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Abstract18

Density dependence plays an important role in population regulation, and has a long19

history in ecology as a mechanism that can induce local density fluctuations. Yet20

much less is known about how these endogenous processes affect spatial population21

dynamics. Biological invasions occur through the combined action of population22

growth (demography), and movement (dispersal), making them relevant for under-23

standing how density dependence regulates spatial spread. While classical ecological24

theory suggests that many invasions move at a constant speed, empirical work is25

illuminating the highly variable nature of biological invasions, which can lead to non-26

constant spreading speeds. Here, we explore endogenous density dependence as a27

mechanism for inducing variability in biological invasions. We constructed a set of28

integrodifference population models that incorporate classic population fluctuation29

mechanisms to determine how density dependence in demography, including Allee30

effects, and in dispersal affects the speed of biological invasions. We show that den-31

sity dependence is a key factor in producing fluctuations in spreading speed when32

Allee effects are acting on population densities that fluctuate locally. We show that33

the necessary density fluctuations can arise from either a nonmonotone population34

growth function where densities fluctuate locally (e.g., overcompensatory population35

growth), or from density-dependent dispersal when the population growth function36

results in constant local densities. As density dependence in both demography and37

dispersal are common, this mechanism of variability may influence many invading38

organisms.39

Significance Statement40

Controlling the spread of biological invasions reduces the cost of mitigating invasive41

species. However, predicting empirical invasive population spread is difficult as evi-42
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dence shows the speed of this movement can be highly variable. Here, we provide a43

novel mechanism for this variability, showing that internal population dynamics can44

lead to fluctuations in the speed of biological invasions through the combined action of45

density dependence in demography and dispersal. Speed fluctuations occur through46

the creation of a variable pushed invasion wave, that moves forward not from small47

populations at the invasion front, but instead from larger, more established popula-48

tions that “jump” forward past the previous invasion edge. Variability in the strength49

of the push generates fluctuating invasion speeds.50

Introduction51

Fluctuations in population size have fueled a now-classic debate over whether popu-52

lations are governed by extrinsic environmental factors or by intrinsic self-limitation53

(reviewed in Kingsland 1995). One of the most important advances of twentieth-54

century ecology was the discovery that intrinsic density feedbacks can cause pop-55

ulation densities to fluctuate, even in constant environments (May, 1974; Turchin,56

2003; Costantino et al., 1997). This discovery helped resolve the important role of57

density dependence in population regulation, revealing that strong regulating forces58

can generate dynamics that are superficially consistent with no regulation at all.59

The long history and textbook status of fluctuations in local population size contrast60

strongly with relatively poor understanding of fluctuations in the spatial dimension61

of population growth: spread across landscapes.62

Understanding and predicting the dynamics of population spread take on urgency63

in the era of human-mediated biological invasions and range shifts in response to cli-64

mate change. The velocity of spread, or “invasion speed”, is a key summary statistic65

of an expanding population and an important tool for ecological forecasting (Fagan66

et al., 2002). Estimates of invasion speed are often derived from regression methods67

that describe change in spatial extent with respect to time (Miller and Tenhumberg,68
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2010; Lubina and Levin, 1988; Andow et al., 1990; van den Bosch et al., 1992). Im-69

plicit in this approach is the assumption that the true spreading speed is constant70

and deviations from it represent “error” in the underlying process, or in human ob-71

servation of the process. This assumption is reinforced by long-standing theoretical72

predictions that, under a wide range of conditions, a spreading population will asymp-73

totically reach a constant velocity that is determined by the “pulling” force of rare74

long-distance movement and rapid population growth at the low-density leading edge75

(Weinberger, 1982; Skellam, 1951; Kot et al., 1996; Neubert and Caswell, 2000). This76

conventional wisdom of long-term constant invasion speeds is still widely applied,77

and support for this result is found in lab experiments under controlled conditions78

(Gandhi et al., 2016).79

In contrast to classic theoretical and empirical approaches that emphasize a long-80

term constant speed, there is growing recognition that spread dynamics can be highly81

variable and idiosyncratic (Melbourne and Hastings, 2009; Miller and Inouye, 2013;82

