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Abstract 

Differentiation of naïve CD4+ T cells into functionally distinct T helper subsets is crucial for the 
orchestration of immune responses. Due to multiple levels of heterogeneity and multiple 
overlapping transcriptional programs  in differentiating T cell populations, this process has 
remained a challenge for systematic dissection in vivo. By using single-cell RNA transcriptomics 
and computational modelling of temporal mixtures, we reconstructed the developmental 
trajectories of Th1 and Tfh cell populations during Plasmodium infection in mice at single-cell 
resolution. These cell fates emerged from a common, highly proliferative and metabolically 
active precursor. Moreover, by tracking clonality from T cell receptor sequences, we infer that 
ancestors derived from the same naïve CD4+ T cell can concurrently populate both Th1 and Tfh 
subsets. We further found that precursor T cells were coached towards a Th1 but not a Tfh fate 
by monocytes/macrophages. The integrated genomic and computational approach we describe is 
applicable for analysis of any cellular system characterized by differentiation towards multiple 
fates. 
 

 

One Sentence Summary  
Using single-cell RNA sequencing and a novel unsupervised computational approach, we resolve 
the developmental trajectories of two CD4+ T cell fates in vivo, and show that uncommitted T 
cells are externally influenced towards one fate by inflammatory monocytes. 
 
 

Introduction 

T helper (Th) cells, also known as CD4+ T cells, are key instructors of the immune system (1). 
They display extensive functional and phenotypic diversity in response to a spectrum of immune 
challenges, including viral, bacterial, fungal and parasitic infection, immunogenic cancers, and 
autoimmune and allergic stimuli. Th cell subsets are distinguished from each other most 
frequently by the cytokines they secrete. Th1 cells produce interferon-γ, leading to macrophage 
activation and enhanced killing of intracellular pathogens. Th2 cells produce IL-4, IL-5, and IL-
13, prompting eosinophils to act against extracellular parasites and venom. Th17 cells produce 
IL-17 and IL-22, promoting neutrophilic responses against extracellular bacteria and fungi. 
Follicular T helper (Tfh) cells, a more recently defined Th subset, secrete IL-21, and drive 
somatic hypermutation of immunoglobulin genes in germinal centre B cells. This produces high 
affinity antibodies, upon which many licensed vaccines depend for efficacy. Since Th subsets 
can both control infections and drive immune-mediated diseases there remains tremendous 
interest in the molecular mechanisms that control their in vivo development.  
In order for Th cells to develop, CD4+ T cells must first be raised from an immunologically naïve 
state by antigenic stimulation of their highly diverse T cell receptors (TCR), which is followed 
by processes of clonal proliferation and differentiation. Recent in vivo data suggested that the 
unique TCR sequence of a single naïve CD4+ T cell imparts a genetically programmed 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2016. ; https://doi.org/10.1101/074971doi: bioRxiv preprint 

https://doi.org/10.1101/074971
http://creativecommons.org/licenses/by/4.0/


3 

 

preference towards a particular Th fate (2). However, co-stimulatory and cytokine signals can 
also profoundly influence both the magnitude of the response, and skewing towards particular Th 
fates. Several master transcription factors have been described in CD4+ T cells that drive and 
stabilize Th fates, which supports a view of Th development as a choice between clearly distinct 
states. However, the relationship between Th subsets, particularly between Tfh and other Th 
fates remains unclear in vivo. 

In many cases, immune challenges, such as infection or vaccination, induce concurrent 
differentiation into two or more Th fates within the same individual. Indeed, by performing a 
limiting dilution single-cell adoptive transfer of naïve CD4+ T cells, it was suggested that 
daughter cells from a particular clone could bifurcate phenotypically to give rise to both Th1 and 
Tfh cells (2). However, it was not possible to visualize and pinpoint the bifurcation of Th1/Tfh 
cell fates in vivo. 

Resolving Th cell fate decision-making in vivo using population-level approaches has been 
challenging, mainly due to extensive heterogeneity amongst differentiating cells. More 
specifically, CD4+ T cells at any given time point display a distribution of intermediate and 
transitional states, which blurs the dynamics of Th cell developmental progression (3). Tfh 
differentiation, in particular, has been difficult to elucidate since it involves multiple stages with 
potential overlap with transcriptional programs of other Th subsets. Of particular note, 
computational tools for modelling bifurcations in cellular decision-making have not been 
available. 

Th cell fate decisions are driven by both intrinsic factors and external signalling cues from other 
cells. Conventional dendritic cells (cDCs) are important cellular sources of antigenic stimulation, 
co-stimulation and cytokines for Th differentiation in secondary lymphoid tissues. Intra-vital 
imaging in lymph nodes has demonstrated that cDCs make long-lasting stable contacts with 
naïve CD4+ T cells in order to initiate T cell priming (4). Once activated, CD4+ T cells continue 
to require antigenic stimulation via their TCR to optimize their proliferation and Th 
differentiation (5-7). Continued signalling has been reported to be important for Th1 responses, 
although the cell types providing this signal remain unknown (4). A recent report suggested that 
CXCR3 expression by activated CD4+ T cells facilitated continued interaction with adoptively-
transferred CXCL9 and CXCL10-expressing cDCs (8), however, interactions with endogenous 
myeloid cell populations, including cDC subsets and monocytes have not been studied in vivo. 
While Tfh cells are sustained, once generated, via multiple molecular interactions with B cells in 
developing germinal centres (9, 10), possible roles for myeloid cells in providing early 
instruction towards a Tfh fate remain relatively unexplored. A recent study targeted antigens to 
two different cDC-subsets in vivo, and suggested that CD8α- cDCs displayed the greater 
propensity for generating Tfh responses (11). Whether Th1/Tfh fate bifurcation can result from 
differential interactions with cDC subsets or activated monocytes currently remains unknown. 
Herein we have used single-cell RNA sequencing (scRNA-seq) to study the various 
transcriptional states of individual CD4+ T cells during blood-stage Plasmodium chabaudi 
infection in mice. This is an experimental model of malaria in which CD4+ T cells are essential 
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for controlling parasite numbers, and which is characterized by concurrent development of Th1 
and Tfh cells (12). We have used Plasmodium-specific TCR transgenic CD4+ T (PbTII) cells to 
minimise the effects of TCR diversity on Th fate decisions.   
Crucially, our approach builds on scRNA-seq profiling coupled with new computational 
strategies to reconstruct the differentiation trajectories of Th1 and Tfh cells at a single-cell 
resolution. Our data reveals, for the first time, the molecular detail of how a single antigen-
specific CD4+ T cell clone can undergo parallel development into Th1 and Tfh states in vivo, and 
reveals the hierarchical regulation of genes involved in this cell fate decision. Finally, we 
investigated intercellular interactions using scRNA-seq, and predicted roles for inflammatory 
monocytes, after cDC-dependent T cell activation, in coaching uncommitted CD4+ T cells, 
specifically towards a Th1 fate.  
 

Results 

scRNA-seq resolves Th1 and Tfh cell fates during Plasmodium infection in mice 

To study concurrent progression towards Th1 and Tfh fates, and to characterize the heterogeneity 
associated with this process during an in vivo CD4+ T cell response, we performed scRNA-seq of 
PbTII cells during PcAS infection (Figure 1A, Figure S1). We transferred naïve, proliferative 
dye-labeled PbTII cells into congenically marked wild-type mice, and recovered them at days 2, 
3, 4, and 7 post-infection (p.i.) by fluorescence-activated cell sorting (FACS) of those expressing 
the early activation marker, CD69, or displaying dilution of the proliferative dye (Figure S2). 
Flow cytometric measurements of the canonical Th1 markers, T-bet (coded by Tbx21) and 
Interferon-γ, and Tfh markers, CXCR5 and Bcl6, indicated that these subsets emerged in parallel 
by day 7 p.i. (13, 14) (Figure 1B-D). Notably, markers of Th2, Th17 or Treg subsets were not 
upregulated on the PbTII cells (Figure S3). 
We initially used Principal component analysis (PCA) to assess the overall heterogeneity of the 
PbTII cells (Figure 1E, Figure S4A). In all time points, the first principal component was 
strongly associated with the number of detected transcripts, which is reflective of changes in 
cellular RNA content and, in general, is linked to proliferative status (Figure S4B). As expected, 
the variability related to previously established Th1 and Tfh gene expression signatures became 
more prominent with the progression of time (15) (Figure S4C). Notably, at day 7 p.i., a PCA 
using these signature genes alone recapitulated the results of the genome-wide PCA (Spearman 
correlation -0.87) (Figure S5). Amongst the cells from day 7 p.i., two distinct subpopulations 
were apparent, separated along PC2 (Figure 1E). Notably, many of the genes associated with 
these subpopulations  have been identified as associated with  either Th1 or Tfh fates (Figure 1F, 
Table S1). Results from a global PCA of the entire dataset were largely in accordance with the 
time point information, with the Th1/Tfh signature genes showing separation along multiple PCs 
(Figure S6). Taken together, these results suggested a progressive commitment to Th1 and Tfh 
fates, and indicated that single-cell transcriptomes could be used for estimating both proliferative 
states and degrees of differentiation of individual cells. 
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Unbiased delineation of Th1 and Tfh trajectories using a Mixture of Gaussian Processes 
model 
The results from the PCA suggest that gene expression variation in PbTII single-cell 
transcriptomes permit reconstruction of the transcriptional programs underlying Th1 and Tfh 
differentiation. To more explicitly model the temporal dynamics of the differentiation process, 
we developed and applied GPfates, a temporal mixture model that builds on the Gaussian 
Process Latent Variable Model (GPLVM) and Overlapping Mixtures of Gaussian Processes 
(OMGP) (16). This approach first reconstructs the differentiation trajectory from the observed 
data (“pseudotime”, Figure 2A-B), thereby establishing an order for the cells. While our model 
uses the sample time as prior information, the inferred temporal orderings did not strictly adhere 
to these experimental time points (Figure S7). For example, cells from day 4 p.i. were mixed 
with some of the cells from day 3 and day 7 at either end of the day 4 pseudotime distribution. 
This was consistent with the idea that bulk assessments of cells at specific time points fail to take 
into account the heterogeneity and differential kinetics of responses made by single cells. We 
also repeated this analysis without supplying the experimental sampling times to the model, 
finding overall consistent results (Comp. Supp. Figure 8).  

In a second step, GPfates uses a time series mixture model, which we adapted from a model that 
was initially developed to deconvolve temporal data into independent separate trends, and which 
is related to previous time series models for bulk gene expression time series (16). Using this 
approach, we identified two simultaneous trends (Figure 2C-D). These two alternative 
trajectories were in agreement with the Th1/Tfh signature genes identified by Hale et al. (15) 
(Figure 3A-D), indicating that the fitted mixture components correspond to cells with Th1 and 
Tfh phenotypes. Notably, these trends could not be identified by other published methods for 
reconstructing single-cell trajectories (17, 18) (Figure S8). Furthermore, the mixture modelling in 
GPfates could also successfully resolve bifurcation events in two other recently published 
scRNAseq datasets, which examined lung epithelial development in mice (Comp. Supp. Figure 
11) (19) and primordial germ cell development in human embryos (Comp. Supp. Figure 12)  
(20). This suggests that pseudotime inference coupled with time series mixture modelling is 
applicable more generally for studying cellular differentiation in scRNAseq data. 
Next, we sought to more clearly characterize the bifurcation time point. Using a change point 
model to annotate the inferred trajectories (see section 4.2 of the Computational Supplement), we 
could divide pseudotime into before and after bifurcation. We sought to characterize single cells 
that existed at the Th1/Tfh bifurcation point. Firstly, bifurcation initiated amongst cells from day 
4 p.i. (see section 6.2 of computational supplement for a robustness analysis), specifically at a 
relatively early point in pseudotime compared with all day 4 p.i. cells (Figure 4A). Bifurcating 
PbTII cells also expressed the largest number of genes compared to those at all other points in 
pseudotime.  
High transcriptional activity correlated with upregulation of Mki67 and other known proliferation 
marker genes (21) (confirmed at the level of Ki-67, Figure 4B-C and S9A). It also correlated 
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with cell cycle activity, based on computational allocation of cells into cell cycle stages (22), and 
flow cytometric confirmation of DNA content and cell size (Figure 4D-E). Bifurcating PbTII 
cells also had increased expression of genes associated with aerobic glycolysis (data not shown), 
an indication of increased metabolic requirements being met by glucose metabolism and 
increased mTORC1 activity. Consistent with this was the observed elevated levels of ribosomal 
protein S6 phosphorylation by day 4 p.i. (Figure 4F).  

Taken together, our data indicate that bifurcating PbTII cells exhibit a highly proliferative and 
metabolically active state, coupled with the upregulation of thousands of genes. Importantly, 
progression from the Th1/Tfh bifurcation point to either fate was marked by widespread 
silencing of gene expression across the genome. Although this decrease in gene expression can 
be partially explained by a deceleration in cell cycle speed, it is also consistent with other 
cellular differentiation processes characterized at a single-cell resolution (19). 
 

