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Abstract	15 

 The Influence Maximization Problem (IMP) aims to discover the set of nodes with 16 

the greatest influence on network dynamics. The problem has previously been applied 17 

in epidemiology and social network analysis. Here, we demonstrate the application to 18 

cell cycle regulatory network analysis of Saccharomyces cerevisiae.  19 

 Fundamentally, gene regulation is linked to the flow of information. Therefore, our 20 

implementation of the IMP was framed as an information theoretic problem on a 21 

diffusion network. Utilizing all regulatory edges from YeastMine, gene expression 22 

dynamics were encoded as edge weights using a variant of time lagged transfer 23 

entropy, a method for quantifying information transfer between variables. Influence, for 24 

a particular number of sources, was measured using a diffusion model based on 25 

Markov chains with absorbing states. By maximizing over different numbers of sources, 26 

an influence ranking on genes was produced. 27 

The influence ranking was compared to other metrics of network centrality. 28 

Although ‘top genes’ from each centrality ranking contained well-known cell cycle 29 

regulators, there was little agreement and no clear winner. However, it was found that 30 

influential genes tend to directly regulate or sit upstream of genes ranked by other 31 

centrality measures. This is quantified by computing node reachability between gene 32 

sets; on average, 59% of central genes can be reached when starting from the 33 

influential set, compared to 7% of influential genes when starting at another centrality 34 

measure. 35 

The influential nodes act as critical sources of information flow, potentially having 36 

a large impact on the state of the network. Biological events that affect influential nodes 37 
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and thereby affect information flow could have a strong effect on network dynamics, 38 

potentially leading to disease.  39 

Code and example data can be found at: https://github.com/Gibbsdavidl/miergolf 40 

Author	Summary	41 

The Influence Maximization Problem (IMP) is general and is applied in fields such as 42 

epidemiology, social network analysis, and as shown here, biological network analysis. 43 

The aim is to discover the set of regulatory genes with the greatest influence in the 44 

network dynamics. As gene regulation, fundamentally, is about the flow of information, 45 

the IMP was framed as an information theoretic problem. Dynamics were encoded as 46 

edge weights using time lagged transfer entropy, a quantity that defines information 47 

transfer across variables. The information flow was accomplished using a diffusion 48 

model based on Markov chains with absorbing states. Ant optimization was applied to 49 

solve the subset selection problem, recovering the most influential nodes.The influential 50 

nodes act as critical sources of information flow, potentially affecting the network state. 51 

Biological events that impact the influential nodes and thereby affecting normal 52 

information flow, could have a strong effect on the network, potentially leading to 53 

disease. 54 

Introduction	55 

Living systems dynamically process information. Cell surface receptors capture 56 

information from the environment and relay the information by internal signaling 57 

pathways [1,2]. Information is transferred, stored, and processed in the cell via 58 

molecular mechanisms, often triggering a response in the regulatory program. These 59 

types of dynamic genetic regulatory processes can be modeled with network 60 
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information flow analysis. 61 

 Network flows embody a general class of problems where some quantity flows 62 

from source nodes, across the edges of a graph, draining in sink nodes. Various forms 63 

of network flow methodologies have found success in algorithms such as Hotnet, 64 

ResponseNet, resistor networks, and others  [3,4,5]. 65 

 Recently, the influence maximization problem (IMP) has received a great deal of 66 

interest in social network analysis and epidemiology as a general method for 67 

determining the relative importance of nodes in a dynamic process [6,7]. The IMP aims 68 

to discover a set of source nodes that, after applying a diffusion model, covers as much 69 

of the network as possible [8,9]. Examples are found in modeling the spread of 70 

infectious disease in social networks and in identifying optimal targets for vaccination 71 