Johnson et al., 2006; Peltonen et al., 2002; Walter et al., 2015; Robertson et al., 2009;83

Michaels, 1984; Chen, 2014). Some models predict fluctuating spreading speeds due84

to extrinsic factors such as environmental heterogeneity (Neubert and Caswell, 2000)85

or interactions with other species (Dwyer and Morris, 2006). Indeed, empirical stud-86

ies of invasive organisms often attribute temporal variation in speed to differences in87

the environments encountered by the invading population (e.g., Andow et al. 1990;88

Peltonen et al. 2002). An alternative hypothesis is that endogenous mechanisms gen-89

erate fluctuations in spreading speed, even in a homogeneous landscape, mirroring the90

potential for endogenous fluctuations in local population size in temporally constant91

environments. Endogenous fluctuations in spreading speed (which we define here as92

any variability in spreading speed through time, ranging from two-cycle oscillations93

to chaos), have been surprisingly neglected by the large theoretical literature on bi-94

ological invasion (but see Johnson et al. 2006, Shaw et al. unpublished) and would95
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be easily missed by empirical studies that were not looking for them. Understanding96

whether such fluctuations are possible and the conditions under which they occur97

would help resolve sources of variability in invasion speed, and facilitate management98

objectives for range expansion by native and exotic species.99

Here, we develop mathematical models of spatial spread to ask whether the ve-100

locity of an expanding population can fluctuate, even in a spatially and temporally101

uniform environment, and to identify conditions under which such endogenous fluc-102

tuations may occur. As a starting point, we take inspiration from the relatively103

complete understanding of endogenous fluctuations in local population density, which104

arise from time-lagged density feedbacks (i.e., populations persistently overshoot and105

undershoot their carrying capacity). We conjectured that density feedbacks should106

be similarly important for fluctuating invasion speeds. Because spread dynamics are107

jointly governed by demography (local births and deaths) and dispersal (spatial re-108

distribution), we considered several types of density feedbacks (Sakai et al., 2001),109

including density-dependent movement (Matthysen, 2005) and positive density de-110

pendence in population growth (i.e., Allee effects) at the low-density invasion front111

(Taylor and Hastings, 2005). Allee effects cause invasion waves to be “pushed” from112

behind their leading edge (Kot et al., 1996; Wang et al., 2002) and we show them to113

be an important ingredient of fluctuations in the speed of spatial spread.114

We began by asking whether conditions that promote fluctuations in local den-115

sity also promote fluctuations in spatial spread. We then asked whether fluctuations116

in invasion speed are possible even when population growth produces constant lo-117

cal population densities. We discovered several mechanisms, all arising from density118

dependence in demography and/or dispersal, that can induce endogenous fluctua-119

tions in invasion speed, ranging from stable two-point cycles to apparent chaos. By120

demonstrating that simple invasion models can generate complex spread dynamics,121

our results reveal previously undescribed sources of variability in biological invasions122
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and provide a roadmap for empirical studies to detect these processes in nature.123

The Models124

We start with an integrodifference population model for population spread through125

a spatially uniform environment (Kot et al., 1996):126

nt+1(x) =

∫ ∞
−∞

k(x− y, σ2)f
(
nt(y)

)
dy. (1)

Here nt(x) is the population density at time t and location x, and is a function of two127

sequential processes: local demography and dispersal. We assume non-overlapping128

generations where adults nt(x) generate f(nt(x)) offspring, that then disperse. The129

distribution of dispersal distances (the dispersal kernel) is given by k(x−y, σ2) and is130

the probability that an individual disperses from location y to location x (where the131

probability depends only on the distance x−y), with σ2 as the variance of the kernel.132

For all models, we describe dispersal using a Laplace probability density function133

(Wang et al., 2002).134

Fluctuating Non-spatial Density135

We first ask if a growth function f(n) that promotes fluctuations in local density also136

promotes fluctuations in spreading speed. We therefore consider the case of over-137

compensatory population growth, where density can overshoot the carrying capacity.138

Long-standing theory suggests that compensatory population growth, with or without139

