were
purchased from Thermo-Fisher.

To select for C1P binding, lipid nanodiscs were
developed as a bilayer affinity matrix. The His6-tagged
membrane scaffold protein MSP1D1 [35] was expressed
in BL21 E. coli from a pET28a plasmid and purified on
nickel resin, then used to generate lipid nanodiscs
comprised of 30 mol% phosphatidylcholine, 20 mol%
phosphatidylserine, 40 mol% phosphatidylethanolamine,
and 10 mol% C1P [36]. To separate nanodiscs from large
lipid aggregates and free protein, the mixture was
subjected to gel filtration using a Superose 6 10/300 GL
column (Pharmacia) and the major peak following the
void volume was collected. To generate the affinity resin,
70 ug of nanodiscs (quantified by protein content) was
incubated overnight at 4 °C with 10 pl nickel resin in 20
mM Tris pH 7.5 and 100 mM NaCl. The resin was washed
twice in the same solution and used in phage binding
reactions.

Phage expressing the C2 domain variant library were
titered and diluted to a concentration of 5 x 10° pfu/mLin
20 mM Tris pH 7.5 and 100 mM NaCl, then incubated
with lipid nanodisc affinity resin plus 10 uM calciumin a
final volume of 350 pL. After a two-hour incubation at 4
°C, the resin was washed four times in 1 mL of the
incubation buffer containing 20 mM imidazole. Phage
bound to nanodiscs were eluted with 20 mM Tris pH 7.5
containing 500mM imidazole. Phage from the elution
were titered, amplified, and subjected to additional
rounds of selection. Three replicate selections were
performed on different days using the same input phage
library.
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Sequencing libraries were prepared by PCR
amplifying the variable region using primers that append
[llumina cluster generating and index sequences (Table
S6) before sequencing using the lllumina NextSeq
platform with a NextSeq high output kit (75 cycles, FC-
404-1005). Reads were demultiplexed using bcl2fastq
v2.17 (Illumina) with the arguments bc/2fastq --with-
failed-reads --create-fastq-for-index-reads --no-lane-
splitting --minimum-trimmed-read-length 0 --mask-short-
adapter-reads 0. Quality was assessed using FastQC
v0.11.3 [37]. Demultiplexed reads are available in the
NCBI Sequence Read Archive, BioProject Accession
PRINA344387.

Neuraminidase data analysis

Raw reads were demultiplexed using a custom script
based on three-nucleotide barcodes provided by the
original authors [22]. The reads were analyzed in Enrich2
v1.0.0 as ten experimental conditions: five non-
overlapping 30-base regions of the neuraminidase gene
in either the presence or absence of oseltamivir. Reads
were required to have a minimum quality score of 23 at
all positions and contain no N’s. The five mutagenized
regions were scored independently and then merged to
create a single set of variant scores for each treatment.
The original study excluded variants that were not
intentionally generated by the mutagenesis approach
employed, but we considered all single-amino acid
variants that were present in all replicates and passed our
quality filters. The p-values for comparing variant scores
to wild type in each treatment and comparing variant
scores between treatments were calculated using a z-
test. All three sets of p-values were jointly corrected for
multiple testing using the g-value package in R [38], and
variants with a g-value of less than 0.05 were reported as
significant.

Analysis of other datasets

For previously published datasets, raw sequence files in
FASTQ format were obtained from the respective
authors. Datasets (Table 1) were analyzed independently
using Enrich2 v1.0.0. The BRCA1 dataset was analyzed in
a single run with separate experimental conditions for the
yeast two-hybrid and phage display assays. For all
datasets except neuraminidase, reads were required to
have a minimum quality score of 20 at all positions and
contain no N’s.

For the WW domain sequence function map (Fig. 1),
scores and standard errors were calculated using
weighted least squares linear regression in two technical
replicates, and the replicates were combined using the
random-effects model as described.


https://doi.org/10.1101/075150
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/075150; this version posted September 25, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Rubin et al.

Estimated scores and standard errors for the fixed-

effect model (Fig. 4), were calculated as described in [23].

Enrich2 software implementation

Enrich2 is implemented in Python 2.7 and requires
common dependencies for scientific Python. The
graphical user interface is implemented using Tkinter. A
deep mutational scanning experiment is represented as a
tree of objects with four levels: experiment, condition,
selection, and sequencing library. Each object’s data and
metadata are stored in a single HDF5 file, including
intermediate values calculated during analysis.

Enrich2 is designed to be run locally on a laptop
computer and does not require a high performance
computing environment. Most analyses can be run
overnight (Table 1). Run times in Table 1 were measured
using a MacBook Pro Retina with 2.8 GHz Intel Core i7
processor and 16GB of RAM.

