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Abstract 15 

Root system analysis is a complex task, often performed with fully automated image analysis 16 
pipelines. However, the outcome is rarely verified by ground-truth data, which might lead to 17 
underestimated biases.  18 

We have used a root model, ArchiSimple, to create a large and diverse library of ground-truth root 19 
system images (10,000). For each image, three levels of noise were created. This library was used to 20 
evaluate the accuracy and usefulness of several image descriptors classically used in root image 21 
analysis softwares.  22 

Our analysis highlighted that the accuracy of the different traits is strongly dependent on the quality 23 
of the images and the type, size and complexity of the root systems analysed. Our study also 24 
demonstrated that machine learning algorithms can be trained on a synthetic library to improve the 25 
estimation of several root system traits.  26 

Overall, our analysis is a call to caution when using automatic root image analysis tools. If a 27 
thorough calibration is not performed on the dataset of interest, unexpected errors might arise, 28 
especially for large and complex root images. To facilitate such calibration, both the image library 29 
and the different codes used in the study have been made available to the community. 30 

31 
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1 Introduction 32 

Roots are of utmost importance in the life of plants and hence selection on root systems represents 33 
great promise for improving crop tolerance to biotic and abiotic stresses (as reviewed in (Koevoets et 34 
al., 2016). As such, their quantification is a challenge in many research projects. This quantification 35 
is usually twofold. The first step consists in acquiring images of the root system, either using classic 36 
imaging techniques (CCD cameras) or more specialized ones (microCT, X-Ray, fluorescence, ...). 37 
The next step is to analyse the pictures to extract meaningful descriptors of the root system. 38 

To paraphrase the famous Belgian surrealist painter, René Magritte: “figure 1A is not a root system”. 39 
Figure 1A is an image of a root system and that distinction is important. an image is indeed a two-40 
dimensional representation of an object, which is usually three-dimensional. Nowadays, 41 
measurements are generally not performed on the root systems themselves, but on the images, and 42 
this raises some issues.  43 

 44 

 45 

Image analysis is the acquisition of traits (or descriptors) describing the objects contained in a 46 
particular image. In a perfect situation, these descriptors would accurately represent the biological 47 
object of the image with negligible deviation from the biological truth (or data). However, in many 48 
cases, artefacts might be present in the images so that the representation of the biological object is not 49 
accurate anymore. These artefacts might be due to the conditions under which the images were taken 50 
or to the object itself. Mature root systems, for instance, are complex branched structures, composed 51 
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of thousands of overlapping (fig. 1B) and crossing segments (fig. 1C). These features are likely to 52 
impede image analysis and create a gap between the descriptors and the data.  53 

Root image descriptors can be separated into two main categories: morphological and geometrical 54 
descriptors. Morphological descriptors refer to the shape of the different root segments forming the 55 
root system (table 1). They include, among others, the length and diameter of the different roots. For 56 
complex root system images, morphological descriptors are difficult to obtain and are prone to error 57 
as mentioned above. Geometrical descriptors give the position of the different root segments in 58 
space. They summarize the shape of the root system as a whole. The simplest geometrical descriptors 59 
are the width and depth of the root system. Since these descriptors are mostly defined by the external 60 
envelope of the root system, crossing and overlapping segments have little impact on their estimation 61 
and hence they can be considered as relatively errorless. Geometrical descriptors are expected to be 62 
loosely linked to the actual root system topology, since identical shapes could be obtained from 63 
different root systems (the opposite is true as well). They are usually used in genetic studies, to 64 
identify genetic bases of root system shape and soil exploration.  65 