Allee effects, leads to constant invasion speeds (Weinberger, 1982; Lui, 1985; Wang140

et al., 2002). Additionally, when Allee effects are not present, overcompensatory141

growth does not give rise to fluctuations in invasion speed (Li et al., 2009). Here, we142

investigate whether adding an Allee effect to an overcompensatory growth function143

can induce fluctuating invasion speeds. We define the growth term of equation 1 as144

the Ricker function145
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f
(
n
)

=

 n exp
(
r(1− n)

)
for n > nthresh

0 for n ≤ nthresh

(2)

which is modified to include the possibility of a strong Allee effects (Fig S1a). Here,146

r is the intrinsic growth rate, and nthresh is the Allee effect threshold, which is the147

critical density below which the population goes extinct. We refer to this model as148

the “overcompensatory model” throughout.149

We simulated the model across a range of r and nthresh parameter values (Fig.150

1a), each for 200 iterations using MATLAB (MATLAB, 2014). Here, we fixed the151

variance of the dispersal kernel to σ2 = 0.25. Within each simulation, we defined152

the invasion front at each time step as the location where the density of the invasion153

wave was first above the detection threshold of 0.05 (Fig. 2a-e). We then used this154

location to calculate the instantaneous invasion speed as the distance travelled by the155

front between consecutive time steps (Fig. 2f). To determine if the invasion speed156

fluctuated, we quantified how this speed changed through time.157

Overcompensatory Model Results158

We found that the overcompensatory model can generate fluctuating invasion speeds,159

but only if Allee effects and fluctuations in local population density are present (Fig.160

1a, S2). In populations experiencing Allee effects, the fluctuations in local population161

density are propagated in space, which promotes fluctuations in invasion speed. This162

can occur even when the local population would crash in a nonspatial model due163

to high population density fluctuations. Fluctuations in speed occur within limited164

parameter space; when the Allee effect threshold (nthresh) is too large the spreading165

population crashes, and if the growth rate (r) is too small the population invades at166

a constant speed (Fig. 1a). The observed fluctuations have a small amplitude, and167

range from 2-cycle oscillations to apparently chaotic (Fig. S3).168
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In this model, fluctuations in speed are induced via a pushed invasion wave, and169

the Allee threshold determines the magnitude of fluctuations by altering the size170

of the push. The invasion front moves forward, not from the low density leading171

edge, but instead from populations farther back in the wave that jump forward past172

the invasion front and push the wave ahead. When the population density at any173

location is smaller than the Allee threshold, which occurs at the edge of the wave, the174

population decays to zero before the next time step. Populations just above the Allee175

threshold become large after reproduction, but as the adult population size of n(x)176

increases beyond the Allee threshold, the offspring population size f(n(x)) declines,177

as defined by the Ricker growth function (Fig. S1a). Therefore, when reproduction178

occurs (transition between n(x) and f(n(x)), Fig. 2a-b), the populations with highest179

density become populations of low density, and populations with density just above180

the Allee threshold become high density. Through time, this creates variability in the181

size of the push, or the region contributing to the wave front (Fig. 2b vs d), which182

leads to fluctuations in the invasion speed.183

Constant Non-spatial Density184

We next examine a model where the population growth function (f(n)) results in185

constant local population densities to determine if this case can also produce fluctu-186

ating invasion speeds. Here, we consider a version of the basic model (eqn. 1) where187

the growth function is piecewise linear, with the form188

f
(
n
)

=

 λn for n < nthresh

nk for n ≥ nthresh

(3)

where nk is the carrying capacity density, and nthresh is the critical density above189

which the population reaches its max density (Fig. S1b). As before, nthresh is the190

Allee effect threshold; below this point population growth is less than one when strong191

Allee effects are present. However, we now include a parameter λ that describes the192
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strength of the Allee effect. For λ = nk/nthresh there is no Allee effect. For 0 ≤ λ ≤ 1193

there is a strong Allee effect where population size decreases at low density (Fig.194

S1b). For 1 < λ < nk/nthresh there are weak Allee effects, but we only briefly touch195

on these results, as they do not produce fluctuations in speed.196

Here we explore density dependence in two aspects of dispersal: the propensity197

(the fraction of individuals that disperse), and the distances that dispersing individ-198

uals travel. We again use the general integrodifference form for our invasion model199