The software is freely available from
https://github.com/FowlerLab/Enrich2/ under the GPLv3
license. An example dataset and configuration file can be
downloaded from
https://github.com/FowlerLab/Enrich2-Example/. Online
documentation, including implementation details, is
located at http://enrich2.readthedocs.io/.
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Figure 1: Deep mutational scanning and Enrich2. In a deep mutational scan, a library of protein variants is subjected to
selection, which perturbs the frequency of variants. Samples of the library are collected before, during, and after
selection and subjected to high-throughput sequencing (left panel). Enrich2 processes the high-throughput sequencing
files generated from each sample. Sequencing reads are quality filtered, and variants are counted by comparing each
read to the wild type sequence. Enrich2 estimates variant scores and standard errors using the variant counts, and
combines these estimates for replicates (middle panel). Enrich2 displays the scores and standard errors as a sequence-
function map. A sequence-function map of eight positions of the hYAP65 WW domain is shown (right panel). Cell color
indicates the score for the single amino acid change (row) at the given position in the mutagenized region (column).
Positive scores (in red) indicate better than wild type performance in the assay, and negative scores (in blue) indicate
worse than wild type performance. Diagonal lines in each cell represent the standard error for the score, and are scaled
such that the highest standard error on the plot covers the entire diagonal. Standard errors that are less than 2% of this
maximum value are not plotted. Cells containing circles have the wild type amino acid at that position. Grey squares
denote amino acid changes that were not measured in the assay.
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Figure 2: Wild type frequency can change non-linearly. The change in frequency of the wild type over the course of
replicate selections is shown for (A) BRCA1 E3 ubiquitin ligase (B) BRCA1-BARD1 binding or (C) E4B E3 ubiquitin ligase.
Each colored line represents a single replicate.
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Figure 3: Weighted least squares regression reduces standard error and improves replicate correlation. (A) The
number of reads (shaded blue bars) and the distribution of variant regression weights (boxplots, green line = median,
dotted green line = mean) for each time point in a single BRCA1 E3 ubiquitin ligase selection is shown. Time points with
fewer reads per variant are downweighted in the regression. The weights for later time points are lower on average
because most variants decrease in frequency during the course of the selection. (B) A density plot of standard errors for
all variants in the selection shown in panel A calculated using weighted least squares regression (blue line) or ordinary
least squares regression (green line) is shown. The weighted least squares regression method returns lower standard
errors using the same underlying data by minimizing the impact of sampling error in low read count time points. (C) The
mean standard error of variants after randomly downsampling reads in a single time point in one of the E4B E3 ubiquitin
ligase selections is shown. Mean standard errors for all variants at each read downsampling percentage were calculated
using either weighted least squares (blue) or ordinary least squares (green) regression scoring. Error bars indicate the
95% confidence interval of five random downsampling trials at each percentage. (D) Read counts per time point in the
selection described in panel Cis shown. The lines on the bar for time point 2 correspond to the level of downsampling
on the x-axis of panel C. (E, F) Plots of variant scores in two replicate selections from the BRCA1 E3 ubiquitin ligase data
set are shown. Replicate agreement for scores calculated using the weighted least squares regression model (E) is higher
than agreement for scores calculated using ordinary least squares regression (F). The dashed line shows the line of best
fit for the replicate scores in each plot. Hex color indicates point density.
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Figure 4: A random-effects model for scoring replicate selections. Variant scores for twenty randomly selected variants
from the BRCA1 E3 ubiqutin ligase data set are shown. The replicate scores (green) were determined for each variant
using Enrich2 weighted regression. Combined variant score estimates were determined using a fixed-effect model
(orange) or the Enrich2 random-effects model (blue). In all cases, error bars show plus or minus two standard errors.
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Figure 5: Standard error-based filtering improves replicate correlation. Variant scores from two replicates of the C2
domain data set are shown. Each panel plots the top quartile of variants selected by standard error (left column), input
library count (middle column), or total count in all libraries (right column). Scores and standard errors are calculated
using only the input and final round of selection (top row) or using all three rounds (bottom row). The dashed line is the
best linear fit, and the Pearson correlation coefficient is shown.
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Figure 6: Standard errors enable hypothesis testing. (A) Enrich2 variant scores are plotted against single-variant growth
assay scores for the 22 individually validated variants of the neuraminidase data set. Four (18%) of these variants have
Enrich2 standard errors larger than the median standard error. The dotted line shows the best linear fit for all variants,
and the dashed line shows the best linear fit for variants with standard errors less than the median. (B) Enrich2 variant
scores are plotted for selections performed in the presence or absence of the small molecule inhibitor oseltamivir.
Colored points indicate variants that significantly outperformed wild type in the drug’s presence. Red points also scored
significantly higher than wild type in the drug’s absence. Triangles indicate the five “drug adaptive” mutations identified

originally [22].


https://doi.org/10.1101/075150
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/075150; this version posted September 25, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

Rubin et al.

1.0

under aCC-BY 4.0 International license.

Page 16 of 17

Variant Score

» Replicate @ Random-Effects Model Mean % High SE Variant

e 1] 4 ‘

T
|

¥

‘)&:l:l’\ *
\r\q:l:l’\ *

AL
ez 9 % 9 Y % % I 2 - S T

Figure S1: Random-effects model performance for individually validated neuraminidase variants. Variant scores for 22
individually validated variants from the neuraminidase data set are shown. The variant scores for each replicate (green)
are plotted along with the mean variant score (orange line) and the combined variant score from the random-effects
model (blue). Error bars on the replicate and random-effects model scores show plus or minus two standard errors.
Variants with high standard errors (greater than 50" percentile of scored variants with a single amino acid change) are
marked with a star.
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scores for the individually validated variants of the neuraminidase data set. Four (18%) of these variants have Enrich2
standard errors larger than the median standard error. The dotted line shows the best linear fit for all variants, and the
dashed line shows the best linear fit for variants with standard errors less than the median.
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