[10]. Propagation of infection does not follow algorithmically defined paths on graphs, 72 

i.e. shortest paths, but instead flows on all possible paths. Similar to quantities of virus, 73 

information can also be treated as a quantity flowing on networks [11,12,13]. 74 

A variant of ant optimization was used to solve the IMP. Although, ant 75 

optimization is best known in path optimization, it can also be applied to subset 76 

selection problems [14,15,16]. In ant optimization, ants construct potential solutions, as 77 

sets, which are scored and reinforced, encouraging good solutions in later iterations. In 78 

this work, the result of the optimization procedure is an optimal, or nearly optimal, set of 79 

nodes that maximizes network cover when applying the diffusion algorithm developed 80 

by Stojmirović and Yu [12]. In application to biological networks, the IMP essentially 81 

remains an unexplored area of research [17]. We then used the IMP to study the 82 

regulatory structure underlying the yeast cell cycle. 83 
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To understand topologically where the influential genes are situated, we compare 84 

the IMP solution sets to gene sets derived from other centrality metrics, such as degree 85 

centrality [18], betweenness-centrality where shortest paths are considered [19], and 86 

PageRank, where only incoming flows are considered [20].  87 

The cell cycle process in Saccharomyces cerevisiae is well studied, but is not 88 

completely characterized [21]. Regardless, it is apparent that cell cycle regulation is 89 

controlled by a network that dynamically processes signals. From the bench, we have 90 

limited ways of observing the process, such as using gene expression data and 91 

cataloging the patterns of periodicity. To gain further understanding of the regulatory 92 

structure, we performed used time series data and publicly available regulatory 93 

databases to solve the IMP (Fig 1) [22,23].   94 

 Figure 1.) Analysis workflow. All regulatory edges from the YeastMine DB 95 

formed the regulatory network scaffold. Using time series gene expression data, time 96 

lagged transfer entropy was calculated and each edge was tested using a permutation-97 

testing framework. The resulting network was used for solving the Influence 98 

Maximization Problem. 99 

Results	100 

Filtering	regulatory	edges	using	time	lagged	transfer	entropy			101 

Statistical metrics such as Pearson correlation are sometimes used to estimate 102 

the activity of regulatory edges. However, processes in biology do not instantaneously 103 

complete, and so various time lags are introduced to account for propagation time (SI 104 

Fig 1) [24]. Additionally, genetic regulatory interactions are directional; transcription 105 

factors act on genes, and not the other way around. So, although Pearson correlation is 106 
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simple, there are more appropriate metrics to use with time series data, such as transfer 107 

entropy. Transfer entropy (TE) is a model-free method that attempts to quantify 108 

information transfer between two variables in a directional manner. Permutation-based 109 

statistics can be applied to assess the significance of TE. TE was computed over 110 

multiple time lags and summed. This avoids choosing a single time lag and is termed 111 

‘sum-lagged transfer entropy’ or SLTE [35]. 112 

Using time series data for 5,080 measured genes and 26,827 genetic regulatory 113 

edges from YeastMine, both time-lagged Pearson correlation and sum-lagged transfer 114 

entropy was computed for all regulatory edges. Edges were removed if empirical p-115 

values were greater than 1 !! where !! is the number of permutations (!! = 50,000). 116 

Time lagged Pearson correlation, where the maximum correlation is returned 117 

after considering a range of time lags (0-6 time steps), resulted in 7,729 edges, 118 

containing 3,216 nodes. Significant edge weights had a median correlation of 0.67. 119 

Most of the edges (76%) showed a maximum correlation when using a time-lag of zero.  120 

The metric of interest, SLTE, resulted in 1,987 significant edges containing 1,147 121 

nodes with median weights of 1.37 (Fig 2).  122 

 Figure 2.) The resulting BioFabric network after significance testing. Nodes 123 

are shown as horizontal lines, with edges shown as vertical lines connecting nodes. 124 

High degree nodes can be seen as ‘wedges’ in the graph.  125 

The overlap between the Pearson correlation and SLTE networks is moderate; 126 

only 12.8% of the edges in the correlation network are shared with the SLTE network 127 

(986 of 1,987 edges in the SLTE network or 49.6%), and while all SLTE nodes are 128 

found in the correlation network, only 33.9% of the correlation nodes are found in the 129 
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SLTE network. When comparing the two different edge weights, Pearson’s and SLTE, 130 

on matched edges, the Pearson’s correlation between edge weights was low (0.39). 131 