(eqn. 1), but incorporate a piecewise linear growth function (eqn. 3).200

When dispersal propensity is density-dependent we let the probability of dispersal201

be given by202

p
(
ξt(x)

)
= p0 +

[
1

1 + e−α
(
ξt(x)−ξ̂

)] (pmax − p0) (4)

which is a logistic form similar to other models with density-dependent dispersal203

(Smith et al., 2008). Here, ξt(x) = εnt(x) + (1− ε)f(nt(x)) is a weighted combination204

of the local density of adults nt(x), and offspring f(nt(x)), where ε is the relative205

weighting of these two densities. The dispersal propensity can depend on only the206

adult population density (ε = 1), on only the offspring density (ε = 0), or on some207

combination of both (0 < ε < 1). In this formulation, ξ̂ is the dispersal threshold, α208

is a shape parameter that controls the steepness at the threshold, and p0 and pmax209

are lower and upper bounds on the propensity, respectively (Fig. S1c). The sign of210

α determines if dispersal increases or decreases with density, indicating positive or211

negative density dependence, respectively. From this, we get the integrodifference212

model213

nt+1(x) =
[
1− p

(
ξt(x)

)]
f
(
nt(x)

)
+

∫ ∞
−∞

p
(
ξt(y)

)
k(x− y, σ2)f

(
nt(y)

)
dy (5)

which we refer to as the “propensity model” throughout.214

Alternatively, when the dispersal distance is density-dependent, we let the disper-215
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sal kernel variance be modified by the weighted population density (ε) and have the216

form217

σ2
(
ξt(x)

)
= σ2

0 +

[
1

1 + e−β
(
ξt(x)−ξ̂

)] (σ2
max − σ2

0) (6)

where β is a shape parameter that controls the steepness at the threshold, and σ2
0218

and σ2
max are lower and upper bounds on the variance, respectively (Fig. S1d). Here,219

the sign of β determines if density dependence is positive or negative. This results in220

our final integrodiffernce model221

nt+1(x) =

∫ ∞
−∞

k
(
x− y, σ2

(
ξt(y)

))
f
(
nt(y)

)
dy (7)

which we refer to as the “distance model” throughout.222

We simulated both of these models (eqns. 5 and 7) for 200 iterations, across223

parameter values ε = [0, 0.5, 1], 0 ≤ λ ≤ 2 (strong to weak Allee effects), and λ = 5224

(no Allee effect), 0 ≤ ξ̂ ≤ 1, and nthresh = 0.2 for both models, with −100 ≤ α ≤ 100,225

p0 = 0.05, and pmax = 1 for the propensity model, and −100 ≤ β ≤ 100, σ2
0 = 0.05,226

and σ2
max = 1 for the distance model. As before, we calculated the instantaneous227

invasion speed to determine if it fluctuated through time.228

Propensity Model Results229

With the propensity model (eqn. 5), speed fluctuations occur only when the propen-230

sity to disperse depends at least in part on the adult population density (ε > 0), Allee231

effects are present (0 ≤ λ < 1), and dispersal propensity increases with increasing232

population density (α > 0). We did not find evidence of fluctuations with weak Allee233

effects (1 < λ < nk/nthresh) (Fig. S4a). The amplitude of these fluctuations increase234

as the strength of the Allee effect, and density dependence increases (Fig. 1b). Fluc-235

tuations in this model always occur as 2-cycle oscillations, and are stronger when it236

takes a larger density to trigger movement (increasing ξ̂) (Fig. S4a). Alternatively,237
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when dispersal propensity decreases with increasing denisty (α < 0), the invasion238

moves at a constant speed.239

Here, density-dependent dispersal induces the density fluctuations needed to cre-240

ate speed fluctuations, but only when combined with Allee effects, which generates241

a pushed wave (SI Appendix). As before, spreading speed fluctuations are created242

through variations in the magnitude of the push that reaches the edge of the invasion.243