Detectable expression of endogenous T cell receptor loci reveals breadth of clonotype fates  
Since previous reports have suggested a role for TCR sequences in determining Th cell fate (2), 
our TCR transgenic approach was designed to minimize this potential source of variability. 
Importantly however, PbTII cells were generated in mice with functional Rag1 and Rag2 genes, 
and therefore, retained natural expression of highly diverse endogenous TCR chains in addition 
to the transgenic TCR. Sequence analysis of TCR transcripts in single PbTII cells confirmed 
universal expression of the PbTII Vα2 and Vβ12 chains in all cells (Supplementary Tables 2 & 
3). Moreover, it confirmed highly diverse, though lower levels of expression of endogenous 
TCRα chains in many cells (Figure S10).  
Given the vast combinatorial diversity of endogenous TCR sequences, we employed these as 
unique molecular barcodes to scan for PbTII cells that could be inferred with high confidence to 
have derived from a single common PbTII progenitor clone. Notably, we identified six clones 
comprising two or more sibling cells, while all other PbTII cells were individually unique. Of 
these six clones, two consisted of sibling cells that mapped close to the bifurcation point. For the 
remaining four clones, siblings exhibited highly diverging patterns of gene expression, with three 
sibling groups falling at the extremities of the Th1-Tfh phenotype spectrum (Figure 5A). These 
results demonstrate that during an in vivo infection, the progeny of a single CD4+ T cell clone 
can differentiate into both Th1 and Tfh cells. 
 

Transcriptional signatures associated with bifurcation of Th1 and Tfh fates 

 

Next, we sought to identify genes whose expression followed the pattern of branching. We 
derived bifurcation statistic to estimate the concordance with the bifurcation for individual genes 
(see section 4.2 of the Computational Supplement text for details, Figure 5B). Among the 
highest-ranking bifurcating genes, the most common pattern was an increase in expression 
during progression to the Th1 fate. These genes were positively correlated with both pseudotime 
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and the Th1 trend assignment (Figure 5B). This suggests that Tfh cells are in fact 
developmentally closer to the highly proliferative progenitor state than Th1 cells as the Th1 fate 
involves up-regulation of numerous genes not expressed in either the progenitor or Tfh states. 
  
The highest-ranking transcription factors were Tcf7 for the Tfh fate, and Mxd1, Bhlhe40, Hopx, 
Pgs1 and Id2 for the Th1 fate (Figure 5C). In addition, the hallmark Tfh transcription factor Bcl6 
was strongly associated with the Tfh fate. Tcf7 is required for T cell development, and has been 
recently shown to be instrumental for Tfh differentiation (23, 24). Notably, it represented one of 
the rare genes defined by a decrease in expression when moving towards the Th1 fate. Of the 
Th1-associated transcription factors, Mxd1 is a negative regulator of the proliferation-associated, 
proto-oncogene, Myc (25) and Bhlhe40 has been recently identified as a cofactor of T-bet (coded 
by Tbx21) (26). Id2 is known as an antagonist of Tcf7 (27) and as a regulator of effector CD8+ T 
cell responses. Notably, while this manuscript was under revision, the role of Id2 as a key driver 
of Th1 responses was independently shown by another study (28).   
Our results strongly support reciprocal regulation of Id2 and Tcf7 as a key feature of the Th1/Tfh 
bifurcation process. Expression of Id2 and Ifng were highly correlated in the later stages of Th1 
differentiation, and negatively correlated with Tcf7, both at a transcriptional and protein level 
(Figure 5D-F, Figure S11). Notably, the hallmark Th1 transcription factor Tbx21 was induced 
before the bifurcation point, and showed only modest separation after bifurcation (Figure S12). 

To validate the robustness of these gene signatures and the timing of the bifurcation, we repeated 
the infection, and at days 0, 4 and 7 sequenced additional single PbTII-cells using the Smart-seq2 
protocol (29) (Figure 1A & S13A). Consistent with the original data, the cells from day 7 (but 
not day 4) segregated into two subpopulations correlating with Th1 and Tfh gene signatures 
(Figure S13A). Subset-characteristic co-expression patterns of the bifurcating genes identified by 
GPfates emerged by day 7 (Figure S13B). Notably, at this time, the cells from the different mice 
could be equally separated into distinct Th1- and Tfh- subpopulations using the top bifurcating 
genes (Figure S13C). Taken together, this indicated that the gene expression patterns associated 
with the cell fate bifurcation were reproducible across experiments and sequencing platforms. 
In Th1 cells, a large fraction of the bifurcating genes were cytokine and chemokine receptors, 
including the top-ranked gene, Cxcr6, confirmed at protein level (Fig S14A and S14B), other 
established Th1 markers, Ifngr1 and Il18rap (30, 31), and the chemokine receptors Ccr2 and 
Ccr5 (Figure 5C). These data were consistent with the idea that Th1 cells can migrate to 
peripheral tissues and remain receptive to external signals. In contrast, the only bifurcating 
chemokine receptor associated with a Tfh fate was Cxcr5, a gene established to mediate 
migration of Tfh cells into B cell follicles (32, 33).  

Cxcr5 was among an early wave of chemokine receptor genes, including Cxcr3 and Ccr4 (Figure 
5G) whose expression and translation into protein (Figure S14C) was initiated before the 
Th1/Tfh bifurcation point had been reached. We hypothesized that differences in the timing of 
expression of receptors reflected their roles in controlling differentiation or effector function. We 
reasoned, for instance, that while Cxcr6, Ccr2 and Ccr5 served to mediate trafficking and 
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effector function of Th1 cells, others such as Cxcr3 and Cxcr5 controlled Th cell fate via 
interactions with other immune cells (Figure 5H). Indeed, Cxcr5 allows T cell trafficking 
towards B cells (34, 35), while Cxcr3 has been associated with cDC-driven Th1 fates (8). 
 

Myeloid cells support a Th1 but not Tfh fate 

After activation and proliferation, PbTII cells reached an uncommitted state around the 
bifurcation and expressed chemokine receptors that indicated receptiveness to other chemokine-
expressing cells. Given that B cells were essential, as expected, for supporting a Tfh fate in 
PbTII cells (Fig S15), we hypothesized that myeloid cells provided alternative, competing 
signals to promote  a Th1 fate.   
To study this, we performed scRNA-seq on splenic cDCs and inflammatory monocytes when 
activated PbTII cells were yet to bifurcate. We sorted CD8α+ and CD11b+ cDCs  and Ly6Chi 
monocytes from naïve and infected mice (Figure S16) and subjected these to single-cell analysis. 
PCA of cDCs firstly distinguished between the two naïve cell types, separating them along PC2 
(Figure 6A & S17) with an efficiency consistent with recent data (36), and further highlighting a 
number of expected and previously unknown cDC subset-specific genes (Figure S18A-C). We 
next compared naïve cDCs with those from infection (Figure 6A & S16), and separated these 
along PC6 (Figure 6A). Analysis of differential gene expression between cDCs from naive and 
infected mice identified 30 genes, 29 upregulated (Figure 6B & S19), including interferon-
associated transcription factors, Stat1 and Irf1, and CXCR3-attractant chemokine genes, Cxcl9 
and Cxcl10. Notably, gene expression patterns amongst individual cDCs varied according to the 
gene. For example, Stat1 and Irf1 were heterogeneously expressed amongst individual naïve 
cDCs, and further upregulated during infection (Figure 6C). This was similar for Cxcl9, which 
was expressed by CD8α+ cDCs in naive mice, while Cxcl10 was induced only upon infection 
(Figure 6C). These data revealed interferon-associated gene expression amongst individual 
cDCs, and also suggested interactions between cDCs and uncommitted CXCR3+ PbTII cells, 
consistent with a recent study (8). Next, PCA of Ly6Chi monocytes from naïve and infected mice 
distinguished them from each other along PC2 (Figure 6D & S20). Differential gene expression 
analysis between naïve and infected groups uncovered ~100 genes, both up- and down-regulated 
during infection (Figure 6E & S21). This illustrated a fundamental difference in the directionality 
of transcriptional changes in individual monocytes compared to cDCs during Plasmodium 
infection, with only monocytes exhibiting down-regulation of gene expression (Figure 6B-C & 
E-F). Interestingly, a high proportion (~40%) of genes upregulated in cDCs were also induced in 
Ly6Chi monocytes, including transcription factors Stat1 and Irf1, and the chemokine Cxcl10 
(Figure 6E & F), suggesting possible overlapping biological functions between these cell types. 
In addition, monocyte-specific chemokines were also observed, including Cxcl2, Ccl2 and Ccl3 
(Figure 6E & F). Furthermore, specific examination of all immune cellular interaction genes 
(Figure S22) revealed emerging variable expression of Tnf, Cd40, Pdl1, Ccl4, Ccl5, Cxcl16, 
Cxcl9, and Cxcl11 in monocytes, thus suggesting complex interactions and multiple roles for 
Ly6Chi monocytes during infection .   
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Given that Cxcl9-11, Ccl2, Ccl3 and Ccl5 signal through either Cxcr3 or Ccr4, which were 
expressed by activated but uncommitted PbTII cells, we next hypothesized that Ly6Chi 
monocytes, in addition to cDCs, might interact with PbTII cells, thereby influencing Th1/Tfh 
fate (8). To begin testing this, we first confirmed chemokine expression at protein level by 
Ly6Chi monocytes, focussing on CXCL9 (Figure 6G). Kinetics of CXCL9 production was 
similar in cDCs and Ly6Chi monocytes, consistent with a possible role in interacting with 
CXCR3+ PbTII cells. To test whether monocytes could influence Th1/Tfh bifurcation in vivo, we 
employed LysMCre x iDTR mice, in which Ly6Chi monocytes could be depleted after PbTII cell 
activation, but before bifurcation (Figure 6H, Figure S22A). We also noted a modest reduction in 
CD68+ macrophages using this approach, with no evidence for depletion of cDCs or marginal 
zone macrophages (Figure S23). In this transgenic approach, Th1 fates, but not Tfh fates, were 
supported by monocytes/macrophages (Figure 6H). Together, these data supported a model in 
which progression of activated, uncommitted PbTII cells towards a Tfh fate was dependent upon 
B cells (Figure S14), and a Th1 fate was promoted by chemokine-expressing myeloid cells, 
including Ly6Chi inflammatory monocytes.  
 
 
Discussion 

By capturing single CD4+ T cell transcriptomes over time, and using a novel analysis approach 
to reconstruct the continuous course of events, we have resolved the bifurcation of naive CD4+ T 
cells into Th1 and Tfh cells at an unprecedented level of molecular detail, and illustrated that 
external cellular signals influence Th fate around the point of bifurcation. Importantly, the 
GPfates modelling of scRNA-seq data is not limited to immune cells or single bifurcation events. 
The mixture of time series model we used can also be combined  with existing computational 
workflows (17, 37) (see section 5.2 of the Computational Supplement). Therefore, it provides the 
means for high-resolution analysis of differentiation in any cellular system,  mainly towards two 
fates, as shown by our examination of existing embryonic development and lung tissue 
regeneration data (Comp. Supp. Figure 11), and, in principle, also for differentiation into 
multiple cell types (Comp. Supp. Figure 12), for example, during haematopoiesis. The filtered 
expression data and gaussian process models presented in this study can be found on our 
interactive web application at data.teichlab.org, where users can visualise their own genes of 
interest. 

Our data reveals the developmental relationship between Th1 and Tfh cells on a genomic scale, 
and shows that the same naïve precursor can give rise to both fates simultaneously. It provides 
insights for the early stages of differentiation, and describes the order of transcriptional events 
before and after the bifurcation of Th1 and Tfh fates. To date, this process has remained 
incompletely characterised. Here, we use pseudo-temporal ordering of cells to reveal the 
hierarchy of transcriptional regulation of these events at an unprecedented resolution. Our data 
highlight the importance of stochastic expression of transcription factors as well as chemokine 
receptors, suggesting a role for noisy gene expression in Th development. 
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Transcriptomic profiling previously suggested developmental similarities between Tfh and Th1 
cells (38), with in vitro studies suggesting relatively late bifurcation of Tfh and Th1 cells (39). 
However, highly immunogenic viral or bacterial infections induced CD4+ T cells to segregate 
into Bcl6+ (Tfh) or Blimp-1+ (Th1) subpopulations within two days, and by three days, fate-
committed Tfh cells had developed (40-42). In our parasitic model, single CD4+ T cell 
transcriptomes remained remarkably similar until four days of infection. Although it is difficult 
to directly compare viral or bacterial systems with our parasitic model, we speculate that due to 
infection-related differences in antigen-presenting cell function, antigen load and availability, 
Plasmodium infection in mice does not drive Th bifurcation as early as observed with highly 
immunogenic viruses or bacteria. Evidence of sub-optimal MHCII antigen-presenting cell 
function early during Plasmodium infection (43, 44) raises the hypothesis that Th bifurcation is 
sensitive to immune-suppression. Our data indicate that uncommitted, activated CD4+ T cells are 
heterogeneous, but nevertheless closely related at a transcriptional level, suggesting considerable 
flexibility throughout the proliferative phase of their response. Such plasticity during Th 
differentiation has been proposed to be beneficial as a means of countering evolution of immune-
evasion strategies by pathogens (3).  