Additionally, the mean node degree distribution in the correlation network is much 132 

higher than that of the SLTE network. For example, the SFP1 gene has degree 589 in 133 

the correlation network, compared to 60 in the SLTE network, summing both in- and 134 

out-edges. The high node degree in the correlation network suggests that correlation 135 

testing may be overly permissive, with less informative edge weights. 136 

Clauset, Shalizi, and Newman’s method for statistically determining whether a 137 

network is ‘scale-free’ showed that the SLTE network is not [25]. On the SLTE network, 138 

the result showed alpha = 2.18, which is concordant with power law networks. However, 139 

the goodness of fit test using the Kolmogorov-Smirnov statistic returned a p-value of 140 

0.03, indicating that only a small fraction of the simulated scale-free distributions are 141 

"close" to the observed degree distribution. 142 

In the rest of the analysis, only the transfer entropy network is used, since it is 143 

clear that the correlation-based network is not a super-set of the transfer entropy 144 

network, does not agree in the weighting, and is likely overly permissive with regard to 145 

active interactions. 146 

Iteratively	solving	the	influence	maximization	problem	provides	a	ranking	147 

Using transfer entropy to quantify information flow, if an upstream node transfers 148 

information to a downstream node, respecting edge directions, the downstream node is 149 

said to be 'influenced'. The maximization problem is to find a set of nodes, that when 150 

treated as information sources, influence the largest proportion of the network.  151 

The Influence Maximization Problem (IMP) was solved over a range of values for 152 
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K, the number of source nodes. The influence score, representing a network cover, 153 

increased quickly for small values of K, gradually leveling out. Setting K=45 source 154 

nodes (3.9% of the network) produced a maximum network cover of 1064 nodes 155 

(92.8%). Beyond K=45, the score became saturated (see SI Fig 2).  156 

As the algorithm is stochastic, the range of K (from 1 to 45) was run twice and an 157 

average count was made on the number of times genes were selected. The ranking 158 

produced by each run was highly stable, eliminating the need for a large number of 159 

runs. The top ranked gene FKH1, was selected on average 44 times, followed by two 160 

genes, GCN5 and RFX1, that were selected on average 43 times. Overall, 49 genes 161 

were selected in at least one run.  162 

Comparing	influence	to	traditional	metrics	of	centrality	reveals	similarities	163 

To provide a basis for comparison to the ranked influencers, 15 different 164 

centrality measures were computed on the SLTE network. The list of centrality metrics 165 

can be found in Table 1 along with a brief description. Further description of these 166 

metrics can be found in supplementary text. The top 20 influencers and associated 167 

metrics are found in Table S2. 168 

 169 

Table 1. Description of centrality metrics 170 

Tool Centrality Notes 

igraph Alpha Centrality Generalization of eigen-centrality for weighted directed graphs. 

  Articulation Also called cut vertices, removal creates separate components. 

  Authority Kleinberg's centrality scores, based on principal eigenvector  

  Betweenness Uses directed and weighted edges to sum shortest paths through a vector. 

  Closeness Inverse of the average length of shortest paths to a vertex in the graph. 
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  Degree Sum of edges for each vertex. 

  Ego, 1 step Size of the neighborhood one step out. 

  Ego, 2 steps Size of the neighborhood two steps out. 

  Eigen Centrality Eigenvector centrality on the undirected graph using weights. 

  Page Rank Google Page Rank, using directed and weighted edges. 

  Power Centrality Boncich power centrality. Accounts for connectivity of neighbors.  

  Strength Sum of edge weights. 

  Unconstraint Equal to (1 – Constraint), using Burt’s constraint method . 

R 

SubGraph Centrality 

SVD  

Participation of each node in all subgraphs 

Right principal eigenvector using SVD, directed graph using weights. 

   

python/ 

scipy 

Influence Ranking Ranked using influence maximization algorithm as described. 