Several automated analysis tools were designed in the last few years to extract both types of 66 
descriptors from root images (Armengaud et al., 2009; Bucksch et al., 2014; Galkovskyi et al., 2012; 67 
Pierret et al., 2013). However, the validation of such tools is often incomplete and/or error prone. For 68 
technical reasons, the validation is usually performed on a small number of ground-truth images of 69 
young root systems. In agreement, most analysis tools are specifically designed for this kind of root 70 
systems. In the few cases where validation is performed on large and complex root systems, it is 71 
usually not on ground-truth images, but in comparison with previously published tools (measurement 72 
of X with tool A compared with the same measurement with tool B). This might seem reasonable 73 
approach regarding the scarcity of ground-truth images of large root systems. However, the inherent 74 
limitations of these tools, such as scale or root system type (fibrous-  vs. tap-roots) are often not 75 
known. Users might not even be aware that such limitations exist and apply the provided algorithm 76 
without further validation on their own images. This can lead to unexpected errors in the final 77 
measurements. 78 

One strategy to address the lack of in-depth validation of image analysis pipelines would be to use 79 
synthetic images generated by structural root models (models designed to recreate the physical 80 
structure and shape of root systems). Many structural root models have been developed, either to 81 
model specific plant species (Pagès et al., 1989), or to be generic (Pagès et al., 2004; 2013). These 82 
models have been repeatedly shown to faithfully represent the root system structure (Pagès and 83 
Pellerin, 1996). In addition, they can provide the ground-truth data for each synthetic root system 84 
generated, independently of its complexity. However, they have not been used for validation of 85 
image analysis tools (Rellán-Álvarez et al., 2015), with one exception performed on young seedling 86 
unbranched roots  (Benoit et al., 2014),.  87 

Here we (i) illustrate the use of a structural root model, Archisimple, to systematically analyse and 88 
evaluate an image analysis pipeline and (ii) use the model-generated images to improve the 89 
estimation of root traits. 90 

91 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 22, 2016. ; https://doi.org/10.1101/074922doi: bioRxiv preprint 

https://doi.org/10.1101/074922
http://creativecommons.org/licenses/by/4.0/


Using models to improve root image analysis tools   

 
4 

2 Material and methods 92 

2.1 Nomenclature used in the paper 93 

- Ground-truth data: The real (geometrical and morphometrical) properties of the root system as a 94 
biological object. They are determined by either manual tracking of roots or by using the output of 95 
simulated root systems. 96 

- (Image) Descriptor: Property of the root image. It does not necessarily have a biological meaning. 97 

- Root axes: first order roots, directly attached to the shoot 98 

- Lateral roots: second- (or lower) order roots, attached to another root 99 

 100 

2.2 Creation of a root system library 101 

We used the model ArchiSimple, which was shown to allow the generation of a large diversity of 102 
root systems with a minimal amount of parameters (Pagès et al., 2013). In order to produce a large 103 
library of root systems, we ran the model 10,000 times, each time with a random set of parameters 104 
(fig. 2A). For each simulation, the growth and development of the root system were constrained in 105 
two dimensions. 106 

The simulations were divided into two main groups: fibrous and tap-rooted. For the fibrous 107 
simulations, the model generated a random number of root axes and secondary (radial) growth was 108 
disabled. For tap-root simulations, only one root axis was produced and secondary growth was 109 
enabled (the extent of which was determined by a random parameter).  110 

The root system created in each simulation was stored in a Root System Markup Language (RSML) 111 
file. Each RSML file was then read by the RSML Reader plugin from ImageJ to extract ground-truth 112 
data for the library (Lobet et al., 2015). These ground-truth data included geometrical and 113 
morphological parameters (table 1). For each RSML data file, the RSML Reader plugin also created 114 
three JPEG images (at a resolution of 300 DPI) for each root system, with different levels of noise 115 
(using the Salt and Pepper Filter in ImageJ) (fig. 2.D). For each root system, we computed 116 
overlapping index as the number of root segments having an overlap with other root segments over 117 
the total number of root segments.  118 

2.3 Root image analysis 119 

Each generated image was analysed using a custom-made ImageJ plugin, Root Image Analysis-J (or 120 
RIA-J). For each image, we extracted a set of classical root image descriptors, such as the total root 121 
length, the projected area and the number of visible root tips (fig. 2E). In addition, we included shape 122 
descriptors such as the convex-hull area or the exploration ratio (see Supplemental file 1 for details of 123 
RIA-J). The list of traits and algorithms used by our pipeline is listed in table 2.  124 