As CD4+ T cells progress from immunological naivety towards a Th fate, they may experience 
different cellular microenvironments, even within the confines of secondary lymphoid tissue. 
The observation that bifurcation towards Th1 and Tfh cells was preceded by upregulation of 
chemokine receptors prompted us to investigate possible interactions with chemokine-expressing 
myeloid cells. Previous studies have highlighted the potential for cDCs in lymph nodes to 
produce Th1-associated  chemokines (8). Our study, which focused on the spleen, was consistent 
with this concept, and, furthermore, implicated inflammatory monocytes in Th1 support. 
However, since our transgenic approach for depleting monocytes also removed a portion of 
splenic red pulp macrophages, we cannot discount the possibility that red pulp macrophages may 
partly contribute to a Th1 fate. Nevertheless, our data support a model in which myeloid cells in 
the spleen  influence bifurcation, and support a Th1 fate during Plasmodium infection. Moreover, 
our studies emphasise that although cDCs are the predominant professional antigen-presenting 
cell for initiating CD4+

 T cell activation in the spleen, other myeloid cells also exhibit a capacity 
to influence towards a Th1 fate. In contrast, Th bifurcation towards a Tfh fate was not supported 
by monocytes/macrophages. Instead, given that CXCR5 was the only chemokine receptor 
significantly associated with bifurcation towards a Tfh fate, cellular interaction with B cell 
follicles may be the primary mechanism for supporting activated CD4+ T cells towards a Tfh 
fate. Our model suggests that activated, uncommitted CD4+ T cells become receptive to 
competing chemoattractant signals from multiple cell types in different zones of the spleen. This 
model focuses on intercellular communication as the main driver of bifurcation. However, 
upstream of these processes, internal stochasticity in uncommitted CD4+ T cells may control the 
balance of chemokine receptor expression (45), thus mediating differential trafficking and 
variation in intercellular interactions. Future experiments combining our integrated single-cell 
genomics and computational approach with in vivo positional and trafficking data may reveal 
molecular relationships between internal stochasticity, migratory behaviour, Th fate and perhaps 
immunological memory.  
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Figure 1. Single-cell mRNA-sequencing of activated antigen-specific PbTII CD4+ T cells. 

(A) Experimental setup. PbTII cells were transferred from a single donor to multiple recipients. 
“n” refers to the number of recipient mice per time point. Also shown are the numbers of single 
cells from which high-quality mRNA-seq data was successfully recorded. The numbers in 
parentheses refer to the experiment presented in Fig. S12. p.i., post-infection. 

(B-C) Representative FACS plots showing bifurcation of splenic Th1 (IFNγ+T-bet+) and Tfh 
(CXCR5+Bcl6+) PbTII CD4+ T cells at day 7 post-infection with PcAS. 

(D) Flow cytometry data indicate concurrent differentiation of Th1 (IFNγ+) and Tfh (CXCR5+) 
PbTII CD4+ T cells within the spleen of PcAS-infected mice (n=4). Index expression is the 
product of MFI and proportion IFNγ+ or CXCR5+. These data are representative of two 
independent experiments. MFI, mean fluorescence intensity. 

(E) PCA of single PbTII cells at 7 days post-infection with PcAS. The arrows represent the 
Pearson correlation with PC1 and PC2. Cell size refers to the number of detected genes. The size 
of the data points also represents cell size. “Th1 signature” and “Tfh signature” refer to 
cumulative expression of genes associated with Th1 or Tfh phenotypes (15). PC, Principal 
Component. 

(F) Expression of top 50 genes with largest PC2 loadings of day 7 cells (D). The genes were 
annotated as Th1- or Tfh-associated based on public datasets (15, 38, 46, 47). *Cdk2ap2 appears 
twice because two alternative genomic annotations exist. PC, Principal Component  
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Figure 2. GPfates modelling of bifurcation processes using scRNA-seq data. 
 
(A) Overview of analysis abilities from the framework of Gaussian Processes. Data is modelled 
and interpreted on the cellular level using the global genomic level data. Through downstream 
analysis from these models, it is possible to investigate individual genes to explain the drivers of 
the different models. 
 
(B) Sketch of the analysis workflow. A low-dimensional model of the non-linear high-
dimensional data is inferred by Bayesian GPLVM. The low-dimensional representation is then 
modelled as an Overlapping Mixture of Gaussian Processes. This gives us a data-trend 
assignment per cell which can be used for interpretation. Since the models are all predictive, the 
low-dimensional model can be interpreted in the original high-dimensional space. 
 
(C) The low-dimensional representation of our data. The blue line depicts the progression of 
pseudotime. The text labels illustrate features of typical cells on that region of the pseudotime, 
and are provided purely as a visual aid. 
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Figure 3. The relationship of known Th1- and Tfh-transcriptomics signatures and the trajectories 
determined using the GPfates analysis. 

(A) Th1 and Tfh states were defined as cells with assignment probability of ≥0.8 for the 
respective trend. For each single cell, cumulative expression of Th1 and Tfh signature genes (15) 
was calculated as in Figure 1E. 

(B) The effect of the probability threshold on the cumulative expression of Th1 and Tfh 
signature genes. The p-values were calculated using Wilcoxon rank sum test.  

(C) The expression of Th1 and Tfh signature genes in Th1 and Tfh cells defined using the 
GPfates model (A). For all genes expressed by at least 20% of the single cells, fold changes were 
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calculated. The p-values were calculated using Wilcoxon rank sum test and adjusted for multiple 
testing using Benjamini & Hochberg correction.  

(D) Correlation of expression of Th1 and Tfh signature genes with pseudotime and with Th1 
assignment probability.   
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Figure 4. The bifurcation of T cell fates is accompanied by changes in transcription, 
proliferation and metabolism. 

(A) The relationship of Th1-Tfh bifurcation point and the number of detected genes per cell.  
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(B) The expression level of the proliferative marker Ki-67 (encoded by the Mki67 gene) across 
pseudotime. 

(C) Representative FACS plots showing kinetics of CellTrace™ Violet (CTV) dilution and 
Ki67, IFNγ or CXCR5 expression, with summary graphs showing % of PbTII cells expressing 
these (after 106 PbTII cells transferred) in uninfected (Day 0) and PcAS-infected mice at 
indicated days post-infection (n=4 mice/timepoint, with individual mouse data shown in 
summary graphs; solid line in summary graphs indicates results from third order polynominal 
regression analysis.) Data are representative of two independent experiments. 

(D) Experimental and computational analysis of cell cycle speed of PbTII CD4+ T cells activated 
in response to PcAS. The allocation of cells to cell cycle phases was performed by flow 
cytometry using Hoechst staining (Figure S9B) and computationally using the Cyclone algorithm 
(22). The relative cell-cycle speed was determined by measuring the fraction of cells in S, G2, or 
M phases. 

(E) Cell size estimation using FSC (Forward Scatter) measurements of PbTII cells. 

(F) Cellular metabolic activity of PbTII cells in naive mice (n=3) and at days 4 and 7 post-
infection (n=6) as determined by flow cytometric assessment of ribosomal protein S6 
phosphorylation (p-S6). Histogram and proportions are representative of two independent 
experiments. Statistics are one-way ANOVA and Tukey's multiple comparisons tests 
***p<0.001.  
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Figure 5. Mechanisms underlying the differentiation of Th1 and Tfh cells. 

(A) Parallel Th1 and Tfh differentiation within cells of a single CD4+ T cell clone. The colours 
represent clones determined by sequence analysis of secondary T cell receptor genes 
(Supplementary Tables 2 and 3). 

(B) Identification of genes associated with the differentiation of Th1 or Tfh cells. For every gene, 
the correlation of its expression with pseudotime (x-axis) and Tfh trend assignment (y-axis) are 
shown. Statistical significance was determined using the bifurcating score (methods). Genes 
satisfying the significance threshold of FDR<0.002 are represented in colours according to the 
functional classification of the genes (methods and Supplementary Table 4). FDR, False 
Discovery Rate, estimated by performing the same analysis with permuted data.  

(C) The genes with strongest association with Th1 (left) or Tfh differentiation (right). The genes 
were filtered using the bifurcation score as in (B). The genes were then ranked in descending 
order of association with either Th1 or Tfh trend. Cdk2ap2 appears twice because two alternative 
genomic annotations exist. 

(D) The expression of Id2 (upper panel) and Tcf7 (lower panel) across the pseudotime. The 
curves represent the Th1 (red) and Tfh (blue) trends when weighing the information from data 
points according to trend assignment. The colour of the data points represents the strength of the 
relationship with the two alternative trends. 

(E) The correlation of Id2 and Tcf7 expression at single-cell level. Using a rolling window 
method, Spearman rho was calculated in windows of 100 cells. The pseudotime values are mean 
values within each window. 

(F) A model depicting known interactions of Id2 and Tcf7. The colours represent the Pearson 
correlation of gene expression and the Th1 trend assignment in single cells. The numbers in 
parentheses refer to the original publications (13, 24, 27, 38, 39, 48-50). 

(G) The expression kinetics of the chemokine receptor genes Cxcr5, Cxcr3, Ccr4, Ccr2, Ccr5, 
and Cxcr6 across pseudotime. The curves represent the expression patterns associated with the 
Th1 (red) and the Tfh (blue) trends. 

(H) A model summarizing the expression patterns of Id2, Tcf7, and the chemokine receptors 
during Th1-Tfh cell fate determination. The size of the cell represents proliferative capacity (Fig. 
4 (B-E). The colour of receptors and transcription factors represent differences in expression 
level. 

 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2016. ; https://doi.org/10.1101/074971doi: bioRxiv preprint 

https://doi.org/10.1101/074971
http://creativecommons.org/licenses/by/4.0/


21 

 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2016. ; https://doi.org/10.1101/074971doi: bioRxiv preprint 

https://doi.org/10.1101/074971
http://creativecommons.org/licenses/by/4.0/


22 

 

 

Figure 6. Myeloid cells influence Th bifurcation in uncommitted PbTII cells.  

(A-C) 131 single splenic CD8α+ and CD11b+ CD8α- cDCs from a naïve mouse, mixed cDCs 
from a day 3-infected mouse, and (D-F) 154 single Ly6Chi monocytes from naïve and infected 
mice were analysed by scRNAseq, with mRNA reads filtered by minimum expression of 100 
TPM in at least 2 cells. (A & D) Principal Component Analyses, showing PC combinations best 
separating populations of (A) cDCs, and (D) Ly6Chi monocytes from naïve and infected mice. (B 
& E) Volcano plots showing fold-change and confidence for differentially expressed genes (17) 
between (B) cDCs or (E) monocytes in infected versus naïve mice - genes filtered on expression 
in >10 cells; genes satisfying qval < 0.05 are represented in colours according to functional 
classification displayed. Full gene lists are provided in Figure S19 and S21, respectively. (C & 
F) Expression heatmaps for significantly (qval<0.05) differentially expressed genes in (C) cDCs 
and (F) Ly6Chi monocytes, between naive and infected mice: cells and genes are ordered 
according to PC score and loading respectively, using PC6 for cDCs, and PC2 for Ly6Chi 
monocytes. The 12 common genes between cDCs and monocyte heatmaps are annotated in (F). 
(G) Representative FACS histograms and proportions of splenic CD8α+ cDCs, CD8α- cDCs and 
Ly6Chi monocytes expressing CXCL9 in naive and infected mice between 2-7 days post-
infection - individual mouse data plotted with line at mean; data representative of two 
independent experiments (n=4 mice/time point/experiment). (H) Scheme depicting experimental 
design: PbTII cells were transferred into LysMCre x iDTR mice 1 day prior to infection. At 3 days 
p.i., mice were treated with diphtheria toxin (DT) or control saline, with PbTII Th1/Tfh 
responses assessed at 7 days p.i.. Representative FACS plots (gated on splenic PbTII cells) 
showing Th1 proportions (T-bethi IFNγ+) and Tfh proportions (CXCR5+) in DT or saline-treated 
LysMCre x iDTR mice; data pooled from two independent experiments. Numbers depict 
proportions within respective gates. Statistics: Mann-Whitney U Test. ****p<0.0001; NS, not 
significant. (I) Summary model proposing chemokine interactions between non-bifurcated PbTII 
cells and myeloid cells support a Th1 fate, while Tfh fates are sustained by B cells. 
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Supplementary Computational Methods - The GPfates model

July 27, 2016

1 Introduction

GPfates is based on a three-stage approach that first
i) infers a low-dimensional representation of single-cell
RNA-seq data, then ii) infers pseudotime to iii) model
the temporal dynamics of gene expression profiles with
a mixture model. These steps build on existing model-
ing components: The Gaussian Process Latent Variable
Model [Lawrence, 2006], and the Overlapping Mixture
of Gaussian Processes [Lázaro-Gredilla et al., 2012]. For
a graphical illustration of the major steps involved in
this analysis, see Figure 2D of the main text (as well as
Supp. Comp. Fig 1). In Sections 2 and 3 we describe
the statistical models that underlie the components of
GPfates. In Section 4 we describe downstream analysis
methods for interpreting the fitted model. Finally, in
Section 5, we present additional validation experiments
using simulations, robustness analyses and by analyzing
multiple existing data sets.

2 Pseudotime inference

2.1 Gaussian Process Regression

A main component of GPfates is to model temporal
transitions. We use the Gaussian process (GP) frame-
work, thereby casting this problem as non-parametric
regression. Let us begin by assuming that the develop-
mental time t for each cell we observe is known. Then,
the output yg (i.e. expression of gene g) is modelled as
a continuous function of the input t (i.e. developmental
progression)

yg = f(t) + ε, (1)

where

p(ε) = N (0,σ2)

is Gaussian distributed residual noise and f(t) denotes
the unknown regression function. In this work yg is
considered to be an N -dimensional vector of N cells
with observed expression of the gene g. We denote the
expression of g in an individual cell n as [yg]n.
A GP can be interpreted as a function-valued prior

on the elements of f , which is defined by a covariance
function that in turn is parametrized by the input (de-
velopmental time) t:

cov(f(tn1), f(tn2)) = k(tn, tn2).

B-GPLVM

OMGP

Arti ic al non-linear 3D data

Results mapped to original space

2D representation Data - Trend assignment

Sup. Comp. Fig. 1: Illustration of the analysis work-
flow. A low dimensional parametrization of the data
is found using Bayesian GPLVM. The low-dimensional
representation is viewed as a mixture problem, and
solved by an Overlapping Mixture of Gaussian Pro-
cesses. This allows us to represent our cells as mem-
bers of different smooth processes. But also interpret
in terms of the high-dimensional space parametrized by
the GPLVM.