The magnitude of a push depends on the width of the region contributing to the push,244

and the proximity of this region in relation to the wave front (Fig. 2g-k). Directly245

adjacent to the wave edge the population is below the Allee effect threshold (nthresh)246

and therefore decays to zero (Fig. 2g). Farther from the edge, the population density247

is above the Allee effect threshold, but below the dispersal threshold (ξ̂). Thus this248

region of the population behind the wave front reproduces, but does not disperse249

(Fig. 2h,i). This results in a large push from behind the wave front that moves the250

invasion front forward at the next time step (Fig. 2i-k). Subsequently, the region of251

the non-dispersing population is much smaller and farther from the invasion front at252

the next time step, resulting in a much smaller push (Fig. 2k).253

Distance Model Results254

For the distance model (eqn. 7), we again find that invasion speed only fluctuates255

via pushed waves when density-dependent dispersal depends at least partially on the256

adult population density (ε > 0), and strong Allee effects are present (0 ≤ λ ≤ 1).257

However, unlike the propensity model, we find fluctuations when density-dependent258

dispersal is both positive (β > 0) and negative (β < 0) (Fig. 1c, S4b, SI Appendix).259

The speed fluctuations exhibit more chaotic dynamics (Fig. S5) than the two-cycle260

fluctuations seen in the propensity model, with larger amplitude fluctuations when261

the dispersal distance increases with density (β > 0), than when it decreases with262

density (β < 0) (Fig. 1c, S5). In general, fluctuations are larger as both Allee effects263

and density dependence are stronger. Additionally, when increasing densities increase264
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the dispersal distance (β > 0), the fluctuation amplitude increases as it takes a larger265

density to trigger long distance movement, and this trend is opposite when increasing266

densities decrease dispersal distance (β < 0) (Fig. S4b).267

When the dispersal distance shows positive density dependence (Fig. 2m-r), pop-268

ulations at densities above the dispersal threshold will disperse long distances, and269

those below will disperse short distances. While the short distance dispersers are270

always directly adjacent to the wave edge after reproduction, each push forward is271

made up of a combination of both short and long distance dispersers. The size of this272

push changes depending on the proportion of the push made up of each type of dis-273

perser, and this proportion changes with time, creating fluctuating invasion speeds.274

For example, when a small peak in population density is above the dispersal thresh-275

old, a small population mass disperses long distances and the front advances a short276

distance (Fig. 2m-o). However, when a larger peak of the population density is above277

the dispersal threshold, a larger population disperses long distances, and the wave278

advances a longer distance (Fig. 2o-q).279

We also find spreading speed fluctuations when the dispersal distance has negative280

density dependence, that also result from variation in the proportion of the population281

that disperse short and long distances. Here, however, when populations are above282

the dispersal threshold, they disperse a short distance, and when they are below the283

dispersal threshold, they disperse long distances. In the negative density-dependent284

dispersal case, long distance disperses are always adjacent to the wave edge, and285

pushes with a small proportion of long distance dispersers move less far (Fig. 2s-u)286

than those made up of more long distance dispersers (Fig. 2u-w).287

Discussion288

Here we demonstrate that fluctuations in invasion speed can be induced solely through289

endogenous population dynamics, a previously undescribed mechanism behind inva-290

12

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 13, 2016. ; https://doi.org/10.1101/075002doi: bioRxiv preprint 

https://doi.org/10.1101/075002


sion variability. Specifically, we show that Allee effects acting on fluctuating local291

population densities are necessary to create these variable invasion speeds. This oc-292

curs when the population growth function produces both fluctuating and constant293

local population densities. In the former case, overcompensatory growth produces294

the necessary fluctuating local population densities, in the latter case these density295

fluctuations are created through density-dependent dispersal. In our models, fluc-296

tuations in spreading speed occur through a form of variable pushed wave. While297

pushed waves are common (Gandhi et al., 2016; Mendez et al., 2011; van Saarloos,298

2003; Garnier et al., 2012), especially given the known influence of Allee effects at the299

low density wave edge (Taylor and Hastings, 2005; Shigesada and Kawasaki, 1997),300

our models show that this pushing force generated by the Allee effect can lead to301

endogenous variability in spreading speed when accompanied by mechanisms that302

create density-dependence, as this combined action creates variability in the pushing303

force through time. This result has potential to be more consistent with the highly304

variable data seen from empirical invasion studies (Johnson et al., 2006; Peltonen305

et al., 2002; Walter et al., 2015; Robertson et al., 2009; Michaels, 1984; Chen, 2014)306