 
 

   

 171 

Each measure of centrality imparts a ranking over genes in the graph. The top 172 

2.5% of genes was selected from each metric, providing approximately 30 genes for 173 

each measure. In metrics with binary values, such as articulation, everything greater 174 

than zero was selected. A Jaccard index was computed for each pair of centrality 175 

measures (Fig 3). Although some clustering is observed among centrality metrics, 176 

especially for node-degree related measures, there remains substantial disagreement in 177 

top ranked genes. 178 

 Figure 3.) The Jaccard index was used to compare centrality measures. The 179 

top 2.5% of ranked genes from 16 different centrality measures were compared using 180 

the Jaccard index, which gives values of 1.0 for perfect agreement between sets, and 0 181 

for disjoint sets. There were approximately 30 genes in each set. The dendrogram 182 
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shows clustering among measures. 183 

The top ranked influential genes are not found among highly ranked genes in 184 

eigenvector based centrality measures including authority, alpha centrality, and the SVD 185 

derived eigenvector. However, eigenvector measures of centrality contain important 186 

genes that are not found in other lists. For example, CLN1 was selected by the SVD 187 

derived eigenvector while it was not found on the betweenness list. Overall, no ranked 188 

list contained a definitive set of cell cycle related regulators. Across measures, gene set 189 

enrichment showed a wide variety of associations with biological processes, illustrating 190 

differences in the gene rankings. 191 

 Figure 4.) Highly influential genes tend to be selected by other centrality 192 

metrics. Genes are sorted by influence ranking in rows (top to bottom), and centrality 193 

metrics are found in columns. Genes in orange were influence ranked, but not selected 194 

as being in the top 2.5%. 195 

 196 

Influential	topology	in	the	regulatory	network	197 

We have found that within the regulatory network structure, the influential genes 198 

tend to be situated upstream of genes selected by other centrality measures (Fig 5).  199 

 Figure 5.) Topology of influential nodes. Highly influential nodes (blue) tend to 200 

be upstream of other genes (red) selected by a variety of centrality metrics. Overlapping 201 

genes are shown in purple.  202 

 203 

For example, the influencer genes act as regulators for genes selected by alpha 204 

centrality, while no genes selected by alpha centrality regulate the influencer genes. 205 
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The same is found for the SVD-derived-eigencentrality and betweenness sets. In some 206 

cases, there is a fair amount of overlap in the top-level regulators, such as among the 207 

high degree nodes. But, overall, we see the influencers stay as top-level regulators to 208 

genes selected by other centrality measures. This can be quantified by computing the 209 

fraction of reachable genes, starting at a given measure, excluding overlapping genes 210 

(Fig 6). For example, starting at the set of influential genes, 80% of the betweenness 211 

selected genes can be reached, while starting at the betweenness genes, only 10% of 212 

influencers can be reached. Starting at the influencer genes, 41% of degree central 213 

nodes can be reached, while only 10% of influencers can be reached from the degree 214 

central nodes. Starting from every centrality measure, the fraction of reachable nodes is 215 

less compared to starting from the influential genes. On average, 59% of “central 216 

genes” can be reached when starting at the “influential set”, compared to 7% of 217 

reachable influential genes, after starting from another measure. The influencer genes 218 

are topologically central and connect important genes found by other centrality 219 

measures. 220 

 Figure 6.) Influence can be quantified by computing node reachability. In (A), an 221 

example of node reachability is shown. After starting from a defined set of nodes, O, a 222 

node, v, is considered reachable if there exists a directed edge leading from O to v. For 223 

example, starting at the set of influential nodes, 80% of top ranking nodes using the 224 

betweenness measure can be reached, compared to only 10% of influential nodes after 225 

starting at the “betweenness nodes”. In (B) node reachability over all centrality 226 

measures is aggregated in a boxplot.  227 

In Eser et al., 32 hypothesized cell cycle regulators were named [23]. Comparing 228 
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the top ranked influential genes, we see again that the influential genes are immediately 229 

upstream of the Eser TFs (Fig 7). Although SWI6 was not selected in the top 2.5% of 230 

influencers, it is found as a ranked influencer overall. BAS1, on the other hand was not 231 

a ranked influencer, and interestingly was not ranked by any other metric of centrality 232 

although it has been associated with cell cycle regulation. 233 

 Figure 7.) Influence ranking of cell cycle related transcription factors. Of the 234 