The covariance function k(tn1 , tn2) encodes prior as-
sumptions on the smoothness and lengthscales of the
function f(t). The most widely used covariance function
is the Squared Exponential (SE) covariance function,

k(tn1 , tn2) = σ2
SE exp

(
− |tn1 − tn2 |2

2l2SE

)
, (2)

and this is the covariance function we will generally be
used in this work. This covariance has the hyperparam-
eters θ = (σ2

SE, l
2
SE), which parametrize the amplitude

( σ2
SE) and the lengthscale (l2SE) of functions under the

prior. Throughout the remainder of the text we will
omit the hyperparameters from equations for the sake
of brevity. Note that there is a whole compendium of
valid covariance functions, which can also be combined
using sum or multiplication; see [cite: Rasmussen, GP
2006] for an overview.
We write that a function f is Gaussian Process dis-

tributed by

f(t) ∼ GP(0, k(tn1 , tn2)).

This prior on the function f can be linked to the finite
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observed data using a Gaussian likelihood:

p(yg|f) =
N∏

n=1

N ([yg]n|fn,σ2).

Together with the prior on the corresponding (finite)
elements of f ,

p(f) = N (f |0,Kt),

this results in the marginal likelihood

p(yg|t) = N (yg|0,Kt + σ2 · I).

Here Kt is an N ×N matrix of pairwise evaluations of
the covariance functions at the observed times t. I.e.

[Kt]n,m = k(tn, tm). (3)

By considering the joint distribution of the observed
data yg and an unseen function value f(t⋆), it is possible
to derive the predictive distribution for f(t⋆):

p(f(t⋆)|t, yg, t⋆) = N
(
f(t⋆), k(t⋆)

)
,

where

f(t⋆) = k(t⋆, t)[Kt + σ2 · I]−1yg, and

k(t⋆) = k(t⋆, t⋆)− k(t⋆, t)[Kt + σ2 · I]−1k(t, t⋆).

For a full review on Gaussian Processes, see Williams
and Rasmussen [2006].
So far, we have only described Gaussian Process Re-

gression for expression yg of a single gene g. If we con-
sider a collection of G genes {1, . . . , G}, their expression
can be modelled together by

(y1, . . . , yG) = (f1(t), . . . , fG(t)) + (ε, . . . , ε). (4)

We use Y to compactly denote the N × G expression
matrix of cells × genes, where

Yn,g = [yg]n.

The assumption that all genes are governed by similar
functional relationships with t means we place the same
GP prior (with shared covariance function):

p(Y |t) =
G∏

g=1

p(yg|t) =
G∏

g=1

N (yg|0,Kt + σ2 · I). (5)

In the next section we will see the usefulness of consid-
ering multiple genes at once.

2.2 Pseudotime inference by Bayesian
GPLVM with per-cell prior

The Gaussian Process regression framework described
above assumes we know the time t of each cell. While
in many single-cell RNA-seq experiments record a col-
lection times over some time-course, these are rather

sparse, and it has been pointed out [Trapnell et al.,
2014] that cells are sampled from a population where
responses are unsynchronized. Each cell has reached a
certain stage in the differentiation process under inves-
tigation, which we do not observe directly. The progress
in to this process is referred to as pseudotime. We can
however infer this from the data. In the Gaussian Pro-
cess Latent Variable Model (GPLVM) [Lawrence, 2006],
we use the multiple output case of Gaussian Process re-
gression (equation 4), but consider the values of t to be
parameters which we wish to infer.
The joint probability of the GPLVM is

p(Y, t) = p(Y |t)p(t),

where p(Y |t) is defined in equation 5, and the prior p(t)
is such that for cell n,

p(tn) = N (0, 1).

Following Reid and Wernisch [2016], we can also con-
sider the prior p(t) to be informed about the experimen-
tal ordering of collection times of the cells, putting the
mean of tn to correspond to the time point of cell n. If
we use our Malaria time course as and example, we can
put the prior on t so that

p(tn) = N (dayn,σ
2
prior),

where dayn ∈ {1, 2, 3, 4, 5} correspond to the collection
order of those cells. The parameter σ2

prior alters the
strength of the prior.
The objective of Bayesian GPLVM [Titsias and

Lawrence, 2010], is to find the posterior probability
distribution p(t|Y ) ∝ p(Y |t)p(t). This is intractable
though, due to the t values appearing non-linearly in
the matrix inverse [Kt + σ2 · I]−1.
In Titsias and Lawrence [2010], a lower bound to the

marginal likelihood is calculated by estimating the pos-
terior p(t|Y ) by a variational distribution q(t). The dis-
tribution

q(t) =
N∏

n=1

N (tn|µn, Sn)

is described in that paper, and Bayesian training of the
model to maximize this lower bound. This is the method
we use.
Because the scale of t is ambiguous, in particular if

no priors are specified, we prefer to at times scale the
inferred t to the range [0, 1] when reporting the pseu-
dotime, to avoid confusion about negative “time”. In
these cases we refer to pseudotime as scaled pseudotime
in the legends.

2.3 Dimensionality reduction

In many cases it is useful to work on a reduced repre-
sentation of cellular expression profiles. For example,
when modelling transcriptomic data, fitting a model to
a low-dimensional representation can be preferable to
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fitting it to expression profiles of thousands of genes.
Formally, the objective of dimensionality reductions is
to find some M -dimensional representation of the G-
dimensional expression measurements, where M << G.
Typically M is 2 or 3, which aides visual interpretation.
Analogous to the pseudotime inference, these latent cell
states can also be inferred using the GPLVM. Say X is
an M ×N matrix so that each cell n correspond to an
M -dimensional vector,

Xn = (x1
n, . . . , x

M
n ).

We want to model the expression matrix Y so that

[yg]n = fg(x1
n, . . . , x

M
n ) + ε = fg(Xn) + ε.

Note that now the covariance function is evaluated as
k(Xn1 , Xn2), where, in the Squared Exponential covari-
ance function in equation 2, the operator | · | is evaluated
as the Euclidean norm for vectors, rather than absolute
value.
Just as the tn values are inferred from data above, so

can the Xn vectors be inferred from the data.

3 Bifurcation inference using
overlapping mixtures of Gaus-
sian processes

In a continuous setting, a bifurcating process can be seen
as one function, splitting apart into two functions over
time. One approach to model this could be to consider
two functions throughout time, but before the bifurca-
tion happens, the two functions are identical. With this
in mind, we can use a mixture model to tease apart the
shared and bifurcated functions.

3.1 Mixture model

Mixture models are hierarchical models where an obser-
vation is assumed to be generated from one of C com-
ponents, each of which is described by its own model.
The goal of mixture models is to infer which component
an observation stems from, and at the same time model
that component.
The Overlapping Mixture of Gaussian Processes

(OMGP) model [Lázaro-Gredilla et al., 2012] assumes
there are C different underlying latent functions pro-
ducing the N observed cells. This model was originally
developed for the application of missile tracking, and in
that setting an observation is e.g. a radar based location
at a given real time point. As such, the main focus of the
definition of the model is for the case of C completely
independent components. The approach presented here
is based on the realisation that the model would also be
able to handle the case of branching trajectories. There
would simply be a time interval where it does not mat-
ter which mixture trajectory data is sampled from. In

Original OMGP application Bifurcating OMGP application

Sup. Comp. Fig. 2: Comparison of the original OMGP
use case (left) and our use case (right), in both cases
where the number of trends K = 2. In the original use
case trends are expected to be independent throughout
time, albeit with some ambiguity in some locations. In
our application, we interpret ambiguous cell assignment
to be in a common precursor state.

our setting, an observation is a single cell, and the ana-
log to real time is pseudotime (Supp. Comp. Fig. 2).
As an additional extension, we phrase a version of the
OMGP model which is non-parametric in the number of
trajectories.
In the original regression case described in equation

1, data is assumed to be generated by a single smooth
unknown function. When modeling our gene expression
data with the Overlapping Mixture of Gaussian Pro-
cesses, data is considered to be generated by

X = fc(t) + ε.

However, we are lacking information about which latent
function fc generated any given observation (tn, Xn) of
pseudotime and gene expression for theN observed cells.
Here X correspond to some representation of the tran-
scriptional state of the cells. It could be the expression
of all genes (X = Y ), a single gene (X = yg), or an M -
dimensional inferred representation as discussed above.
This is viewed as a mixture modelling problem, where

each cell has a latent variable zi specifying to which
component fc the cell should be allocated to. Write F
for the collection of all latent functions. The covari-
ance functions kc for each fc can be different from each
other, though for the applications we discuss here, we
take them as Squared Exponential covariance functions
with different hyperparameter values.
In the OMGP formulation, the likelihood is

p(X|F, T, Z) =
N∏

n=1

C∏

c=1

N (xi|fc(tn),σ2)znc .

We specify a multinomial prior on the latent variables
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Z, namely

p(Z) =
N∏

n=1

C∏

c=1

Πzn,c
n,c ,

C∑

c=1

Πn,c = 1.

Additionally, each of the latent functions fc has an in-
dependent Gaussian process prior:

p(F |T ) =
C∏

c=1

N (fc|0,Kc
t ).

The covariance matrices K1
t , . . . ,K

C
t for the latent

functions f1, . . . , fC are generated from a covariance
functions k1(tn1 , tn2), . . . , kC(tn1 , tn2) like in equation 3.
Now we rephrase this as a Dirichlet Process Gaussian

Process mixture model [Hensman et al., 2015]. Let ev-
ery latent function fc have an associated ”stick-breaking
length” vc, based on the ”stick-breaking” formulation
of the Dirichlet Process. Here V = [v1, · · · , v∞] is the
collection of stick-breaking lengths for constructing the
Dirichlet process for the assignment. The joint distribu-
tion of the OMGP model is

p(X,Z, V, F ) = p(F |T )p(X|F,Z)p(Z|V )p(V |α).

The value α is a parameter of the model which con-
trols the expected concentrations of mixtures (which we
in practice take as α = 1, a common default), and

p(V |α) =
∞∏

c=1

Beta(vc|1,α),

where Beta(·, ·) is the beta distribution. The prior dis-
tribution over the collection of Gaussian Processes is

p(F |T ) =
∞∏

c=1

N (fc|0,Kc).

Following the stick-breaking formulation,

p(Z|V ) =
N∏

i=1

∞∏

c=1

πc(V )zi,c ,

where πc(V ) = vc
∏c−1

j=1(1− vj).
The assignments between observations X and the la-

tent functions F is given by a binary N × C matrix Z.
The assignments to latent functions are considered as
additional variational parameters. Let φ be an N × C
matrix where φnc is the approximate posterior proba-
bility of assigning the nth observation to the cth la-
tent function. The φ parameters are inferred by col-
lapsed variational inference as described in Hensman
et al. [2012]. Overall, the likelihood of the model is

p(X|F,Z) =
N∏

n=1

∞∏

c=1

N (xn|fc,Kc)
zn,c .

(It should be noted that everything described gen-
eralizes to the case where the latent functions fc are
vector valued, as long as all output dimensions of such
a function share the same covariance function. In this
case, probabilities factorize over output dimensions, but
beyond that all calculations are the same.)

3.2 Parameter inference

In Lázaro-Gredilla et al. [2012] the latent variables Z
in the parametric version of OMGP were inferred us-
ing an expectation-maximization scheme. Here we de-
scribe how we perform variational inference for the φ-
parameters in the non-parametric version of the model.
To make the inference problem tractable, the varia-

tional distribution q(Z) is introduced with variational
parameters φ, at a given truncation level C such that

q(Z) =
N∏

n=1

C∏

c=1

φzn,c
n,c .

with the objective of approximating p(Z|F,X, T ).
The lower bound of the log-likelihood of the OMGP

model, which we write as LKL, when approximating
p(Z) by q(Z) can be split up in three terms as

LKL = LM + LMP + LH.

Here LM =
∑C

c=1 LM
c is the log-likelihood of the latent

functions as represented by Gaussian processes. For the
cth latent function, the variational distribution of fc
which maximizes the lower bound was derived in Lázaro-
Gredilla et al. [2012] to be

q(fc) = N (fc|µc,Σc)

where Σc = (K−1
c + Bc)−1, and µc = ΣcBcyc. Here

Bc is a diagonal matrix with entries [Bc]i,i =
φi,c

σ2 . Thus
the log-likelihood for a particular latent function fc, as-
suming we have optimal assignments φ, is

LM
c = −1

2
yTΣ−1

c y − 1

2
ln |Σk|−

N

2
ln 2π.

The second and third parts of LKL were derived in
[Hensman2014] as

LMP = ln

∫
exp{Eq(Z) [ln p(Z|V )]}p(V )dV

= ln
C∏

c=1

(
Γ(φ̂c + 1)Γ(φ̃c + α)α

Γ(φ̂c + φ̃c + α+ 1)

)

and
LH = −Eq(Z) [ln q(Z)] .

For optimizing variational mixture assignment param-
eters we follow Hensman et al. [2012], and use natural
gradient descent. For hyperparameters of the kernels,
as well as the variance parameter σ2 of the model, we
perform gradient descent.
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If we know ∂LKL
∂φ we can calculate the natural gradient

by equation (22) in Hensman et al. [2015]. The gradients
∂LMP

∂φ and ∂LH

∂φ were derived in Hensman et al. [2015],

the only unknown part is ∂LM

∂φ .

We then use the identity ∂LM
k

∂φn,i
= 1

2 Tr
(

∂LM
c

∂B−1
c

· ∂B−1
c

∂φn,i

)
.