Allee effects are often considered in relation to invasions (Taylor and Hastings,307

2005), as the leading edge of an invasion tends to experience low population densi-308

ties (Shigesada and Kawasaki, 1997), and Allee effects are seen in many organisms309

(Kramer et al., 2009; Morris, 2002). In isolation Allee effects have been shown to310

influence small populations at the invasion edge by decreasing low-density vital rates311

(e.g., reproduction Veit and Lewis 1996), which can lead to decreased invasion speeds312

(Wang and Kot, 2001). We show here that Allee effects can also generate fluctua-313

tions in spreading speed, but they must be acting on populations that also have some314

form of local density fluctuations. This combination of Allee effects and density fluc-315

tuations due to dispersal have been shown to induce oscillations in a serious North316

American forest invader, the Gypsy Moth (Johnson et al., 2006). In our models, these317
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fluctuations are driven by variable pushed waves. One major new insight our results318

provide, is that vital rates must be not only examined in populations at low density,319

but also in those at high-density, as the invasion front is being driven by high-density320

populations.321

In our models, density-dependent dispersal, which is displayed in many organisms322

(Bonenfant et al., 2009; Matthysen, 2005; Fronhofer et al., 2015; Denno and Peterson,323

1995), was a main source of local population density fluctuations. Its effect ranged324

depending on whether responses to density were positive or negative, and if it altered325

either the propensity to disperse or the dispersal distance. In the propensity model,326

fluctuations were seen when the propensity to disperse increased with increasing den-327

sity. Positive density-dependent dispersal propensity is most notable in insects, as328

wingless aphids can produce winged morphs when densities become high (Harrison,329

1980; Johnson, 1965), and some butterflies increase movement in response to mate330

density avoidance (Baguette et al., 1998). This movement can create an Allee effect331

if it reduces mate finding abilities at low densities, especially when the movement332

is sex biased (Shaw et al. unpublished). In the distance model, fluctuations were333

seen under both positive and negative density dependence. Mobile organisms can in-334

crease their dispersal distance with increasing density by altering behavioral responses335

(Matthysen, 2005). Alternatively, dispersal distances can decrease with density when336

crowding decreases reproductive output and dispersal ability (Marchetto et al., 2010;337

Donohue, 1998; Matthysen, 2005), or in animals (notably small mammals) with strong338

group behavior (Ims and Andreassen, 2005; Andreassen and Ims, 2001; Matthysen,339

2005). The empirical studies on density-dependent dispersal tend to match where we340

find fluctuating invasion speeds in our models, indicating we have explored relevant341

parameter space.342

Coupling models and empirical data has proven to be a fruitful approach to un-343

derstanding the mechanisms behind fluctuations in non-spatial population density344
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(e.g., Turchin 2003; Costantino et al. 1997), yet we have much less coupled data in345

spatial systems (Bolker et al., 2003). We propose that examining highly variable346

empirical invasion data (Melbourne and Hastings, 2009) in light of our theoretical re-347

sults could provide a novel mechanism by which variable invasions occur. To identify348

the density-dependent mechanisms acting on invaders, empirical data on the com-349

bination of fluctuation periodicity, amplitude, and the long-term shape of the wave350

would be necessary. Given the difficulty of collecting long-term data, some patterns351

might be easier to identify than others. The strong 2-cycle speed fluctuations gen-352

erated when invaders experience both Allee effects and density-dependent dispersal353

propensity would likely be the most evident in data. We recognize that while many354

invaders may experience Allee effects, or density-dependent dispersal, the likelihood355

of both endogenous processes acting on an invading population simultaneously (which356

is required to generate speed fluctuations) is unknown. Teasing out the signature of357

these endogenous mechanisms from data may prove difficult, given an inherently het-358

erogeneous and stochastic world, yet we encourage empiricists to re-examine variable359

invasion data in the context of these density-dependent mechanisms.360

Understanding the basic mechanisms behind invasion variability would allow for361

better forecasting, and ultimately improved control, of biological invasions. While362

fluctuations in invasion speed have been found due to exogenous factors including363

habitat patchiness, predator-prey dynamics, and climatic variability (Dwyer and Mor-364

ris, 2006; Neubert et al., 2000; Peltonen et al., 2002), we show here, that internal365

density-dependent population dynamics can also induce fluctuating invasion speeds.366

These results provide a new focus for understanding variable invasions.367
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Table S1: All model parameters, meanings and corresponding equations.