 125 
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 126 

 127 

2.4 Data analysis 128 

Data analysis was performed in R (R Core Team). Plots were created using ggplot2 (Wickham, 2009) 129 
and lattice (Sarkar, 2008).  130 

The Mean Relative Errors (MRE) were estimated using the equation: 131 

𝑀𝑅𝐸	 = 	

	𝑦' − 	𝑦'
𝑦'

)
*

𝑛
 132 

where 𝑛 is the number of observations, 𝑦𝚤 is the ground-truth and	𝑦𝑖	is the estimated ground-truth. 133 

134 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 22, 2016. ; https://doi.org/10.1101/074922doi: bioRxiv preprint 

https://doi.org/10.1101/074922
http://creativecommons.org/licenses/by/4.0/


Using models to improve root image analysis tools   

 
6 

2.5 Random Forest Framework 135 

A random forest is a state-of-the-art machine learning algorithm typically used for making new 136 
predictions (in both classification and regression tasks). Random Forests can perform non-linear 137 
predictions and, thus, those often outperform linear models. Since its introduction by Breiman in 138 
2001 (Breiman, 2001), those have been widely used in many fields from gene regulatory network 139 
inference to generic image classification (Marée et al., 2016, Huynh-Thu et al., 2013). Random forest 140 
relies on growing a multitude of decision trees, a prediction algorithm that has shown good 141 
performances by itself but, when combined with other decision trees (hence the name forest), returns 142 
predictions that are much more robust to outliers and noisy data (see bootstrap aggregating, Breiman 143 
1996). 144 

In a machine learning setting one is given a set 𝐷 = {(𝑥*, 𝑦*)	, (𝑥4, 𝑦4)	, . . . , (𝑥), 𝑦))},  145 

where 𝑥' = (𝑥'*, 𝑥'4, . . . , 𝑥'7) is an element of a 𝑠 −dimensional feature space X,   146 

and 𝑦' = (𝑦'*, 𝑦'4, . . . , 𝑦'9) an element of a 𝑡 −dimensional response space Y. 147 

The learning task is to find a model  148 

𝑀:	𝑋 → 𝑌 149 

that predicts the data in a good way, where goodness is measured w.r.t. an error function 𝐿.  150 

A decision tree 𝑇A is a machine learning method that, for a dataset 𝐷, constructs a binary tree with 151 
each node representing a binary question and each leaf a value of the response space. In other words, 152 
a prediction can be made from an input value by looking at the set of binary questions that leads to a 153 
leaf (e.g. is the primary root bigger than q1 and if yes is the number of secondary roots smaller than 154 
q2 and if no, …)   155 

Each decision is based upon exactly one feature and is used for deciding which branch of the tree a 156 
given input value must take. Hence a decision tree splits successively the set 𝐷 into smaller subsets 157 
and assigns them a value 𝑦' = 𝑇A(𝑥') of the response space. 158 

The choice of the feature used for splitting depends on a relevance criterion. In our setting, the 159 
default relevance criterion from the randomForest R package (CRAN randomForest, 2015), namely 160 
the Gini index, has been used. 161 

A random forest  162 

 𝐹A = (𝑇A,C)C	∈	E	 where 𝐼 = {1,2, . . . , 𝑙} 163 

consists of 𝑙 decision trees 𝑇A,C, where several key parameters such as the feature space, are chosen 164 
randomly (hence the word Random in the algorithm name). While using a random subspace strongly 165 
accelerates the growth of a single tree, it can also decrease its accuracy. However, the use of large 166 
number of trees counterbalance advantageously those two effects. The final prediction for each input 167 
value 𝑥' corresponds to the majority vote of all the decision trees of the forest 𝑇A,C(𝑥') in a classification 168 
setting while an average of all predicted values is used in a regression task. 169 
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2.5.1 Framework description 170 

Our method consists of three typical steps: 171 

- a preprocessing step, where we replace missing values of the training set. 172 

- a model generation step where, for each response variable, we generate different models according 173 
to two Random Forest parameters (number of trees and number of splits). 174 