Here ∂LM
c

∂B−1
c

= ααT−(Kc+B−1
c )−1, and the matrix ∂B−1

c
∂φn,i

will be zero everywhere, except in the diagonal element
(n, n) where it will be −σ2

φ2
n,i

.

Using the chain rule, we can calculate log-likelihood
gradients of the model hyperparameters for any covari-
ance function, since we know ∂Kc

∂θ , resulting in a very

general and modular framework. We only need ∂LKL
∂Kc

=
∂LM

c

∂B−1
c

= αcαT
c − (Kc+B−1

c )−1. In the case of the model

variance σ2 we have ∂LM

∂σ2 =
∑

k
1
2 Tr

(
∂LM

c

∂B−1
c

· ∂B−1
c

∂σ2

)

where ∂B−1
c

∂σ2 will be a diagonal matrix with 1
φi,c

on ele-

ment (i, i) for all i.

4 Downstream analysis

4.1 Ranking genes by bifurcation

Once the OMGP model has been fit, it can be used to
investigate individual genes in terms of their bifurcating
trajectory.
The log-likelihood of the OMGP model depends on

the covariance matrices Kt = {Kc
t , c = 1, . . . , C}, the

variational mixture parameter matrix φ, and the N ob-
servations (t,X). Let us assume that we have mixture
parameters φb which have been found to distinguish a
bifurcating trend based on some X response variables.
We can now keep the fitted parameters and evaluate the
marginal likelihood of a model where the response vari-
ables X are replaced by gene expression values yg. We
call this new model Hbifurcating. We wish to find genes
which fit this bifurcating model better than a model
where this is no bifurcation. To this end, we make a
third model Hnot bifurcating identical to the precious one,
except we replace φb with ambiguous assignments φa.
To asses whether a given gene g is better described by
the bifurcating or the not bifurcating model, we evaluate
the Bayes factor:

BFg = log p(yg|Hbifurcating)− log p(yg|Hnot bifurcating).

We refer to this ratio as the bifurcation statistic.
To estimate p-values, we used a permutation approach

where we perform the same analysis for every gene g,
except with permuted t values to estimate a null distri-
bution.
As a proxy for effect size of bifurcation, we consider

how well the expression values of a gene correlate with
the trend assignments to a latent function. Strong pos-
itive correlation will mean the gene is particularly up-
regulated in the cells unambiguously belonging to the

trend. Conversely, a strong negative correlation indi-
cates the gene is down-regulated in the strongly assigned
cells compared to all cells.

4.2 Inferring the bifurcation time point

It is possible to qualitatively appreciate from the GP as-
signment probability (φc ) for each trajectory (fc(t)) of
the OMGP model, which cells are ambiguous and which
cells are exclusive to individual GP’s. In the case of two
trends, ambiguous cells have assignment probability (φ)
close to 0.5. A model where the data can be described
by two trends, but not by one, will have a higher likeli-
hood. Similarly, if only a region of the φ parameters over
time are replaced by ambiguous cell assignment values,
the new model will have a lower likelihood.
For the sake of clarity, we make the assumption that

the OMGP will begin as ambiguous, and then become
less ambiguous over time, splitting into two trends, in
this special case. To investigate these cases, we pick
a time-point tb in an OMGP, then replace all φ values
prior to tb with 0.5. We define this new φ as φ>tb :

[φ>tb ]i,c = 0.5 ti < tb

[φ>tb ]i,c = φi,k ti ≥ tb.

Now we can evaluate the model likelihood for this par-
ticular tb and define

Ltb = LKL(φ>tb ,Kt,σ
2|X,T ).

This procedure is repeated for multiple ts over the pre-
dictor variable of the OMGP model. In our implementa-
tion, we consider 30 evenly spaced bins by default, which
has given enough resolution for the data investigated
(though the number of bins can easily be changed).
The likelihood has to decrease by definition. How-

ever, after the bifurcation the decrease is much more
pronounced. We use a break-point heuristic to detect
this elbow, which is indicative of the bifurcation time.
To identify the region at which the likelihood de-

creases more rapidly, we fit a piece-wise linear curve to
the log-likelihoods, defined by

Ltb = k1 · t+ c1 t < tb

Ltb = k2 · t+ (k1 − k2) · p+ c1 t ≥ tb

This curve consists of two linear pieces, broken up at the
point p. When the curve is fitted, we consider the break-
point p to be the point after which we can be confident
that a bifurcation has occurred, see Supp. Comp. Fig
3.

5 Implementation and combina-
tion with existing workflows

5.1 Practical use of GPfates

The basis principle of GPfates is the combination of
pseudotime and mixture modelling.
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Sup. Comp. Fig. 3: Inferring bifurcation point. The
plot illustrates how different points along the pseudo-
time are sampled. Ambigous assignment probabilities
replaces trained assignment probabilities in the obser-
vations earler than the sampled points. The breakpoint
model identifies the points where a decrease in likelihood
differences becomes more extreme.

Input to the GPLVM is an expression table consisting
of log scaled relative abundance values Transcripts Per
Million, TPM, with a value of 1 added to handle cases
where expression is 0. As relative abundance follow a
log-normal distribution, the Gaussian likelihood used for
Gaussian Process regression should be appropriate.
In practice, the pseudotime should represent the bio-

logical process of interest. If this process is clear, the ex-
pression data should be usable without pre-processing.
In single cell time course experiments where the process
of interest is less immediate, a strategy highlighted in
Trapnell et al. [2014] is to select the gene set used could
be to rank the genes by an ANOVA test over the time
points, and select a larger number of significant genes.
Similarly, the low-dimensional representation of the

transcriptomic cell state should represent the biological
response of interest. It can be beneficial to select the
parts of the representation which correspond to this. For
example, in the analysis of CD4+ T cell time course, we
use the second GPLVM latent variable as a represen-
tation of T cell response, and model this factor by the
OMGP.
While the pseudotime can be inferred directly from

the expression matrix Y , in many cases it helps inter-
pretation to perform an intermediate step of dimension-
ality reduction. This process could also be beneficial if
the data has a very complex structure.
Another practical consideration we must consider is

that single cell expression vales can be quite noisy. This
limits the time-scale at which we can expect to measure
proper functional differences in expression levels. Due
to this, we tend to put lower limits on the lengtscale lSE
of the squares exponential covariance function.

5.2 Integration of existing methods

We have presented use of the GPfates method when
pseudotime or low-dimensional representations have
been based on the GPLVM. This is because the OMGP
follows from this framework, and the statistical assump-
tions are consistent between the models.
In practice, other methods for inferring pseudotime

or low-dimensional representations could also be con-
sidered. Here we briefly outline possible strategies for
applications of GPfates downstream of popular single-
cell analysis methods.
Recall that to perform the GPfates inference, we need

pseudotime t and some representation of transcriptomic
state X. These variables can be set as the output from
other methods.
In Monocle [Trapnell et al., 2014], the low-dimensional

representation X is found by independent component
analysis, and the pseudotime t for each cell is defined by
the path distance to a starting cell through a minimum
spanning tree in the coordinates of X.
In Wanderlust, a heuristic is used to build a stable k

Nearest Neighbor (kNN) graph of the data in the high-
dimensional space of protein measurements. The pseu-
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Sup. Comp. Fig. 4: OMGP is compatible with e.g.
Wanderlust and Monocle, as demonstrated with a toy
data set

dotime t for a cell is then defined as the average short-
est path from a known starting cell through the kNN
graph. Note that for CyTOF data, which Wanderlust is
designed for, only up to 40 analytes can be measured at
once, so it could be feasible to take X to be the original
expression matrix (Y in our notation).

Another dimensionality reduction technique which
have been used for single cell RNA seq data is Diffu-
sion Maps [Haghverdi et al., 2015]. Here X is a spectral
embedding of the data manifold, based on the Laplace
operator. It has been pointed out that these embeddings
preserve branching structure in the data. Taking the
pseudotime t as the Diffusion Pseudotime [Haghverdi
et al., 2016], an approximation of geodesic distance over
the data manifold (from a known starting cell), based
on the diffusion map, GPfates modelling could be used
downstream to quantify the branching structure of the
data.

We list alternative compatible pseudotime methods in
table 1.

As a demonstration, we generated a toy data set
with three branches, and extracted the pseudotime using
both the Monocle method and the Wanderlust method.
Then fitted and OMGP with C = 3 on the output. The
results can be seen in Comp. Supp. Fig 4, which il-
lustrates the correct identification of the branching pro-
cesses for either input.

5.3 Software availability

We have made a software package for using the GPfates
method, which is available at https://github.com/
Teichlab/GPfates. It provides guidance and sensi-
ble defaults for the kind of analysis we have described
here. It makes extensive use of the GPy1 package, and
the GPclust2 package, where we implemented the non-
parametric OMGP model.

1https://github.com/SheffieldML/GPy
2https://github.com/SheffieldML/GPclust

Sup. Comp. Fig. 5: Robustness of analysis steps by
subsampling. Parameters inferred from a subsample of
the data are compared to parameters inferred using the
full data. The top panel indicates this analysis for inde-
pendent steps assuming the previous step is known. The
lower panel shows the result when running the workflow
from start to end.

6 Assessment of GPfates on sim-
ulated and real data

6.1 Sample-size robustness analysis

Our full analysis consists of several independent consec-
utive steps: first the GPfates method where we are i)
finding a low-dimensional representation, ii) smoothing
the data over a pseudotime, and iii) finding a trend mix-
ture model. After this we perform downstream analysis
where we are iv) dentifying the end states and bifurca-
tion.
How much data do we need to accurately reconstruct

trends from all four of the above steps, and how much
data is needed for individual steps? We investigated
both how stable the full procedure is, as well as the in-
dividual steps, by re-running it on sub-sampled datasets
with fewer cells than the entire dataset.
To measure the stability of the methods, we consider

absolute Pearson correlation of the parameters inferred
for sub-sampled data relative to the results obtained
from performing the analysis on the full data set.
We found that recovering a low-dimensional represen-

tation is extremely stable with respect to the number of
cells (Supp. Comp. Fig. 5), with almost perfect cor-
relations between analysis of the sub-sampled data and
the original GPLVM values. (For example, the lowest
absolute Pearson correlation for a run with 50 cells was
0.96). Similarly, the pseudotime inference is also very
stable to sub-sampling.
Finding the entire OMGP mixture model over pseu-

dotime requires a larger number of cells. We don’t see
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Sup. Comp. Fig. 6: Complete reanalysis of our T-cell
data excluding cells cellected at day 4. The bifurcation
point is identified as being between Day 3 and Day 7,
and is not forced in to either of the days.

any higher degrees of consistency until we reach 150 sub-
sampled cells, with correlations around 0.5. It is rare to
see single cell studies with so few cells, and in the study
accompanying this text we had many more cells (408).
Identifying only the end states is rather robust (but in
many cases might be best analyzed as a cluster problem
rather than a continuous value problem), where we start
seeing a correlation of 0.9 at 150 cells.
The individual steps were in general very stable to

sub-sampling, relative to the “gold standard” of using
the full data set. When running the entire procedure,
we see that smaller errors early on in the analysis will
propagate and affect later steps.

6.2 Predicted bifurcation time is not bi-
ased by collection times

We consider the risk that the identified bifurcation point
in the CD4+ T cell data potentially just reflects the time
points at which we have collected data. We test the ro-
bustness of the prediction of the bifurcation as having
happened at Day 4 by re-running the analysis after re-
moving cells collected at Day 4. In this analysis we find
that the bifurcation happens at some point between Day
3 and Day 7 where we don’t have any observed cells. The
alternate hypothesis would have been that the bifurca-
tion would be found in either Day 3 or Day 7. This
provides confidence both in the bifurcation point iden-
tification, and more generally in the meaningfulness of
the low-dimensional GPLVM representation of the data
(Supp. Comp. Fig. 6).

6.3 Assessment of the ability to select
the number of trends in OMGP

In principle, the marginal log likelihood of the OMGP
model should let us select the C number of trends which
optimally explain the data. We investigated this by gen-
erating four synthetic data sets with between 1 and 4 un-
derlying trends. For each of the data sets, we optimized
OMGP models with the number of trends C varying

Sup. Comp. Fig. 7: Attempts detecting number of
trends with OMGP. Simulated data with expected num-
bers of trends where fitted with OMGP, where the C
cutoff was set to a range of values.

from 1 to 9 (three times per C value). We found that the
marginal likelihood of the models corresponded to the
correct number of trends in the cases of 3 and 4 ground
truth trends, but not for the 1-trend and 2-trend syn-
thetic data. For 1 trend, the likelihood was lowest for a
larger number of trends, and for 2 trends, the likelihood
was very similar for 2 and 3 trends. This suggests that
the OMGP may have a tendency to overestimate the
number of trends if there is a single progression. Supp.
Comp. Fig. 7.

For our CD4+ T cell data, we found that the marginal
likelihood continuously increased with the number C.
We elected to keep the model simple and made the
assumption that we could sufficiently explain the data
with C = 2.

It is possible that the optimal likelihood for K is not
well defined when we have trends branching off from a
common trend. In the original application of the OMGP
model, the assumption is that the trends will be com-
pletely independent of each other. As we are already
to some extent failing to fit two models in the ambigu-
ous case, this might cause the likelihood to reflect a
poor fit. For quantitatively determining the number of
trends in the data, further work is needed, probably
with a model which explicitly considers branching from
a common original trend. The marginal likelihood of
the model is an indication, but the choice of C should
also reflect the biological system under consideration.
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Sup. Comp. Fig. 8: Comparison of pseudotime with and
without per-cell priors. The upper left shows the fit of
the pseudotime predicted in to the 2D GPLVM with and
without priors. Below are the corresponding inferred
covariance matrices. The right plot shows the relations
between the two versions of pseudotime, clearly indicat-
ing that they have an approximate one-to-one mapping.