Variable Meaning
t time
x, y locations
nt(x) population density of at location x and time t
Parameter Meaning
σ2 variance of the dispersal kernel
nthresh Allee effect threshold
r intrinsic growth rate (Overcompensatory model)
λ strength of Allee effect (Propensity and distance models)
ε relative weight of adult versus offspring population density (Propensity

and distance models)

ξ̂ dispersal threshold (Propensity and distance models)
nk carrying capacity density (Propensity and distance models)
p0 minimum dispersal propensity (Propensity model)
pmax maximum dispersal propensity (Propensity model)
α dispersal propensity parameter (Propensity model)
σ2
0 minimum dispersal variance (Distance model)
σ2
max maximum dispersal variance (Distance model)
β dispersal propensity parameter (Distance model)
Function Meaning
k(x− y, σ2) dispersal kernel
f(nt(x)) growth / offspring density
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Figure S1: Examples of functions used in simulations (a) growth rate for the Over-
compensatory model (eqn. 2) (b) growth rate for Propensity and Distance models
(eqn. 3) for λ = nk/nthresh (black) and λ = 0 (gray), (c) dispersal propensity for
density-dependent case (eqn. 4) for different α values, and (d) dispersal kernel vari-
ance for density-dependent dispersal distance (eqn. 6) for different β values.
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Figure S2: Parameter space over which asymptotic fluctuations in local population
density occur (black), overlaid with fluctuations in invasion speed occurrence (red)
in the overcompensatory model (eqn. 2). The grayscale indicates the amplitude of
density fluctuations. Initial population density was set to 0, except for a Gaussian
distribution over |x| < 5 with a peak of 2 and standard deviation of 1. All fluctuations
were defined to have an amplitude greater than 0.04
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Figure S3: The periodicity of the invasion speed through time for the Overcompen-
satory model. In panels a-c, the wave position is plotted at time t vs time t+ 1. The
wave speed ranges in periodicity across values of the Allee effect threshold nthresh. At
small values of nthresh the invasion speed is constant (a), at some moderate values the
wave speed is periodic (b), and at larger nthresh values (c), the wave speed becomes
chaotic until nthresh becomes so large the population goes extinct. In panel (d), the
range of invasion speeds represents the amplitude of fluctuations. At each plotted
nthresh value, the invasion speed for the previous 100 time steps are plotted. When
points appear as hollow points, the same invasion speed is being plotted over itself
many times. Here, σ2 = 0.25
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Figure S4: Parameter space exploration for the models used (a) Propensity model -
top row (b) Distance model - bottom row Here, blue circles = ξ̂ = 0.1 < nthresh, red
circles = ξ̂ = 0.6 > nthresh, gray circles = ξ̂ = 0.9 >> nthresh
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Figure S5: The periodicity of the invasion speed through time for the Distance model.
In panels a-c, the wave position is plotted at time t vs time t + 1. We demonstrate
that the invasion speed appears to have an attractor for some values of the density-
dependent dispersal threshold (β) (a, b), and is more chaotic for other values of β (c).
In panel (d), the range of invasion speeds represents the amplitude of fluctuations for
one value of the Allee effect threshold (ξ̂). At each plotted β value, the invasion speed
for the previous 100 time steps are plotted. When points appear as hollow points,
the same invasion speed is being plotted over itself many times. Here, ξ̂ = 0.9, ε = 1,
λ = 0, σ2

0 = 0.05, σ2
max = 1, and nthresh = 0.2.
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Appendix: Fluctuations in population density501

A. The propensity model.502

We demonstrate that the term outside the integral in model (6), which determines

the dynamics of the individuals remaining sedentary, can generate fluctuations in

population density for positive α and ε. This term may be described by G(n) =

[1 − p(ξ(n))]f(n) where p(ξ) is given by (4) with ξt(x) replaced by ξ, and ξ is given

by (5) with nt(x) replaced by n. ξ is a function of n. Clearly G(0) = 0, and

G′(n) = −p′(ξ(n))ξ′(n)f(n) + [1− p(ξ(n))]f ′(n).