32 cell cycle related transcription factors given by Eser et al. (red), most are directly 235 

downstream of influential genes (blue). Purple shows an overlap between influential and 236 

Eser selected genes.  237 

Recently a computational cell cycle model that successfully accounts for 257 of 238 

263 phenotypes [26] was published. In total, 29 genes were extracted from the model 239 

where genes making protein complexes were considered separately (SWI6 and SWI4 240 

were used instead of SBF). The full YeastMine network scaffold contained 28 of the 29 241 

genes (CDC55 was not present), and 15 genes were in the SLTE network. Only three 242 

genes were ranked as influencers (MBP1, SWI4 and SWI6).  243 

The model is composed of seven modules, each containing between two to eight 244 

genes. The MEN module, containing only two genes, was the only module that did not 245 

contain any genes from the SLTE network. Among the other six modules, each 246 

contained between one to five SLTE genes. While most of the Tyson model genes are 247 

not ranked influencers, they are immediately regulated by influential genes. SWE1 is 248 

regulated by 8 ranked genes. CDC20 is regulated by 4 ranked genes. CLB5 is regulated 249 

by 7 ranked genes. SIC1 is regulated by 5 ranked genes. So in almost all cases, the 250 

Tyson model genes are not regulated by a single influencer, but by multiple influencers. 251 
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 252 

Discussion	253 

Transfer entropy has been shown to be useful in quantifying information transfer. 254 

Here, we show that computing edge weights by summing over time lags, and using a 255 

permutation testing framework, leads to biologically salient network structures. Even 256 

though the network was constructed by considering all possible regulatory edges, it 257 

recovers much of the structure and functional enrichment that one would expect, as 258 

demonstrated by the lists of genes returned by commonly used centrality metrics like 259 

betweenness and degree.  260 

Since the edges encode dynamics of gene expression by representing 261 

information transfer between regulators and targets, flow based methods are particularly 262 

relevant. In network flows, some imaginary quantity 'flows' from node to node, limited by 263 

the capacity of the edges. Here the capacity is represented by the sum of transfer 264 

entropies over a small number of time lags. Time lags are important to consider since 265 

information transfer is not instantaneous, but instead occurs over a span of time in a 266 

biological system. By taking a sum over time lags, all edges are put on the same 'time 267 

frame', and are thus more comparable.  268 

Edges with the highest weights, implying greatest information transfer, include 269 

(FKH1 → HOF1, SLTE=4.79),  (SWI4 → HTB1, SLTE=4.75), (FKH2 → IRC8, 270 

SLTE=4.47), (SWI4 → SWI1, SLTE 4.34) and (NDD1 → AIM20, SLTE=4.30). The 271 

source nodes are well-known, multi-functional, cell cycle related transcription factors. 272 

The target nodes have more focused functions. HOF1 regulates portions of the actin 273 

cytoskeleton. HTB1 is a histone core protein required for chromatin assembly. IRC8 is a 274 
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bud tip localized protein, with unknown function. SWI1 is a subunit of the SWI/SNF 275 

chromatin-remodeling complex. Finally, AIM20 has unknown function, but over-276 

expression leads to the arrest or delay of the cell cycle. 277 

Some well known cell cycle regulators, such as BAS1, were not selected by any 278 

centrality measure. As far as influence is concerned, this can be explained by exploring 279 

its neighborhood in the network. In the SLTE network, BAS1 is a source to four other 280 

genes, all with no influence ranking and subgraph centrality of 0. Among the four targets 281 

is PHD1, also a target from XBP1, which does happen to be a ranked influencer, and 282 

happens to have degree 32 and a high subgraph centrality (26.8). So, although BAS1 is 283 

probably a cell cycle regulator, there are better sources to choose when targeting the 284 

same downstream genes. XBP1 binds cyclin gene promoters and is stress related. 285 

Interestingly, it's important in G1 arrest, which relates to the synchronization method 286 

used by Eser et al. in the data generation. XBP1 is also a member of the SWI4 and 287 