Sup. Comp. Fig. 9: Investigation of uncertainty of
inferred pseudotimes. Left panel, since the Bayesian
GPLVM fits the variance of the pseudotime for each
cell, we can compare the assignments with each other.
The bars correspond to 95% confidence intervals. On
the right panel we see how the lengths of the confidence
intervals globally decrease as the number of cells used
increases.

6.4 Comparison of pseudotime inference
with and without priors

For the 1-dimensional Bayesian GPLVM which we use
to find the pseudotime of the data, we put priors on
the cells based on their known time points. This is not
strictly necessary, but helps to enhance interpretability
as there is intrinsic invariance to the inferred values. If
we do not use priors, qualitatively, the same trajectory
is identified. Additionally, comparing the two versions
of pseudotime against each other, we see that they cor-
respond to a circular shift relative to each other. The
covariance matrices inferred using either strategy have
a very similar block structure (Frobenius norm ... of
difference) indicating that neighbor relations are consis-
tent. Supp. Comp. Fig. 8.

6.5 Pseudotime uncertainty

As pointed out in Campbell and Yau [2015], we can
use the posterior distribution of pseudotime from the
Bayesian GPLVM to assess how meaningful the order-

Sup. Comp. Fig. 10: Stability of GPLVM representa-
tion, and prediction through GPLVM. Top row: Pre-
dicting cells from regions of show higher similarity with
left out real cells from corresponding regions than non-
corresponding regions. Bottom row: Predicting cells
from unobserved regions potentially identifies antago-
nizing gene combinations.

ing is. By investigating the confidence intervals of the
pseudotime for each cell compared to neighboring cells,
we see that the ordering is quite meaningful (few cells
overlap in confidence interval). (Supp. Comp. Fig. 9)

We also investigated how the confidence of the pseu-
dotime depends on the number of cells observed. As the
number of observed cells increases, the distribution of
variance per cell decreases towards zero. (Supp. Comp.
Fig. 9)

6.6 Stability of the circular shape of the
GPLVM representation

We wanted to rule out the possibility that the latent
variable representations of data which appear circular
might be artifacts due to random noise, as suggested
by Diaconis et al. [2008]. To make sure this was not the
case for our CD4+ T cell data, we removed two ‘slices’ of
cells from the circular 2D GPLVM pattern. Following
this, we fitted a new GPLVM with this reduced data
set. After optimizing the GPLVM, a representation was
found which was again missing the same slices, Supp.
Comp. Fig. 10A. (The correlation between the two
representation for the common cells is very high as well,
XX). This control experiment strongly suggests that the
GPLVM learns the actual topology of the data.
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6.7 Assessing the accuracy of imputing
virtual cells

Unlike many other dimensionality reduction techniques,
the GPLVM creates a model which maps into the high
dimensional observed space. It is, however, not clear
how meaningful this representation is. We assessed this
by taking the “slice-less” model described above, and
in the empty areas corresponding to the removed cells,
predicting “virtual cells” (Supp. Comp. Fig 10A). Using
an independent clustering technique, t-SNE [Van der
Maaten and Hinton, 2008], on both the left out slices of
cells and the predicted virtual cells, we find that single
cell transcriptomes predicted from a given slice coincide
with the real cells from the corresponding slice (Supp.
Comp. Fig. 10). This indicates that GPLVM prediction
in to high-dimensional spaces is not simply producing
overfitted results.
Following from this, we investigated the ”hole” in our

CD4+ T cell data. We create number of virtual cells
from the hole region and compare which genes would
be expressed in these cells compared to genes expressed
in all cells (Supp. Comp. Fig. 10C). The underly-
ing reasons for data being non-linear is that particular
combinations of gene expression patterns do not occur
together. If we find genes which are high in the vir-
tual cells but are not observed at the same time in ac-
tual cells, this might indicate that they are incompatible
with each other. This might be a good complementary
tool for generating hypotheses about regulation. For
instance, we identified the genes Hspe1 and Gm29216
which would be co-expressed in the hole, but are gen-
erally not co-expressed in observed cells (Supp. Comp.
Fig. 10D).

7 Validating the BGPLVM and
OMGP approach by applica-
tion to other data sets

In order to further corroborate our analysis approach,
we considered two recently published single cell data sets
produced to investigate progression of single cells in two
developmental contexts: mouse fetal lung and human
fetal primordial germ cells.

7.1 Analysis of lung development data

We downloaded the data from Treutlein et al. [2014] and
quantified the expression using Salmon. To smooth the
data over pseudotime, we found genes that vary over the
a priori known time points by a likelihood ratio test of
an ANOVA model of the time points. The expression
values for the top varying genes were run on a GPLVM.
One of the factors of the optimized GPLVM was used as
pseudotime, and the top two factors of the GPLVM were
used to represent the entire data set. An OMGP was
then optimized on this low-dimensional representation

to identify the two trends corresponding to the AT1 and
AT2 lung cell lineages without prior annotation. The
bifurcation statistic for all expressed genes in these cells
reconstituted many of the genes identified in a largely
manual manner by Treutlein et al. [2014].

7.2 Analysis of human primordial germ
cell data

The data from Guo et al. [2015] was downloaded and
quantified with Salmon as with the other data, but with
an index based on the human transcriptome: Ensembl
78 annotationa of GRCh38, together with ERCC se-
quences and human specific repeats from RepBase. To
smooth the time course data, we used a likelihood ratio
test to find the top genes which were described linearly
along the time points in the data. The expression of
these genes were then used to fit a GPLVM. This low-
dimensional representation of the data was then used to
fit an OMGP, taking one of the latent factors as pseu-
dotime.
In this data set, the ground truth about the sex of the

cells is known, and thus we could have use a supervised
approach such as GPTwoSample [Stegle et al., 2010] or
DETime [Yang et al., 2016]. Interestingly, the OMGP
model identifies the split between male and female cells
in an unsupervised fashion.
We applied the bifurcation statistic test to identify

genes which follow the male and female development
differently.
Unlike in the case of the lung development data, the

majority of the genes we identify are not discussed in the
original study. In the original study, the authors focused
on genes specific to given conditions (e.g. Male PGC’s
from week 11 compared to all other cells). In our analy-
sis, we consider the dynamics of gene expression over de-
velopment. We find that in the male branch, the GAGE
family is highly upregulated over development. Addi-
tionally we find the Y-linked gene ENSG00000279950.
Also among the top male hits is RHOXF2, a gene linked
to male reproduction [Niu et al., 2011]. Further down
the list we also interestingly find PIWIL4, a gene with
function in development and maintenance of germline
stem cells [Sasaki et al., 2003]. On the female side,
the top hit is MDK, a gene involved with fetal adrenal
gland development (by similariry: UniProtKB P21741).
Other top hits include MEIOB, a meiosis related gene,
and the satellite repeat GSATII. Surprisingly, we also
see upregulation of SPATA22, a gene associated with
spermatogenesis.

8 Discussion

We have demonstrated our GPfates method, where we
use latent variable modelling to infer temporal expres-
sion dynamics, and Gaussian process mixture modelling
to identify diverging global trends. The method has
been investigated in terms of robustness, and applied
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Sup. Comp. Fig. 11: Summary of GPfates result of Treutlein et al developing lung data.
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Sup. Comp. Fig. 12: Summary of GPfates result of Guo et al developing primordial germ cell data.
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on several simulated and real data sets showing good
results.
Of course there is no silver bullet for these sorts of

problems, and it would not be surprising if other meth-
ods than the ones we have used work better for some
biological systems. We have illustrated that the main
component, the Gaussian process mixture modelling, is
compatible with other methods in these cases.
A benefit from the methods we use is that diagnos-

tics such as marginal likelihood can be used to aide the
user with regards to the models to use. Still, the user
will need to keep the biological system in mind, and be
critical of results.
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Fig. S10. Expression of transgenic and endogenic TCRs. 
Fig. S11. Correlation of expression of Ifng with Tcf7 and Id2 across pseudotime. 

Fig. S12. The expression of Tbx21 (left) and Bcl6 (right) across pseudotime  
Fig. S13. Robustness of top bifurcating genes across experiments. 

Fig. S14. Flow cytometric validation of select marker genes in PbTII cells prior to and after 
bifurcation. 

Fig. S15. B cells are essential for Tfh responses in PbTII cells during PcAS infection.  
Fig. S16. Sorting strategy for myeloid cells. 

Fig. S17. Principal Component Analysis of cDCs from naïve and infected mice.  
Figure S18. Differential gene expression between single splenic CD8α+ and CD8α- cDCs. 

Figure S19. Differentially expressed genes between single naïve and day 3 PcAS-infected cDCs. 
Figure S20. Principal Component Analysis of Ly6Chi monocytes from naïve and infected mice. 

Figure S21. Differentially expressed genes between single Ly6Chi monocytes from naïve and 
day 3 PcAS-infected mice. 
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Fig. S22. Expression of immune signalling genes by cDCs and monocytes. 
Figure S23. Myeloid cell depletion in LysMCre x iDTR mice.  

 
Tables S1-S4 
Table S1 The expression data for all genes on day 7, the PCA loadings for PC1-PC10, and 
functional annotations for the genes (external file). Th1 annotations are based on studies by Hale 
et al. (SMARTA transgenic, day 6 of LCMV infection, CXCR5-Ly6chi), Marshall et al. 
(SMARTA transgenic, day 8 of LCMV infection, PSGL1hiLy6chi), Stubbington et al. (In vitro, 
day 4) (15, 46, 47). Tfh annotations are based by studies by Hale et al. (CXCR5+Ly6clo, 
Marshall et al. (PSGL1loLy6clo) and Liu et al. (Bcl6-RFP reporter, KLH immunization, 
CXCR5+Bcl6hi) (38). Th2 and Th17 annotations are based on Stubbington et al.. Annotations for 
genes associated with exhausted CD4+ T cell phenotype are based on Crawford et al. (Day 30 of 
LCMV infection, genes upregulated in exhausted cells but not in memory cells) (51). 
Table S2 TraCeR detection statistics for T cell receptor sequences in single-cell RNA-seq data 
from the first set of experiments, performed using the C1 platform (external file). 
Table S3 TraCeR detection statistics for T cell receptor sequences in single-cell RNA-seq data 
from the second set of experiments, performed using the Smart-seq2 platform (external file). 
Table S4 Annotation of receptors, cytokines and transcription factors. 
 

Supplementary Computational Methods - The GPfates model (external file) 
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Materials and Methods: 
 
 
Ethics and approval 
All animal procedures were in accordance with the Animals (Scientific Procedures) Act 1986 
and approved by the Animal Welfare and Ethical Review Body of the Wellcome Trust Genome 
Campus, or in accordance with Australian National Health and Medical Research Council 
guidelines and approved by the QIMR Berghofer Medical Research Institute Animal Ethics 
Committee (approval no. A02-633M). 
 
Mice  
C57BL/6 mice were purchased from Australian Resource Center (Canning Vale) or bred in-
house. C57BL/6, PbTIIxCD45.1 and LysMCre x iDTR mice were maintained under specific 
pathogen-free conditions within animal facilities at the Wellcome Trust Genome Campus 
Research Support Facility (Cambridge, UK), registered with the UK Home Office, or at QIMR 
Berghofer Medical Research Institute (Brisbane, Australia). All mice were female and used at 8-
12 weeks of age. 
 
Adoptive transfer 
Spleens from PbTIIxCD45.1 mice were aseptically removed and homogenised through a 100µm 
strainer before lysis of erythrocytes with RBC lysis buffer (eBioscience). CD4+ T cells were 
enriched (purity >80%) using CD4 microbeads according to the manufacturer's instructions 
(Miltenyi Biotech) and stained with CellTrace™ Violet (Invitrogen) at 1µM in PBS for 15 
minutes at 37ᵒC in the dark. Violet CellTrace-labelled cells were resuspended in PBS and 
injected (106/200µl RPMI) via a lateral tail vein.  
 
Infections 
Plasmodium chabaudi chabaudi AS parasites were used after one in vivo passage in WT 
C57BL/6 mice. Mice were infected with 105 pRBCs i.v. and blood parasitemia was monitored by 
Giemsa-stained thin blood smears obtained from tail bleeds. 
 