- a model selection step, where we choose the best performing pair of parameters of the previous step 175 
for each one of the response variable. 176 

2.5.2 Preprocessing 177 
Missing values in our dataset might arise due to highly noisy images, where the measurement of 178 
certain descriptors has been infeasible. To deal with this issue, we first replaced missing values. 179 

This is done using the imputation function of the randomForest R package. It replaces all missing 180 
values of a response variable by the median and then a Random Forest is applied on the completed 181 
data to predict a more accurate value. We favored ten trees for computing the new value over the 182 
default value of 300 as we found that it offered sufficiently accurate results for our application while 183 
being much faster.   184 

2.5.3 Model Generation 185 
In the model generation step, for each of the response variables, several forests with different number 186 
of trees and different number of splits (𝑡'	, 𝑚K )are tested. In practice, the training set 𝐷9LM') is 187 

divided into 𝑚Kdisjunct subsets  𝐷9LM')
NO and on each of those, a random forest 𝐹

APQRST
UO    is trained on a 188 

growing number of 𝑡' random trees.    189 

 190 

2.5.4 Model selection 191 

Given a new data point 𝑥, each model predicts a response variable 𝑦 by averaging the predicted 192 
values 𝐹APQRST

U (𝑥), i.e.  193 

ŷ	 = 𝑀APQRST
9,N (𝑥) 	= 	

1
𝑚

N

CW*

𝐹APQRSTX (𝑥) 194 

Then in a final step an estimate of the root-mean-square (RMSE) generalized error on the test set 195 
𝑫𝒕𝒆𝒔𝒕 is computed, where RSME is defined as  196 
 197 

𝑅𝑀𝑆𝐸 = 	 (𝑦' − 𝑦')4
)

'W*

 198 

for  𝐃𝐭𝐞𝐬𝐭={(x*,	y*) ,(	x4,	y4) , ... ,(	xd,	yd)}. 199 
 200 
Finally, the model with the parameter pair (𝑡,𝑚) having the minimal error (on the separate test set) is 201 
chosen in order to make the predictions.  202 
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2.6 Data availability 203 

All data used in this paper (including the image and RSML libraries) are available at the address 204 
http://doi.org/10.5281/zenodo.208214 205 

 An archived version of the codes used in this paper is available at the address 206 
http://doi.org/10.5281/zenodo.208499 207 
An archived version of the machine learning framework is available at the address 208 
https://github.com/FaustFrankenstein/RandomForestFramework/releases/tag/v1.0 209 

210 
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3 Results and discussions 211 

3.1 Production of a large library of ground-truth root system images 212 

We combined existing tools into a single pipeline to produce a large library of ground-truth root 213 
system images. The pipeline combines a root model (ArchiSimple (Pagès et al., 2013)), the Root 214 
System Markup Language (RSML) and the RSML Reader plugin from ImageJ (Lobet et al., 2015). 215 
In short, ArchiSimple was used to create a large number of root systems, based on random input 216 
parameter sets. Each output was stored as an RSML file (fig. 2A), which was then used by the RSML 217 
Reader plugin to create a graphical representation of the root system (as a .jpeg file) and a ground-218 
truth dataset (fig. 2B). Details about the different steps are presented in the Materials and Methods 219 
section.  220 

We used the pipeline to create a library of 10,000 root system images, separated into fibrous 221 
(multiple first order roots and no secondary growth) and tap-root systems (one first order root and 222 
secondary growth). The ranges of the different ground-truth data are shown in table 3 and their 223 
distribution is shown in the Supplemental Figure 1.  224 

We started by evaluating whether fibrous and tap-root systems should be separated during the 225 
analysis. We performed a Principal Component Analysis on the ground-truth dataset to reduce its 226 
dimensionality and assess if the type grouping influenced the overall dataset structure (fig. 3A). 227 
Fibrous and tap-root systems formed distinct groups (MANOVA p-value < 0.001), with limited 228 
overlap. The first principal component, which represented 30.9% of the variation within the dataset, 229 
was mostly influenced by the number of primary axes. The second principal component (19.1% of 230 
the variation) was influenced, in part, by the root diameters. These two effects were consistent with 231 
the clear root system type grouping, since they expressed the main difference between the two groups 232 
of root-system types. Therefore, since the type grouping had such a strong effect on the overall 233 
structure, we decided to separate them for the following analyses. 234 