MBP1 protein family. While BAS1 is involved in biosynthesis pathways for histidine, 288 

purine, and pyrimidines, and predicted to be involved in mitotic crossover, XBP1, with 289 

regard to cell cycle, is certainly understandable in it’s influence ranking. No one 290 

centrality metric was ideally suited towards picking out cell cycle related genes, 291 

although the ranked influencers ‘pointed’ to a large proportion of genes selected by 292 

other centrality measures. 293 

When we considered the ranking of influential genes, we saw that high-ranking 294 

genes were more likely to be ranked high by other centrality metrics. There are several 295 

notable exceptions, where REB1, SWI4, and SWI6 were relatively low ranked 296 

influencers, but were highly ranked by other metrics. These examples are notable due 297 
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to their previously known role in the cell cycle and regular inclusion in models. Proteins 298 

SWI4 and SWI6 are members of the SBF complex, interacting with the MBF complex 299 

(SWI6-MBP1) to regulate late G1 events. REB1, essential in some yeast strains, is 300 

shown to act as a link between rDNA metabolism and cell cycle control in response to 301 

nutritional stress [27], and is shown to have a significant impact on lifespan [28]. The 302 

influence ranking was due to higher ranked influencers being upstream of the three 303 

genes in the regulatory network. Therefore, they were only selected as K, the set of 304 

requested influencers, grew large enough.  305 

Gene set enrichment showed functions related to not only cell cycle, but also 306 

chromatin remodeling, stress response, and metabolism (see SI). The top two most 307 

influential genes, FKH1 and GCN5 have both been related to life span [29,30,31]. 308 

Network control is one goal in the study of dynamic networks [32,33]. Given that 309 

influential nodes seem to have a topologically advantageous position, one could 310 

speculate that influential genes might be useful selections for network control. Biological 311 

events that impact the influential nodes, thereby affecting normal information flow, could 312 

have a strong effect on the network, potentially leading to disease states. Discovering 313 

the minimum sets of biological entities that hold the greatest influence in the network 314 

context could lead to further understanding of how network dynamics is associated with 315 

disease. 316 

Materials	and	Methods	317 

 The methods described here have been implemented in python and are freely 318 

available. Run times are kept low by computing the diffusion using sparse matrix linear 319 

solvers, and using a multicore-parallel strategy for performing ant optimization. The 320 
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network weighting, optimization, and diffusion methods are independent, allowing 321 

researchers to "mix-and-match" their favorite modules.  322 

Data	sources	323 

Eser et al. [23] generated time series expression data from two replicates of 324 

synchronized yeast producing metabolically labeled RNA levels every five minutes over 325 

41 time points. The expression series spans three cell cycles, which progressively 326 

dampen in wave amplitude, as yeast synchrony is lost. Using a model for detecting 327 

periodicity in gene expression, 479 genes were labeled as statistically periodic. 328 

Additionally, 32 transcription factors were predicted to be cell cycle regulators.  329 

YeastMine, the database of genetic regulatory interactions in yeast (May 2015) 330 

[22] provided regulatory edges. Using 6,417 yeast genes, 33,809 genetic regulatory 331 

edges were collected. Edge weights were computed using a variation of transfer 332 

entropy, as described below. 333 

Computing	weights	using	transfer	entropy	and	time-lagged	Pearson	correlation	334 

Given two genes are connected by an edge, the edge weight was computed in 335 

two ways. First, time-lagged Pearson correlation was used with time lags of 0 to 6 steps 336 

(0 to 30 mins.), keeping the maximum. Second, a new variation on time-lagged transfer 337 

entropy was used similar to what is described in [34,35], termed sum-lagged transfer 338 

entropy (SLTE). TE is computed at each time lag and a sum is taken over the set of 339 

time lags. This method avoids making a choice about what time lag to use. Additionally, 340 

edge weights in the graph are composed of summed time lags, making them directly 341 

comparable. Information transfer, in the genetic regulatory context, is relatively slow and 342 

takes place over multiple time steps (each step corresponding to 5 minutes).  343 
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Time-lagged Pearson correlation is computed by taking two time series, or 344 

numeric vectors ! = {!!, !!,… , !!} and ! = {!!,!!,… ,!!}, and computing the correlation 345 

on sub-sequences {!!!! ,… !!!!, !!} and {!! !!,…!!!!}, where ! is some integer 346 

representing the time lag between variables. 347 

Transfer entropy (TE) is an information theoretic quantity that uses sequence or 348 

time series data to measure the magnitude of information transfer between variables 349 