Flow cytometry and cell isolation 
Single-cell suspensions were prepared by homogenising spleens through 100 µm strainers and 
lysing erythrocytes using RBC lysis buffer (eBioscience). Fc receptors were blocked using anti-
CD16/32 antibody (BD Pharmigen or in-house). T cells were stained with the following 
antibodies (Biolegend): CD4-APC (GK1.5), TCRβ-APC-Cy7 (H57-597), CD45.1-FITC (A20), 
Vα2-FITC (B20.1), Vβ12-eFluor710 (MR11-1) (eBioscience), CD69-PE (H1.2F3), PD-1-
APCCy7 (29F.1A12), CXCR5-Biotinylated (2G8) (BD Pharmigen), Streptavidin-PeCy7, CD183 
(CXCR3)-PE (CXCR3-173), IFNγ-BV421 (XMG1.2), Bcl6-PercpCy5.5 (K112-91) (BD 
Pharmigen), Ki-67-PE (16A8), T-bet-eFluor660 (4-B10) (eBioscience) and TCF-1-PE 
(CD63D9) (Cell Signaling Technology). Dendritic cells and monocytes were stained with the 
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following antibodies (Biolegend): CD11c-Percp-Cy5.5 (N418), MHCII (1-A/1/E)-APC 
(M5/114-15.3), B220-AlexaFluor700 (RA3-6B2), TCRβ-APC-Cy7 (H57-597), Ly6C-FITC 
(HKJ.4), CD11b-BV421 (M1/70), Ly6G-PE (IA8), CD8-PE-Cy7 (53-6.7) and CXCL9-PE 
(MIG-2F5.5). Intracellular staining for IFNγ, T-bet, Bcl6, Ki-67, TCF-1 or CXCL9 was 
performed with the eBioscience FoxP3 intracellular kit. Intracellular staining for p-S6 was 
performing using a monoclonal antibody (D57.2.2E), or respective isotype control (Cell 
Signaling Technology) with Cell Signaling Buffer Set A (Miltenyi Biotech) according to 
manufacturer's protocol. 
For DNA/RNA staining, Hoechst33342 (10µg/ml; Sigma) was added at 1/500 v/v to cell 
preparation 15 minutes prior to acquisition using a BD LSRFortessa IV (BD Bioscience).  
Cells were sorted using a MoFlo XDP (Beckman Coulter), a FACSAria II (Becton Dickinson) or 
an Influx (Becton Dickinson) instrument. Activated PbTII T cells were sorted as CD4+TCRβ+ 
and CD69+ and/or divided at least once as measured using the CellTrace Violet proliferation dye. 
Dendritic cells were sorted as CD11chiMHCIIhiTCRβ-B220-. Naive dendritic cells were further 
sorted as CD8α+CD11b- or CD8α-CD11b+. Inflammatory monocytes were identified as 
CD11bhiLy6ChiLy6GloTCRβ-B220-. 
 
Single-cell mRNA sequencing 
Single cell capture and processing with the Fluidigm C1 system was performed as described in 
(52). The cell suspension obtained from sorting was loaded onto the Fluidigm C1 platform using 
small–sized capture chips (5-10µm cells). 1 µl of a 1:4000 dilution of External RNA Control 
Consortium (ERCC) spike-ins (Ambion, Life Technologies) was included in the lysis buffer. 
Reverse transcription and pre-amplification of cDNA were performed using the SMARTer Ultra 
Low RNA kit (Clontech). 
For processing with the Smart-seq2 protocol (29), the cells were sorted into 96-well plates 
containing lysis buffer using either a MoFlo XDP (Beckman Coulter) or an Influx (Becton 
Dickinson) instrument. The Smart-seq2 amplification was performed as described in (29), with 
the lysis buffer containing Triton-X, RNase inhibitor, dNTPs, dT30 primer and ERCC spike-ins 
(Ambion, Life Technologies, final dilution 1:100 million). The cDNA amplification step was 
performed with 24 cycles. 
The sequencing libraries were prepared using Nextera XT DNA Sample Preparation Kit 
(Illumina), according to the protocol supplied by Fluidigm (PN 100-5950 B1). Libraries from up 
to 96 single cells were pooled and purified using AMPure XP beads (Beckman Coulter). Pooled 
samples were sequenced on an Illumina HiSeq 2500 instrument, using paired-end 100 or 125-
base pair reads. 
 
Processing and QC of scRNA-Seq data 
Gene expressions were quantified from the paired end reads of the samples using Salmon (41), 
version 0.4.0. An example command for a one sample would be “salmon quant -i 
mouse_cdna_38.p3.78_repbase_ercc_index -l IU -p 4 -1 1771-026-195-H4_1.fastq -21771-026-
195-H4_2.fastq -o1771-026-195-H4_salmon_out -g 
mouse_cdna38.78_repbase_ercc_index_gene_map.txt”. The parameter libType=IU, and a 
transcriptome index built on Ensembl version 78 mouse cDNA sequences. We also had 
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sequences from the ERCC RNA spike-ins in the index, as well as 313 mouse specific repeat 
sequences from RepBase to potentially capture transcribed repeats. 
For quality control of the single-cell data we assessed the number of input read pairs, and the 
amount of mitochondrial gene content. For all cells, we considered samples with less than 
100,000 reads or more than 35% mitochondrial gene content as failed. For T cells, we 
additionally considered cells where number of genes was less than 100 + 0.008 * (mitochondrial 
gene content) as failed. For the data generated using a 96-well plate-based Smart-seq2 protocol, 
which does not permit visual inspection of the captured cells, we additionally excluded low-
quality cells from which fewer than 2000 genes were detected, motivated by negative control 
wells. To verify that that the cells sorted in the wells were PbTII cells, we only selected cells 
from which both the transgenic TCR alpha and beta chains were detected (Supplementary Tables 
2 and 3). Excluded cells were removed from all further analyses, and the remainder of the 
samples were taken as individual single cells.  
For expression values, the Transcripts Per Millions (TPM's) estimated by Salmon included 
ERCC spike-ins. Thus, for analysis of the cells, we removed ERCC's from the expression table 
and scaled the TPM's so they again summed to a million. This way we get endogenous TPM 
values, representing the relative abundance of a given gene within a cell. We also globally 
removed genes from analysis where less than three cells expressed the gene at minimum 1 TPM, 
unless stated otherwise. 
 
Latent Variable Modelling of data 
We modelled the data using an unsupervised Bayesian Gaussian Process Latent Variable model 
(BGPLVM) (14) on log10 transformed TPM values (with a scaling factor 1 added). The 
BGPLVM was run with 5 latent variables. As we used an ARD (Automatic Relevance 
Determination) squared exponential covariance function, we could infer that two latent factors 
explained the data. All other parameters to the BayesianGPLVM model in GPy (version 1.0.9) 
were left as default. Upon inspection we noticed a circular pattern. This corresponds to a 1-
dimensional topology, which requires two dimensions for a faithful representation. Thus we 
inferred a new latent variable by 1-dimensional BGPLVM, with priors on the latent variable 
based on the cell collection times (see the Computational Supplement), where we used the 2D 
latent variables as input. This way we inferred smoothed  “pseudotime” values for the every data 
point representing the progressive response to the malaria infection. 
In the 2-dimensional model of the data, we searched for genes that highly correlated with either 
of the two explanatory latent factors. Performing functional enrichment analysis using gProfiler 
(42) on the top genes revealed that factor 1 (which explained most of the variation) was related 
to cell proliferation. The second factor was largely explained by genes involved with immune 
response. Upon inspection, it seemed as the second latent factor terminated in two groups of 
cells. We investigated this in terms of a bifurcating time series. 
 
Bifurcating time series analysis 
To study the cells in terms of a bifurcating time series, we implemented an Overlapping Mixture 
of Gaussian Processes (OMGP) model (16), see the Computational Supplement for details. The 
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model uses an optimization procedure to associate observed data with a given number of 
individual independent trends over a time variable. The model was run with pseudotime as input, 
and the immune response related latent variable as output. For the mixture model, we assumed 
two trends. The two trends were given squared exponential covariance functions, where we fixed 
the length scale to 1 based on our prior assumptions on smoothness over pseudotime. We also 
constrained the model variance to 0.05, which allows trends to share observed data points. 
Remaining hyperparameters were optimized by gradient descent. (See the Computational 
Supplement for details)  
 
Testing genes for bifurcated expression 
The output of the OMGP model is a soft assignment to each of two trends for every observed 
cell. The original model was fitted with the 2nd latent variable from the latent variable analysis. 
To find genes that significantly drive this bifurcation, we keep all parameters fixed but change 
the data to be individual genes expression levels and calculate the data likelihood. In order to get 
a null distribution to assess significance, we performed the same analysis but with randomly 
permuted pseudotime-values. This is described in detail in the Computational Supplement. 
To measure in which direction a gene is involved with the bifurcation, we used correlation 
between expression and trend assignment. For example, a gene’s expression being strongly 
positively correlated with a trends assignment means it is being upregulated on that bifurcated 
branch. 
 
Monocle 
The Monocle analysis was performed with version 1.2.0 of the Monocle package, following the 
steps outlined in the original vignette (17). In brief, the analysis was performed using the size-
normalized data (TPM) including all genes expressed in ≥10 cells (11439 genes) with default 
parameters. The genes used for the ordering of cells were defined by carrying out a differential 
expression analysis of the time points using the differentialGeneTest embedded in the package. 
Following the original vignette, genes with q-value <0.01 were selected (7738 genes). The 
num_paths option was set as 2. 
 
SCUBA 
(https://github.com/gcyuan/SCUBA/tree/2ffa4fe5842dfe88db0207c82088bce0e5b97be7) was 
run using 3003 genes and provided information about time point. RNAseq_preprocess.m and 
SCUBA scripts were run according to instructions. SCUBA did not find any bifurcation points. 
Similarly, using 1000 most informative genes (SCUBA default), or scaling of the data (to aid the 
sensitivity), did not result in any bifurcation either. Changing the number of was done by the 
variable ngene_select in RNAseq_preprocess.m. All other variables were kept at default. 
 
Annotation of cell-surface receptors, cytokines and transcription factors 
Genes likely to encode transcription factors, cell-surface receptors or cytokines were found by 
combining information from KEGG (http://www.genome.jp/kegg/), the Gene Ontology 
Consortium (http://geneontology.org/, PANTHER (http://www.pantherdb.org/) along with the 
more specific databases detailed below. 
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Transcription factors were found by searching the Gene Ontology Consortium database using the 
following ontology term: GO:0003700 (sequence-specific DNA binding transcription factor 
activity); KEGG for ko03000 (Transcription Factors); PANTHER for PC00009 (DNA binding) 
AND PC00218 (Transcription Factors). The presence of genes in the following databases was 
also used as evidence for transcription factor activity: AnimalTFDB 
(http://www.bioguo.org/AnimalTFDB/index.php), DBD (http://www.transcriptionfactor.org), 
TFCat (http://www.tfcat.ca), TFClass (http://tfclass.bioinf.med.uni-goettingen.de/tfclass), 
UniProbe (http://the_brain.bwh.harvard.edu/uniprobe) and TFcheckpoint 
(http://www.tfcheckpoint.org). 
Cell-surface receptors were found by searching the Gene Ontolotgy Consortium database using 
the following ontology terms GO:0004888 (transmembrane signaling receptor activity) OR 
GO:0008305 (integrin complex)) AND NOT (GO:0004984 (olfactory recep- tor activity) OR 
GO:0008527 (taste receptor activity); KEGG for ko04030 (G-Protein Coupled Receptors) OR 
ko04050 (Cytokine Receptors) OR ko01020 (Enzyme-linked Receptors); PANTHER for 
PC00021 (G-Protein Coupled Receptors) OR PC00084 (Cy- tokine Receptors) OR PC00194 
(Enzyme-linked Receptors). Annotation of genes as receptors in the ImmPort 
(https://immport.niaid.nih.gov/), GPCRDB (http://gpcrdb.org/)  or IUPHAR 
(http://www.guidetopharmacology.org/) databases was also used as evidence for receptor 
functionality. 
Cytokines were found by searching the Gene Ontolotgy Consortium database using the following 
ontology terms GO:0005125 (cytokine activity); KEGG for ko04052 (Cytokines); PANTHER for 
PC00083 (Cytokines). Annotation of genes as cytokines in ImmPort was also used in this case. 
Genes were scored according to the number of databases and search results in which they 
occurred. Scores were weighted according to the strength of evidence provided by each database 
such that functional annotations supported by manually reviewed experimental evidence were 
given a higher score than those that were solely computationally generated (Table) 
 
Annotation source Score 

KEGG 3 

Gene Ontology Consortium evidence codes IDA, IPI, IMP, IGI, IEP, ISS, ISO, 
ISA, ISM, IGC, IBA, IBD, IKR, IRD, RCA, TAS, IC 

5 

Gene Ontology Consortium evidence codes IEA, NAS, ND 1 

PANTHER 2 

AnimalTFDB 4 

DBD 1 

TFCat, classed as ‘transcription factor’ 7 
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TFCat, classed as ‘candidate’ 5 

TFClass 4 

UniProbe 7 

TFcheckpoint (if manually reviewed) 6 

ImmPort 4 

GPRCDB 2 

IUPHAR 7 

 
Genes were assigned as likely cell-surface receptors or cytokines if they had a cumulative score 
greater than or equal to 5 in that category. Genes were assigned as likely transcription factors if 
they had a cumulative score greater than or equal to 6 in that category. 
 
In vivo cell depletion  
Cellular depletion in LysMCre x iDTR mice was performed by intraperitoneal injection of 10ng/g 
DT (Sigma-Aldrich) in 200µl 0.9% saline (Baxter) at day 3 post-infection. Control mice were 
given 0.9% saline only.  
For B cell depletion, anti-CD20 (Genentech) or isotype control antibody was administered in a 
single 0.25mg dose via i.p. injection in 200ul 0.9% NaCl (Baxter), 7 days prior to infection. 
 
