
1 

 

 

Universal attenuators and their 
interactions with feedback loops in gene 
regulatory networks 
 

 

Dianbo Liu+,1,2,3, Luca Albergante+,1,4, Timothy J Newman*,1 

 
1. School of Life sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK 
2. The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA 
3. Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, 

Cambridge, MA 02139, USA 
4. Institut Curie, 26 Rue d'Ulm, 75005 Paris, France 

 
* Corresponding Author: t.newman@dundee.ac.uk 

+ Authors contributed equally to this article  

 

In brief  
We present a general principle that linear regulatory chains exponentially attenuate the range 
of expression in gene regulatory networks. The discovery of a universal interplay between 
linear regulatory chains and genetic feedback loops in microorganisms and a human cancer 
cell line is analysed and discussed.  

Highlights 
Within gene networks, linear regulatory chains act as exponentially strong attenuators of 
upstream variation 

Because of their exponential behaviour, linear regulatory chains beyond a few genes provide 
no additional functionality and are rarely observed in gene networks across a range of 
different organisms 

Novel interactions between four-gene linear regulatory chains and feedback loops were 
discovered in E. coli, M. tuberculosis and human cancer cells, suggesting a universal 
mechanism of control.  
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Abstract   
Using a combination of mathematical modelling, statistical simulation and large-scale data 
analysis we study the properties of linear regulatory chains (LRCs) within gene regulatory 
networks (GRNs). Our modelling indicates that downstream genes embedded within LRCs 
are highly insulated from the variation in expression of upstream genes, and thus LRCs act as 
attenuators. This observation implies a progressively weaker functionality of LRCs as their 
length increases. When analysing the preponderance of LRCs in the GRNs of E. coli K12 and 
several other organisms, we find that very long LRCs are essentially absent. In both E. coli 
and M. tuberculosis we find that four-gene LRCs are intimately linked to identical feedback 
loops that are involved in potentially chaotic stress response, indicating that the dynamics of 
these potentially destabilising motifs are strongly restrained under homeostatic conditions. 
The same relationship is observed in a human cancer cell line (K562), and we postulate that 
four-gene LRCs act as “universal attenuators”. These findings suggest a role for long LRCs 
in dampening variation in gene expression, thereby protecting cell identity, and in controlling 
dramatic shifts in cell-wide gene expression through inhibiting chaos-generating motifs.  
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List of Abbreviations: 
 

Transcription factor: TF 

Gene regulatory network: GRN 

Linear regulatory chain LRC 

Relative effectiveness: RE 

Lowest level of expression: LLE 

Highest level of expression: HLE 

Mean position across all LRCs: MPAL 
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Introduction 
 

The behaviour of cells is controlled in large part by the coordinated activation and inhibition 
of thousands of genes. This coordination is achieved via a complex network of gene 
regulation that enables a cell to express the appropriate set of genes for a particular 
environment and/or phenotype. The primary mode of gene regulation is through a class of 
genes that encode proteins which bind to regulatory regions on the DNA. These transcription 
factors (TFs) activate or inhibit the expression of typically a large number of downstream 
target genes. Genome-wide studies of TF binding allow the construction of gene regulatory 
networks (GRNs) that summarize the global structure of genetic interactions; each node 
represents a gene and an arrow between two nodes denotes the regulation of a target gene by 
a TF-coding gene (which we will describe for brevity as a TF unless there is potential for 
confusion). The dynamics of transcriptional regulation are still not fully understood [1]. 
However, over relatively long time scales, transcriptional response is generally analogue, i.e. 
a stronger expression of a TF gene results in a higher nuclear concentration of the TF protein 
and thereby a stronger activation or inhibition of the target genes [2-6]. 