 235 

236 
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3.2 Systematic evaluation of root image descriptors 237 

To demonstrate the utility of a synthetic library of ground-truth root systems, we analysed every 238 
image of the library using a custom-built root image analysis tool, RIA-J. We decided to do so since 239 
our purpose was to test the usefulness of the synthetic analysis and not to assess the accuracy of 240 
existing tools. Nonetheless, RIA-J was designed using known and published algorithms, often used in 241 
root system quantification. A detailed description of RIA-J can be found in the Materials and 242 
Methods section and Supplemental File 1.  243 

We extracted 10 descriptors from each root system image (Table 2) and compared them with their 244 
own ground-truth data. For each pair of descriptor-data, we performed a linear regression and 245 
computed its r-squared value. Figure 4 shows the results from the different combinations for both 246 
root system types. We can observe that, generally, correlations were poor with only 3% of the 247 
combinations having an r-squared above 0.8. In addition, for some ground-truth data, such as the 248 
mean lateral length or the number of primary roots, none of the descriptors actually gave a good 249 
estimation (fig 4, highlighted with arrows).  250 

 251 

 252 

Additionally, it should be noted that the correlations were different for fibrous- and tap-root systems. 253 
As an example, the correlation found between the mean_lat_diameter and diam_mean estimators was 254 
better for fibrous roots than within the tap-root dataset. Consequently, validation of the different 255 
image analysis algorithms should be performed, at least, for each group. An algorithm giving good 256 
results for a fibrous root system might fail when applied to tap-rooted ones. 257 

258 
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3.3 Errors from image descriptors are likely to be non-linear across root system sizes and 259 
image qualities 260 

In addition to being related to the species of study, estimation errors are likely to increase with the 261 
root system size. As the root system grows and develops, the number of crossing and overlapping 262 
segments increases (fig. 5A), making the subsequent image analysis potentially more difficult and 263 
prone to error. However, a systematic analysis of such error is seldom performed.  264 

Figure 5 shows the relationship between the ground-truth and descriptor values for three parameters: 265 
the total root length (fig. 5B), the number of roots (fig. 5C) and the root system depth (fig. 5D). For 266 
each of these variables, we quantified the Mean Relative Error (see Materials and Methods for 267 
details) as a function of the overlap index. This was done for three levels of noise added to the 268 
images (“null”, “medium” and “high”). We can observe that for the estimation of both the total root 269 
length and the number of lateral roots, the Mean Relative Error increased with the size of the root 270 
system (fig. 5B-C). As stated above, such increase of the error was somehow expected with 271 
increasing complexity. Moreover, depending on the metric of interest, such as the number of root 272 
tips, low image quality can result in high level of error. For other traits, such as the root system 273 
depth, no errors were expected (depth is supposedly an error-less variable) and the Mean Relative 274 
Error was close to 0 whatever the size of the root system and image quality.  275 

The results presented here are tightly dependent on the specific algorithms used for image analysis 276 
and hence might be different for other published tools. However, they are a call for caution when 277 
analysing root images : unexpected errors in ground-truth estimation can arise. Our image library can 278 
be used to better identify the errors generated by other analysis tools, current or future.  279 
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3.4 Using the synthetic library to train machine learning algorithms 281 

The main advantage of creating a synthetic library is to generate paired datasets of image descriptors and their 282 
corresponding ground-truth values. Having both information can, in theory, be used to either calibrate the 283 
image analysis pipeline or to identify the best descriptors for the ground-truth traits of interest. Here, we 284 
explored the second approach and used a random forest algorithm to find which combination of descriptors 285 
would best describe each ground-truth data (see Material and Methods for details). In short, we randomly 286 
divided the whole dataset into training (3/4) and testing subsets (1/4). The training set was used to create a 287 
random forest model for each ground-truth data, which was then we applied to the test set. The accuracy of 288 
these new predictions was then compared to the accuracy of the direct method (single descriptors) (fig. 2C).  289 