 
Confocal microscopy  

Confocal microscopy was performed on 10–20 µm frozen spleen sections. . Briefly, splenic 
tissues were snap frozen in embedding optimal cutting temperature (OCT) medium (Sakura) and 
stored at -80oC until use. Sections were fixed in ice-cold acetone for 10 minutes prior to labelling 
with antibodies against B220-PE (clone-RA3-6B2) as well as CD68-Alexa Fluor 594 (clone-FA-
11) or SIGN-R1-Alexa Fluor 647 (clone ER-TR9). Antibodies against CD68 were obtained from 
Biolegend (San Diego, CA), and against SIGN-R1 from BIO-RAD (USA). DAPI was used to aid 
visualization of white pulp areas. Samples were imaged on a Zeiss 780-NLO laser-scanning 
confocal microscope (Carl Zeiss Microimaging) and data analysed using Imaris image analysis 
software, version 8.1.2 (Bitplane). Cells were identified using the spots function in Imaris, with 
thresholds <10mM and intensities <150. All objects were manually inspected for accuracy before 
data were plotted and analyzed in GraphPad prism (version 6). 
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Figures S1-S23 

 

 

Fig. S1. Enrichment of PbTII cells for adoptive transfer. 
(A) CD4+ T cells were enriched using positive selection (MACS microbeads) from the spleen of 
a naive, PbTII x CD45.1 mouse. FACS plots show purity, expression of Vα2 and Vβ12 
transgenes, and CellTrace™ Violet (CTV) staining of enriched PbTII compared to corresponding 
flow-through from the enrichment process. 
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Fig. S2. Sorting strategy for PbTII cells. 
(A) PbTII cells (CD4+ TCRβ+ CD45.1+) were adoptively transferred into WT congenic  
(CD45.2+) recipient mice At indicated days, early activated (CD69+) and/or proliferated (CTVlo) 
PbTII cells were cell-sorted from spleens of Plasmodium chabaudi chabaudi AS infected mice, 
and  naïve PbTII cells (CD69loCTVhi) were cell-sorted from the spleens of naïve mice at day 7 
post-transfer. 
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Fig. S3. Expression of subset-specific marker genes in PbTII cells. 
(A) Representative FACS plot (gated on CD4+ TCRβ+ live singlets) and proportion of FOXP3+ 
(Treg) splenic PbTII (104 transferred) (CD45.1+; red dashed box) or polyclonal CD4+ T (CD45.1-

; black dashed box) cells from mice (n=6) at day 7 post-infection. 
(B-C) Representative FACS plots (gated on CD45.1+ CD4+ TCRβ+ live singlets) of (B) IL-
4+GATA3+ (Th2) and (C) IL-17+RORγt+ (Th17) splenic PbTII cells in naive (receiving 106 cells, 
n=3) or PcAS-infected mice (receiving 104 cells, n=6) at day 7 post-infection. (A-C) Data are 
representative of two independent experiments. Statistics:  Mann-Whitney U test; *p<0.05. 
(D) The mRNA expression of selected subset-specific cytokines and the Treg hallmark 
transcription factor Foxp3 in PbTII cells. The red dots and line indicate the fraction of cells in 
each time point where the particular mRNA was detected. 
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Fig. S4. Heterogeneity of activated PbTII cells. 
(A) PCA of single PbTII cells at 2, 3, 4 and 7 days post-infection with PcAS. The PCA was 
based on all genes expressed at ≥100 TPM in at least 2 cells. The arrows represent the Pearson 
correlation with PC1 and PC2. Cell size refers to the number of detected genes. “Th1 signature” 
and “Tfh signature” refer to cumulative expression of top 30 signature genes associated with Th1 
and Tfh phenotypes (15). The numbers in parenthesis show proportional contribution of 
respective PC. 
(B) The relationship of detected cell number with the fraction or reads mapping to ERCC spike-
in RNA (top) and with cumulative expression of proliferation markers Mki67, Mybl2, Bub1, 
Plk1, Ccne1, Ccnd1 and Ccnb1 (21) (Figure 4B and S9). 

(C) Ranked loading scores for PC1-PC6 of the Th1 and Tfh signature genes in the PCA shown in 
(A). The numbers in parenthesis show proportional contribution of respective PC. 
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Fig. S5. Heterogeneity of Th1/Tfh signature gene expression in activated PbTII cells. 
(A) Principal component analysis of day 4 (left) and day 7 (right) PbTII cells using Th1/Tfh 
signature genes (15) detected at the level ≥ 100 TPM in at least 2 cells. The numbers in 
parenthesis show proportional contribution of respective PC. 

(B) The PC1 and PC2 loadings of individual Th1 (red) and Tfh (blue) signature genes in PCA of 
day 4 and day 7 PbTII cells (A). PC, Principal Component 

(C) The correlation of PC1 from the analysis with the signature genes alone and PC2 of the 
genome-wide analysis. 
 
  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2016. ; https://doi.org/10.1101/074971doi: bioRxiv preprint 

https://doi.org/10.1101/074971
http://creativecommons.org/licenses/by/4.0/


43 

 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2016. ; https://doi.org/10.1101/074971doi: bioRxiv preprint 

https://doi.org/10.1101/074971
http://creativecommons.org/licenses/by/4.0/


44 

 

Fig. S6. The contribution of Th1 and Tfh signature genes to the overall heterogeneity of the 
PbTII time series. 

(A) The first five components of the Principal Component Analysis of the entire time series. The 
numbers in parenthesis show proportional contribution of respective PC. 

(B) The rankings of the Th1 and Tfh signature genes among the loadings of Principal 
Components 1-7.  
 
 
 
 
 
 
 
 
 

 
 

Fig. S7. The relationship of pseudotime with time points (A) and with the Th1 assignment 
probability (B). 
 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2016. ; https://doi.org/10.1101/074971doi: bioRxiv preprint 

https://doi.org/10.1101/074971
http://creativecommons.org/licenses/by/4.0/


45 

 

 
Fig. S8. Modelling the data using Monocle and SCUBA. 

(A) Monocle model of the data, coloured by time points (left) and cell states identified by 
Monocle (right). 

(B) SCUBA bifurcation analysis failed to yield any bifurcating points. Sizes of bubbles are 
according to number of cells. 
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Fig. 
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Fig. S9. Proliferative burst of activated PbTII cells. 
(A) The expression of established proliferation genes (21) along pseudotime. 

(B) ModFit plots and proportions of PbTII cells in G0/G1, G2/M and S-phase of cell cycle as 
determined by Hoechst staining. 
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Fig. S10. Expression of transgenic and endogenic TCRs. 
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(A) Statistics of TCR sequence detection. Numbers correspond to single cells in which the 
corresponding transcript was detected. 
(B) Expression levels (log2(TPM)) of for the endogenous or transgenic TCRA chains across the 
entire dataset. 
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Fig. S11. Correlation of expression of Ifng with Tcf7 and Id2 across pseudotime. 
(A-B) The correlation of the expression Ifng with Tcf7 (A) and with Id2 (B) at single-cell level. 
Using a rolling window method, Spearman rho was calculated in windows of 100 cells. The 
pseudotime values are mean values within each window. 

(C) Representative FACS plots showing TCF-1 (gene product of Tcf7) expression in CXCR5+ 
(blue gate) and IFNγ+ (red gate) PbTIIs, compared to naïve PbTIIs (gray) (isotype control shown 
in black in FACS histogram) at 7 days post-infection. Summary graph shows mean & standard 
deviations for geometric mean fluorescence intensity of TCF-1 expression in gated PbTII 
populations (n=4 mice) Statistics: Mann-Whitney U test *p<0.05.  
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Fig. S12. The expression of Tbx21 (left) and Bcl6 (right) across pseudotime. 

The curves represent the Th1 (red) and Tfh (blue) trends when weighing the information from 
data points according to trend assignment. The color of the data points represents the strength of 
the relationship with the Th1 trend.  
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Fig. S13. Robustness of top bifurcating genes across experiments. 
(A) Principal Component Analysis of the single cells from the replicate PcAS infection. The 
single cells were sorted on 96-well plates and cDNA was amplified using the Smart-seq2 
protocol (29). The arrows represent the Pearson correlation with PC1 and PC2. Cell size refers to 
the number of detected genes. “Th1 signature” and “Tfh signature” refer to cumulative 
expression of genes associated with Th1 or Tfh phenotypes (15). PC, Principal Component. 

(B) The emergence of subset-specific gene patterns at day 7 of infection. For the top bifurcating 
genes (Fig S5C) pairwise gene-to-gene Spearman correlations were calculated. The rowside 
colours represent the association of the gene with either Th1 fate (red) or Tfh fate (blue). 
(C) The expression of top 20 Th1 and Tfh associated genes identified using GPfates in single 
PbTII cells at days 4 and 7. Cdk2ap2 appears twice because two alternative genomic annotations 
exist. 
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Fig. S14. Flow cytometric validation of select marker genes in PbTII cells prior to and after 
bifurcation.  
(A) Representative FACS plots showing kinetics of CellTraceTM Violet (CTV) dilution and 
CXCR6 expression, with summary graphs showing % of PbTII cells expressing this (after 106 
PbTII cells transferred) in un-infected (Day 0) and PcAS-infected mice at indicated days post-
infection (n=4 mice/timepoint, with individual mouse data shown in summary graphs; solid line 
in summary graphs indicates results from third order polynominal regression analysis.) Data are 
representative of two independent experiments.  
(B) Representative FACS plots showing CXCR6 expression in Tbethi (red gate) and Bcl6hi 
(blue gate) PbTII cells, compared to naïve PbTIIs (grey) at 7 days post-infection. Summary 
graph shows mean & standard deviations for geometric mean fluorescence intensity of CXCR6 
expression in gated PbTII populations (n=4 mice) Statistics: Mann-Whitney U test *p<0.05.  
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(C) Representative FACS plots and proportions of splenic PbTII cells co-expressing CXCR5 and 
CXCR3 in naive (gray; n=3) or infected mice (green; n=6) at 4 days post-infection with 
P.chabaudi chabaudi AS (PcAS). Results are representative of two independent experiments. 
Statistics: Mann-Whitney U test *p<0.05.  
 
 

 
Fig. S15. B cells are essential for Tfh responses in PbTII cells during PcAS infection.  

Representative FACS plots (gated on CD4+ TCRβ+ CD45.1+ live singlets) of splenic PbTII 
cells, showing proportions exhibiting Tfh (Bcl6+ CXCR5+) and Th1 (Tbet+ IFNγ+) phenotypes 
in WT mice (receiving 104 PbTII cells), treated with anti-CD20 monoclonal antibodies (0.25mg) 
to deplete B-cells, or control IgG, and infected for 7 days with PcAS. Individual mice data (n=5) 
shown in summary graph. Mann-Whitney U test *p<0.05; **p<0.01. Results are representative 
of two independent experiments.  
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Fig. S16. Sorting strategy for myeloid cells. 
Representative FACS plots showing sorting strategy for CD8α+ and CD11b+ cDC, and Ly6Chi 
inflammatory monocytes from the spleens of naive and 3-day PcAS-infected mice.  
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Fig. S17. Principal Component Analysis of cDCs from naïve and infected mice.  
Results of Principal Component (PC) Analysis on scRNAseq mRNA reads (filtered by minimum 
expression of 100 TPM in at least 2 cells) from 131 single splenic naïve CD8α+ and CD8α- and 
mixed day 3 PcAS-infected cDC. PC1-PC6 shown. Axis labels show proportional contribution 
of respective PC.  
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Figure S18. Differential gene expression between single splenic CD8α+ and CD8α- cDCs. 
(A) Results of differential gene expression analysis between naïve splenic CD8α+ and CD8α- 
cDCs, for all genes expressed in greater than 2 cells. 
(B) Complete list of differentially-expressed genes between naïve CD8α+ and CD8α- cDCs, 
which were expressed in >10 cells of either subset with a qval <0.2 as determined in (A). 
(C) Heatmap of naïve cDCs ordered by PC2 (Fig. 6A) and expression of genes from (B) ordered 
by PC2 loading in (Fig 6A). 
(D) Heatmap examining hierarchical clustering of mixed CD8α+ and CD8α- CD11b+ day 3-
infected cDCs (cell-sorted and mixed at a ratio of 50:50 prior to scRNAseq) using differentially 
expressed genes from (B) ordered by PC2 loading shown in (Fig 6A).  
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Figure S19. Differentially expressed genes between single naïve and day 3 PcAS-infected 
cDCs. List of differentially expressed genes, expressed in >10 cells (qval<0.05) between naïve 
and day 3-infected cDCs. Mean TPM fold-change in gene expression relative to naïve levels.  
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Figure S20. Principal Component Analysis of Ly6Chi monocytes from naïve and infected 
mice. Results of Principal Component (PC) Analysis using scRNAseq mRNA reads (filtered by 
minimum expression of 100 TPM in at least 2 cells) of 154 single splenic Ly6Chi monocytes 
from naïve and infected mice. PC1-PC6 shown. Axis labels show proportional contribution of 
respective PC.  
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Figure S21. Differentially expressed genes between single Ly6Chi monocytes from naïve and 
day 3 PcAS-infected mice. List of differentially expressed genes, expressed in >10 cells 
(qval<0.05) between Ly6Chi monocytes from naïve and day 3-infected mice. Mean TPM fold-
change in gene expression relative to naïve levels.  
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Fig. S22. Expression of immune signalling genes by cDCs and monocytes. 
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(A-C) Heatmaps showing normalised mRNA expression of select (A) chemokines, (B) 
costimulatory molecules and (C) cytokines and respective receptors (rows) by single splenic 
cDCs and Ly6Chi monocytes (columns) from naïve or 3-day Plasmodium chabaudi chabaudi 
AS-infected mice.  
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Figure S23. Myeloid cell depletion in LysMCre x iDTR mice.  
LysMCre x iDTR mice were infected with PcAS, and treated 3 days later with DT (10ng/g 
intraperitoneal injection) or control saline (n=6 per group). 24 hours later spleens were harvested 
for cellular compositional analysis: 

(A) Representative FACS plots enumerating splenic inflammatory monocytes (Ly6Chi CD11bhi 
Ly6G- B220- TCRβ-). 
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(B) Representative fluorescence micrographs showing spleen tissue sections co-stained for B 
cells (B220 in red) and macrophages (CD68 (top panel) or SIGN-R1 (bottom panel) in green) 
and summary graphs of average cell number in three fields of view covering the total cross 
section of a spleen. 
 (C) Flow cytometric enumeration of splenic cDC (CD11chi MHCIIhi B220- TCRβ-).  
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