GRNs typically contain thousands of genes and are beyond simple intuitive interpretation and 
understanding. Therefore, computational and mathematical approaches must be employed to 
gain a better understanding of the structure and function of system-level genetic interaction. 
One widely used approach focuses on the study of small-scale network configurations, called 
motifs [4, 7], and on their functional pressures. This approach has been effective in 
uncovering the functionality of motifs often encountered across different networks, such as 
the feed-forward loop and the bi-fan. The combinatorial complexity of GRNs limits the 
applicability of this analysis to motifs comprising more than four nodes, and complimentary 
ways of analysing networks are important to better understand how larger-scale topology is 
associated with GRN function [4, 8, 9]. 

In this article, we use a methodology inspired by motif analysis to study the behaviour of a 
particular class of network configurations that we call linear regulatory chains (LRCs). Our 
approach exploits the theoretical power of mathematical and statistical analysis to determine 
the expected behaviour of LRCs and to derive predictions that we then test on biological 
datasets available in the literature to obtain a better understanding of the selection pressures 
acting on GRNs. 

For the purpose of our mathematical analysis, we define LRCs as linear chains of one-way 
regulation in which each node interacts with at most one node downstream and one node 
upstream. A given interaction can be either inhibitory or activating. Each LRC starts at the 
top layer (no transcriptional input) and ends at the bottom layer (no transcriptional output1) of 
the respective GRN. We relax this definition when studying real GRN datasets, and define 

                                                           
1
 Transcription factors that are only regulated by feedback loops are also considered at top layer. In the GRNs 

analysed in this study, there are very few transcription factors in this category. 
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LRCs as linear chains of genes which form a causal chain of transcriptional interaction, 
without placing restrictions on the number of connections to any given node. 

While our analysis is focussed here on transcriptional interactions, the generality of network 
modelling allows the application of our results to other contexts in molecular biology and 
beyond [5, 10, 11]. 
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Results 

Mathematical formulation of gene regulation 
To investigate the effect of LRCs in gene expression we employed a minimal mathematical 
model of transcriptional regulation. The model describes a linear chain of regulation as 
portrayed in Figure 1A. For two adjacent genes in the chain, we assume that the rate of 
transcription of the target gene varies smoothly with the concentration of the TF of the 
corresponding upstream gene, according to a Hill-like function (see Materials and Methods). 
This function is characterised by four parameters and is able to describe both activation and 
inhibition (Figure 1B-C and Figure S. 1A). To minimize the complexity of our model, we 
assume that protein concentration can be used as a proxy for gene expression, i.e. that the rate 
of transcription and the protein concentration are proportional. We define the source TF as 
the TF at the top of the chain which is not itself under transcriptional regulation. Most of our 
analysis concerns the effective regulation by the source TF on downstream genes. Therefore, 
it is very important to distinguish the regulation of a downstream node due to its immediate 
upstream TF and the effective regulation of the same node due to the source TF. A useful 
feature of the Hill-like function that we use is its universality: if it describes each of the 
individual links in the chain (with Hill coefficient of unity), then the net regulation of a node 
due to the source TF can also be described by the very same function, thus providing a 
simplified description of the LRC. 

The effective regulation of the nth gene in an LRC can be described by a function of the 
expression level of the source TF. This function will be called �����. The regulatory effect of 
����� can be summarised by three quantities: the “lowest level of expression” (LLE), the 
“highest level of expression” (HLE), and the “effectiveness”, which is the difference between 
HLE and LLE. With regard to the last of these three, it is more convenient in our analysis to 
define “relative effectiveness” (RE), which is the difference between HLE and LLE divided 
by their mean (see Table 1 for a summary of the quantities introduced). More formally: 

      LLE� � min�������       HLE� � max�������             RE� �
HLE� � LLE�

�
�
�HLE� � LLE��

       

These three measures complement the Hill coefficient, which is commonly defined for 
transcriptional response and determines the degree of non-linearity, i.e. “sensitivity”, of the 
regulatory function [12]. 