Figure 6 shows the comparison of the accuracy (both the r-squared values from linear regressions and the 290 
Mean Relative Error, MRE) of both methods for each ground-truth data. We can clearly see that the random 291 
forest approach performed always better (sometimes substantially) than the direct approach, even for images 292 
with high level of noise. In addition, for most traits, the r-squared and MRE values were above 0.9 and below 293 
0.1 respectively, which is very good, especially for such a wide range of images. In addition, the random forest 294 
approach allowed the correct estimation of traits that were difficult to estimate with the direct approach (such 295 
as the number of primary axes or the mean lateral root density). 296 

 297 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 22, 2016. ; https://doi.org/10.1101/074922doi: bioRxiv preprint 

https://doi.org/10.1101/074922
http://creativecommons.org/licenses/by/4.0/


Using models to improve root image analysis tools   

 
14 

Figure 7 shows the detailed comparison of both methods for the estimation of the total root length. Again, a 298 
clear improvement was visible with the Random Forest method, leading to small errors, even with large root 299 
systems and noisy images.  300 

In our study, machine learning algorithms on simulated datasets seems to yield very good results and we 301 
believe they open new avenues for root system analyses. It is clear however that their value relies on the 302 
quality and relevance of the training dataset vs. the test dataset and that they must be carefully designed.   303 

 304 
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4 Conclusions 305 

The automated analysis of root system images is routinely performed in many research projects. Here 306 
we used a library of 10;000 synthetic images to estimate the accuracy and usefulness of different 307 
image descriptors extracted with a homemade root image analysis pipeline. Our study highlighted 308 
some limitations and biases of the image analysis process.  309 

We found that the type of root system (fibrous vs tap-rooted), its size and complexity, as well as the 310 
quality of the images had a strong influence on the accuracy of some commonly used image 311 
descriptors and their meaning and relevance for ground-truth extraction. So far, a large proportion of 312 
the root research has been focused on seedlings with small root systems and has de facto avoided 313 
such errors.  314 

However, as the research questions are likely to focus more on mature root systems in the future, 315 
these limitations will become critical. We showed that synthetic datasets can be used for calibration 316 
or modelling (machine learning) steps that allow ground-truth extraction from comparable images. 317 
We then hope that our library will be helpful for the root research community to evaluate and 318 
improve other image analysis pipelines.  319 

320 
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9 Figures legends 341 

Figure 1:  342 

A. Image of a 2-week old maize root system grown in rhizotron. B. Close-up showing overlapping 343 
roots. C. Close-up showing crossing roots. 344 

Figure 2:  345 

Overview of the workflow used in this study. A. Generation of root systems using Archisimple. B. 346 
Creation and analysis of root images. C. Use of Random Forest algorithms to better estimate root 347 
system ground-truths. D. Illustration of the different noise levels used in the analysis. E. Example of 348 
descriptors extracted with RIA-J  349 

Figure 3:  350 

A. Principal Component Analysis of the root ground-truth dataset. Images of the selected root 351 
systems have been added for illustration. B. Loadings of the Principal Component Analysis. 352 

Figure 4:  353 

A. Heatmap of the r-squared values between the different image descriptors and the ground-truth 354 
values, for the images without any noise. Black represents an r-squared value of 1; white represents a 355 
value of 0. Upper panel: tap-root dataset. Lower panel: fibrous root dataset. Arrows highlight the 356 
ground-truth data that cannot be accurately described with the different descriptors. The arrows were 357 
doubled when it was the case for both fibrous and tap-rooted root systems.  358 

Figure 5:  359 

Error estimation for three ground-truth parameters. A. Evolution of the overlap index (proportion of 360 
root overlapping) with the root system size. B-D: Left panel shows the relationship between the 361 
descriptors and the corresponding ground-truth variables. Right panels show the evolution of the 362 
Mean Relative Error (MRE) as a function of the overlap index. For the MRE calculations, the 363 
continuous variables were discretized in groups. B. Total root length. C. Number of lateral roots. D. 364 
Root system depth 365 