It is easily seen that p′(ξ) > 0 for α > 0, and ξ′(n) > 0 for 0 < ε ≤ 1 and n 6= nthresh.503

If λ = 0, G(n) equals zero for 0 ≤ n < nthresh, has a jump at nthresh, and then504

becomes decreasing since G′(n) = −p′(ξ)ξ′(n)nmax < 0 for n > nthresh.505

If λ > 0, G′(0) = [1−p(ξ(0))]f ′(0) = [1−p(ξ(0))]λ > 0, andG′(n) = −p′(ξ(n))ξ′(n)nmax506

< 0 for n > nthresh. This shows that G(n) increases initially, and decreases for507

n > nthresh.508

We have shown that for positive α and ε and for λ ≥ 0, G(n) is a nonmonotone509

function and it generates fluctuations in population density.510

B. The distance model.511

We show that the integrand of model (8) produces fluctuations in density for β 6= 0

and ε > 0. We use ξ(x) to denote ξt(x) given by (5) with nt(x) replaced by n(x), and

σ2(ξ(x)) to denote σ2(ξt(x)) given by (7) with ξt(x) replaced by ξ(x). ξ(x) can be
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viewed as a function of n(x). The Laplace kernel k(x− y, σ2(ξ)) takes the form of

k(x− y, σ2(ξ(y))) =
1√

2σ(ξ(y))
e−
√
2|x−y|/σ(ξ(y)).

Let

H(x− y, n(y)) = k(x− y, σ2(ξ(n(y))))f(n(y)).

We use ( 1
σ(ξ(n))

)′ to denote the derivative of 1
σ(ξ(n))

with respect to n, and H ′(x− y, n)

to denote the partial derivatives of H with respect to n. Then

H ′(x− y, n(y)) = k(x− y, σ2(ξ(n(y))))f ′(n(y))+

1√
2
e−
√
2|x−y|/σ(ξ(n(y)))[1−

√
2|x− y|

σ(ξ(n(y)))
]f(n(y))(

1

σ(ξ(n))
)′.

For n(y) > nthresh, f
′(n(y)) = 0. We therefore have that for n(y) > nthresh,

H ′(x− y, n(y)) =
1√
2
e−
√
2|x−y|/σ(ξ(n(y)))[1−

√
2|x− y|
σ(n(y))

]f(n(y))(
1

σ(ξ(n(y)))
)′.

Since ε > 0, for n 6= nthresh,
dξ(n)
dn

> 0, and dσ(ξ)
dξ

> 0 (< 0) if β > 0 (β < 0). It follows512

that ( 1
σ(ξ(n))

)′ < 0(> 0) if β > 0 (β < 0).513

If λ = 0, then H(x − y, n(y)) equals zero for 0 ≤ n(y) < nthresh, has a jump at514

nthresh, and then decreases in n(y) in the interval |x−y| < σ(ξ(n(y)))/
√

2 when β > 0515

or in the interval |x− y| > σ(ξ(n(y)))/
√

2 when β < 0.516

If λ > 0, H ′(x−y, 0) = k(x−y, σ2(ξ(0)))f ′(0) = k(x−y, σ2(ξ(0)))λ > 0. We have517

that H(x− y, n(y)) increases in n(y) when n(y) is small, and decreases in n(y) in the518

interval |x−y| < σ(ξ(n(y)))/
√

2 when β > 0 or in the interval |x−y| > σ(ξ(n(y)))/
√

2519

when β < 0.520

We have proven that for positive ε and for λ ≥ 0, H(x−y, n(y)) produces fluctua-521

tions in density in the interval |x− y| < σ(ξ(n(y)))/
√

2 when β > 0 or in the interval522
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|x− y| > σ(ξ(n(y)))/
√

2 when β < 0.523
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