The precise sequence of inhibition and activation within an LRC dictates the net effect on a 
given target gene when the expression of the source TF is varied. For example, consider an 
LRC comprising only inhibitory interactions: after an even number of regulatory steps, the 
initial gene acts as an activator, while after an odd number it acts as an inhibitor (Figure 1D). 
On the other hand, when the LRC comprises only activating interactions, all downstream 
genes are effectively activated by the source TF. If the LRC is a mixture of activating and 
inhibiting interactions, the type of net regulation of a given gene depends on the number of 
upstream inhibitory links. Due to this dynamic diversity, we will focus primarily on LRCs 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2016. ; https://doi.org/10.1101/074716doi: bioRxiv preprint 

https://doi.org/10.1101/074716
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

comprising only inhibitory steps. The relevance of our analysis to more heterogeneous LRCs 
will be discussed as appropriate. 

 

Simulations of LRCs and comparison to experiments on E. coli 

The behaviour of each step of transcriptional regulation is characterised by a potentially 
unique combination of biological factors that control how the concentration of the source TF 
affects the expression of the target TF. In our model, this behaviour is controlled by four 
independent parameters (See Supplementary Figure 1). Our parameterization allows for 
greater flexibility, but limits our ability to perform a full analytical analysis. Therefore, we 
decided to study the behaviour of LRCs by analysing the outcome of 10000 simulations 
constructed by randomly sampling all the necessary parameters and measuring LLE, HLE 
and RE as a function of the length of the chain (up to chain length of ten). The results of our 
analysis are summarized in Figure 2A-C. 

Our simulations show quite convincingly that the average RE decreases exponentially, since 
log�RE�� decreases linearly with increasing n (Figure 2A). This result is robust to variation 
in the parameter space (Figure S. 2A-F), statistically highly significant (p-value < 10-6) and 
supported by a strong goodness of fit (adjusted R2 > 0.9). Additionally, our simulations show 
that the average LLE increases (Figure 2B) and the average HLE decreases (Figure 2C) with 
increasing n. The rate of change in LLE and HLE is less dramatic than the change in RE and 
more sensitive to parameter choices.  

Using a synthetic biology approach, Hooshangi et al. constructed a genetic circuit comprising 
a linear chain of four transcriptional inhibitors [12]. This circuit was formed by E. coli genes 
and was inserted into live bacteria. Therefore, their data are ideal to test the predictions of our 
model. On deriving the value of RE from their published data we find an exponential 
decrease as predicted by our simulations (Figure 2D). Moreoever, on deriving LLE and HLE 
we find a clear increase in LLE and decrease in HLE consistent with the results of our 
simulation (Figures 2E and 2F).  

This comparison with experimental results supports the predictions of our simulations and 
indicates that the signal conveyed by the LRC (i.e. the effect of variation of an upstream TF 
on a downstream gene) gets exponentially weaker as the length of the chain increases. To 
better understand if this effect was limited to a chain of inhibitors, we extended our analysis 
to LRCs formed only by activators and to LRCs formed by a mixture of activators and 
inhibitors. These simulations show that our conclusions on the behaviour of  RE, LLE and 
HLE are robust to the type of chain considered (Figure S. 1B-C). 

These results indicate that in an LRC the response of a gene to the variation in the 
concentration of an upstream TF becomes exponentially weaker as the number of links 
separating them increases, and thus a long LRC acts as an attenuator of upstream variation. 
The steady increase in LLE indicates that even though each inhibitory link of a LRC may be 
capable of perfect inhibtion, the net inhibition of a downstream gene becomes increasingly 
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“leaky”. Similar considerations suggest that activated genes downstream of a long LRC are 
only able to achieve an imperfect activation. These observations are supported by the 
behaviour of the average response function for inhibiting and activating chains (Figures 2 G-
H).  

This average behaviour is, however, not always observed: in a small percentage of cases 
(<0.5%) RE remain stable or even increase. This indicates that examples with non-decreasing 
RE are possible as long as the factor controlling transcriptional regulation are constrained to 
specific values that remains shielded from molecular noise. 