[36,37]. Transfer entropy is model-free, directional, and shown to be related to Granger 350 

causality [38]. In TE, given two random variables ! and !, where ! is directionally 351 

connected to ! (or ! → !), we would like to know if prior states of ! help in the 352 

prediction of !, beyond knowing the prior states of !. With some simplifications, transfer 353 

entropy is straightforward to compute.  354 

Given two sequences ! and !, we describe transfer entropy as 355 

!!→!(!) = !(!! , !!!!, !!!!)
!!,!!!!,!!!!

log!(!! , !!!!, !!!!)!(!!!!)! !! , !!!! !(!! , !!!!) 
, 

where !!!! indicates value of the sequence at time step !, with time lag k. 356 

To perform the computation, ! and ! are normalized and used to fit a Gaussian 357 

kernel density estimate (KDE) with the default adaptive bandwidth. Then, by sampling 358 

the density estimate, and normalizing the samples, a three-dimensional grid 359 

representing the joint probability is generated. The required distributions are 360 

marginalized from the joint distribution. Smaller grid sizes provide a finer grained 361 

probability distribution, but greatly slow the computation without changing the values 362 

substantially. A three dimensional grid of 10! points was found to be a good 363 

compromise between computation time and accuracy. 364 
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A permutation test is performed to assess statistical significance of the transfer 365 

entropy, !!→!. The sequence ! is permuted over some number of trials and a count is 366 

taken on the number of times the permuted TE is greater than the observed TE, giving 367 

an empirical p-value. 368 

The	diffusion	model	is	used	to	score	solutions	to	the	IMP	369 

The information flow model, and most of the nomenclature, is described in [12]. 370 

The diffusion models are Markov chains with absorbing states [39]. In the model, 371 

vertices are first partitioned into sets S and T. The set S contains sources, generating 372 

information, which then flow through the network (nodes in T) until reaching a dead end 373 

or absorbing back into S. 374 

The stochastic matrix -- defining the probability of moving from one vertex to 375 

another-- is defined as  376 

!!" =
!!"
!!"!

, 

where edge weights !!" are the weights on outgoing edges. Sets S and T partition the 377 

stochastic matrix as
 

378 

! = !!! !!"
!!" !!!  

where !!! defines the transition probabilities from nodes in S to S, and !!"  379 

defines transition probabilities from S to T, and so on. Although the matrix is square, it is 380 

not symmetric, given the directed edges.  381 

Ultimately, we wish to compute the expected number of visits from a node !! ∈ S, 382 

to a node !! ∈ T, defined as matrix !.  By time point !, the estimated number of visits 383 

from !! ∈ S to !! ∈ T is found as 384 
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ℎ!"(!) = !!" +  ℎ!"(!!!)!!"
!∈! 

 

where !!" is the transition probability of !! ∈ S to !! ∈ T and ℎ!"(!!!) is the expected 385 

number of visits that have already taken place at time (! − 1), from !! ∈ S to !! ∈ T. At 386 

time step !, information can travel from !! ∈ S to !! ∈ T directly, or it would already be at 387 

adjacent node !!, and would travel from !! ∈ T to !! ∈ T in the next time step. The 388 

matrix form of the equation is given as 389 

!(!) = !!" + !(!!!)!!!. 

In the long run, at steady state, when !(!)~ !(!!!), the equation reduces to 390 

! !− !!! =  !!", where ! is the identity matrix.  By taking the transpose of both sides, 391 

we have !− !!! !!! =  !!"! . This form lets us avoid the matrix inverse in solving for !, 392 

which can be expensive to compute, and lets us use iterative solvers that can even 393 

handle singular matrices. Specifically, the Python SciPy sparse linear algebra library 394 

has solvers appropriate for this problem. 395 

To compute a measure of influence on the network, after solving for ! the 396 

expected number of visits on nodes, the influence is summarized as the “influence-397 

score”, 398 

!"#$%&"'&(')*& =  Ι h!" > θ
!∈!!∈!