Figure 6:  366 

Comparison between the direct trait and the random forest approach, for the different root system 367 
types and the different levels of noise. For each metric, we computed both the r-squared value from 368 
the linear regression between the estimation and the ground-truth (left panels), as well as the Mean 369 
Relative Error (right panel). The grey points represent the values obtained with the direct estimation 370 
(best descriptor, no noise). Color points represent the values obtained with the random forest 371 
approach, for different levels of noise. The dotted lines show the 0.9 (r-squared) and 0.1(MRE) 372 
thresholds. 373 

Figure 7:  374 

Comparison between the direct trait estimation and the random forest approach, for the different root 375 
system types and the different levels of noise. A. Comparison, for the total root length, of the 376 
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accuracy of both approaches. The dotted line represents the diagonal. The plain line represents the 377 
linear regression. B. Same, for the number of roots.  378 

 379 

380 
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10 Tables 381 

Table 1: Root system parameters used as ground-truth data 382 

Name Description Unit 

tot_root_length The cumulative length of all roots mm 

tot_prim_length The cumulative length of all root axes mm 

tot_lat_length The cumulative length of all lateral roots mm 

mean_prim_length The mean first-order roots length mm 

mean_lat_length The mean lateral root length mm 

n_primary The total number of first order roots - 

n_laterals The total number of lateral roots - 

mean_lat_density 

The mean lateral root density: for each first-order root, 
the number of lateral roots divided by the axis length 
(total length). mm-1 

mean_prim_diam The mean diameter of the first-order roots mm 

mean_lat_diam The mean diameter of the lateral roots mm 

mean_lat_angle The mean insertion angle of the lateral roots ° 

 383 

384 
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Table 2: Root image descriptors extracted by RIA-J 385 

Name Description Unit Reference 

Morphology 

area Projected area of the root system mm2 (Galkovskyi et al., 2012) 

length Length of the skeleton of the root system image mm (Galkovskyi et al., 2012) 

tip_count Number of end branches in the root system skeleton -  

diam_mean Mean diameter of the root object in the image mm  

Geometry 

width The maximal width of the root system mm - 

depth The maximal depth of the root system mm - 

width_depth_rati
o Ratio between the width and the depth of the root system - (Galkovskyi et al., 2012) 

com_x - com_y Relative coordinates of the centre of mass of the root system - (Galkovskyi et al., 2012) 

convexhull Area of the smallest convex shape encapsulating the root system mm2 (Galkovskyi et al., 2012) 

exploration Ratio between the convex hull area and the projected area - (Galkovskyi et al., 2012) 

386 
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Table 3: Ranges of the different ground-truth data from the root systems generated using 387 
ArchiSimple 388 

variable minimum value maximum value unit 

Fibrous 

tot_root_length 110 73971 mm 

width 0.76 302 mm 

depth 50 505 mm 

n_primary 1 20 - 

tot_prim_length 79 5409 mm 

mean_prim_length 27 470 mm 

mean_prim_diameter 0.2 0.4 mm 

mean_lat_density 0 5 root/mm 

n_laterals 0 4448 - 

tot_lat_length 0 71556 mm 

mean_lat_length 0 50 mm 

mean_lat_diameter 0 0.3 mm 

mean_lat_angle 0 88 ° 

Tap rooted 

tot_root_length 78 41870 mm 

width 0.1 173 mm 
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depth 55 505 mm 

n_primary 1 1 - 

tot_prim_length 59 509 mm 

mean_prim_length 59 509 mm 

mean_prim_diameter 0.2 16 mm 

mean_lat_density 0 2.3 root/mm 

n_laterals 0 3353 - 

tot_lat_length 0 40225 mm 

mean_lat_length 0 51 mm 

mean_lat_diameter 0 2.2 mm 

mean_lat_angle 0 97 ° 

 389 

390 
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