Computational analysis of LRCs in E coli 

The results reported in the previous section support the idea that LRCs more than a few genes 
in length act as very strong attenuators of variation. LRCs beyond a few steps in length 
should be rare in real organisms since the attenuation saturates exponentially as a function of 
the number of links in the LRC (i.e. increasingly long chains act as increasingly imperfect 
regulators and exhibit increasingly lower relative effectiveness). To test this hypothesis we 
constructed various GRNs from the literature and computed the number of LRCs of different 
length. The E. coli GRN, obtainable from the RegulonDB database [13], is one of the most 
validated in the literature. Our analysis on this GRN indicates that LRCs are preferentially 
short and that chains with more than six genes are very uncommon (Figure 3A and Table 2). 
The lack of long LRCs is particularly evident when the real GRN is compared to both random 
(Figure 3A) and randomised (Figure S.4) networks. 

A consequence of our current analysis is that transcriptional regulation in LRCs is more 
functional for nodes closer to the source gene. Therefore, evolutionary arguments would 
suggest that genes deeper in the chain require additional regulatory inputs in order to exhibit 
functional variation of expression. To test this hypothesis, we looked at the 52 longest LRCs 
of E. coli, which comprise six TFs and one non-TF gene. In all of these LRCs, transcriptional 
regulation from TFs outside of the LRCs is present, indicating that off-chain regulation is a 
common, perhaps even required, feature. If we divide the genes of these LRCs into two 
classes depending on their distance for the source gene, a pattern emerges. The TFs 
constituting the upper half of the LRCs, i.e. from the second to the fourth position, are 
regulated on average by only a limited number of TFs, whereas the average number of 
regulating TFs increases significantly from the fifth position onward (Figure 3B, p-value < 
2×10-16), consistent with our hypothesis. The relatively small number (56) of long LRCs 
allows us to analyse their individual structures and functionalities. These LRCs can be 
grouped into three categories depending on the genes contained. The first category contains 
the MarRAB operon [14] , the second category contains the Gadx-GadW regulon [15] and the 
third category contains the RcnR-RcnA genes [16]. As reported in Table S1, the vast majority 
of the TFs forming these LRCs are involved in stress and antibiotic response, suggesting that 
such functionalities may require the tightly controlled dynamics provided by a long LRC.  

The MarRAB operon and Gadx-GadW regulon form peculiar three-gene feedback loops 
which, due to its high level of connectivity, is quite unlikely to emergence by chance. This 
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configuration, which we call a “chaotic motif” (Figure S. 3A), has the potential to generate 
highly variable gene expression profiles [9, 17]. The chaotic dynamics allow GRNs with 
small differences at the level of gene expression to diverge rapidly over time. Therefore we 
previously proposed that the chaotic motifs identified in E. coli could be used to promote 
differences in the gene expression profile across different bacteria thus generating extensive 
phenotypic heterogeneity in a population and promoting the emergence of antibiotic-resistant 
cells [9]. In figure 3C the genes forming the only two chaotic motifs observed in E. coli are 
reported in red and all of the TFs that regulate them, either directly or indirectly, are reported 
in blue, violet and green. 

While potentially beneficial under stress conditions, a chaotic response is presumably 
detrimental in a stable environment. Therefore, we expect that the chaotic motifs will be 
tightly controlled under normal conditions. As suggested by our analysis, long LRCs could be 
ideal candidates to provide such tight control. Indeed, we find that both chaotic motifs are 
intertwined downstream with one or more of the longest LRCs of E. coli (Figure 3C). 
Statistical analysis indicates that the probability of these motifs being embedded into such 
long LRCs by chance is very small (p-value = 0.004). 

To further test this idea we compute the “embeddedness” of different genes into LRCs of 
different length. More precisely, for each gene, we computed the “mean position across all 
LRCs” (MPAL), which is the mean length over all the LRCs that contain that gene. Genes 
that are more often found in long LRCs will have a larger MPAL. Consistent with our 
expectation, the genes involved in chaotic motifs have a significantly larger MPAL than the 
other genes of the E. coli GRN (Figure 3D, p-value < 0.004). These results support the idea 
that LRC dynamics is exploited by cells to control the activation of chaotic motifs. 