+ !! 

where h!" is the number of visitations (using matrix !) from node !! ∈ S to connected 399 

nodes !! ∈ T . Indicator function Ι h!" > θ  is equal to 1 if the number visitations is 400 

greater than a threshold ! and !! is the sum of outgoing weights for node !! ∈ S. The 401 

sum of edge weights is used as a tie-breaker in the case of degenerate solutions, and 402 
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also makes the case for a solution set that is best supported by data. This influence 403 

score is the equivalent to computing the cover on nodes in T. In this work, ! = 0.0001 is 404 

used. 405 

Ant	optimization	is	used	to	search	for	influential	nodes	406 

An implementation of the hypercube min-max ant optimization algorithm was 407 

constructed to search for solutions to the Influence Maximization Problem [40,41]. Ant 408 

optimization is based on the idea of probabilistically constructing potential solutions to a 409 

given problem, in this case a subset selection problem, and reinforcing good solutions 410 

with a "pheromone" weight deposited on solution components, ensuring that good 411 

solutions become increasingly likely in later iterations.  412 

Since the algorithm is stochastic and results can vary, the optimization is 413 

repeated for a defined number of runs. Each convergence takes a number of iterations 414 

where ants construct solutions, perform a local search, score the solutions using the 415 

influence score, and reinforce the components. As a run progresses, the pheromone 416 

values move to either one or zero, indicating whether the component was selected. 417 

At the start of each iteration, ants construct potential solutions, a subset of 418 

vertices, by sampling from nodes using probability distribution 419 

!! =
!!!!!!

!!!!!
! 

where !! is the probability for sampling any node !!, with the sum of outgoing 420 

edges giving node weight !! and pheromone weight !!. The alpha and beta parameters 421 

are used to give importance to either node weights or pheromones. Solutions are 422 

constructed by sampling one node at a time. After each sample, the probabilities are 423 
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renormalized. Here, ! and ! are set to 1. 424 

Local search is performed by stochastic hill climbing, where random, alternative 425 

solutions are tried. If a better score is found, the solution is replaced, and carried 426 

forward. Local search has a strong effect on the quality of the solutions, and even a 427 

small number of hill climbing steps tends reduce the time required for convergence. 428 

Next, using the influence score function, each potential solution is scored, with 429 

the best solution kept and compared to solutions found in earlier runs. As part of the 430 

Min-Max algorithm, three solutions are kept throughout the run: the iteration-best, the 431 

restart-best and the overall-best. The pheromone updates use a weighted average over 432 

the three solutions. At the beginning of the run, the pheromone updates are entirely 433 

from the iteration-best solution, but gradually, the updates are increasingly influenced by 434 

the restart and overall-best solutions, which is done to avoid local minima. The weighted 435 

average pheromone would be !!"# = !!!! + !!!! + !!!! where !! is the iteration best, !! 436 

is the restart best, !! is the best overall, and fractions !! +  !! + !! = 1. The pheromone 437 

updates are defined as !(!!!) = !(!) + !( !!"# − !(!)), where !(!) is the pheromone 438 

weights at time t, ! is the learning rate, and  !!"# is the average over the three solutions. 439 

Eventually, the pheromone weights become sufficiently close to zero or one, and if all 440 

runs are complete, the solution is returned with the influence score. 441 

Additional	‘off-the-shelf’	analysis	442 

BioFabric, R and R packages igraph, pheatmap and ggplot2 were used for 443 

visualization and analysis [42,43,44,49]. Cytoscape 3.3.0 was used for vizualizing 444 

graphs [45,46]. Pathway and GO term enrichment was generated using the CPDB from 445 

The Max Planck Institute for Molecular Genetics [47]. SciPy was used in the software 446 
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implementation [48]. 447 
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