To explore the molecular mechanisms underpinning this theoretical prediction, we analysed 
the biology of the MarRAB operon due to the availability of extensive information on its 
genetics as a consequence of its key importance in antibiotic resistance [14]. The behaviour 
of MarRAB depends on the activity of the marbox enhancer DNA sequence. Experimental 
results indicate that Fis acts as a promoter of MarRAB only when marbox is activated by 
MarA, SoxS or Rob [18]. Moreover, when MarA, SoxS or Rob is absent, Fis reduces the 
activity of MarRAB [18]. Therefore, our theory indicates that when marbox is not active, the 
transcriptional activity of both MarA and MarR is tightly controlled due to the presence of a 
long LRC and that the potential chaotic behaviour of the motif is restricted (Figure 3E, violet 
arrows). Upon activation of marbox by an environmental signal – such as superoxide stress 
transduced through SoxS [19-21] – Fis activates the MarRAB operon and the LRC becomes 
shorter (Figures 3E, yellow arrows; Figure 3F). This allows larger variations for MarA and 
MarB potentially unleashing chaotic dynamics. 

Comparable dynamics is observable in the other chaotic motif, which includes the genes 
GadX, GadE, and GadW. Fis has been reported to inhibit expression of Gadx in the late 
stages of exponential growth, when a dramatic shift in gene regulation can be observed with 
respect to earlier stages [22]. Interestingly, the late stages of exponential growth are 
commonly associated with stress [22] and the GRN of E. coli suggests that during this stage 
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Gadx is regulated by a two-gene LRC, which is formed by Ihf and Fis, instead of the three-
gene LRC which is active in the previous stages (formed by Ihf, Fis and Crp). To the best of 
our knowledge, the exact molecular mechanism underlying this switch has not yet been 
elucidated. However, our analysis provides new ways to approach the investigation of this 
problem [22]. 

 

Computational analysis of LRCs in other microorganisms 

The E. coli GRN is one of the most experimentally validated available in the literature and 
extensive analysis is possible. Other less well-characterised GRNs are available for M. 
tuberculosis and S. cerevisiae, allowing an admittedly more limited exploration. As our 
theory will be very sensitive to false positives, the outcome of our analysis for these 
organisms is potentially less robust. 

Many similarities are found between the GRNs of M. tuberculosis and E. coli. The LRCs of 
M. tuberculosis are limited in number and preferentially short (Figure 4A), LRCs are shorter 
than expected from random networks, and the number of transcriptional regulators is 
significantly higher for genes deeper in the longest LRCs (Figure 4B). Remarkably, two 
chaotic motifs with the same structure as those encountered in E. coli can be found (Figure 
4C Figure S. 3B), and the same intertwining of chaotic motifs and LRCs discussed above can 
be observed. Both of the chaotic motifs of M. tuberculosis are embedded into the longest 
LRCs of the organism (Figure 4C) and the probability of these motifs being embedded into 
such long LRCs by chance is small (p-value < 10-6). In striking similarity to E. coli, the two 
chaotic motifs in M. tuberculosis are controlled by LRCs comprising four genes, hinting that 
a four-gene LRC acts as a “universal attenuator.” 

The experimental work of Harbison et al. provides one of the most reliable sources for 
transcriptional interactions in yeast [9, 23] and we reconstructed the GRN of S. cerevisiae 
from their data. However, it must be noted that other datasets exist with different properties 
[24, 25], thus indicating the difficulty associated with the experimental derivation of the GRN 
for this organism and suggesting a perceivable level of noise even in the data that we used. 
LRCs of moderate length are present in this organism (Figure 4E). Nonetheless, they are 
shorter than expected from random networks. Moreover, compatible with our expectations, 
the number of transcriptional regulators is higher for genes deeper in the longest LRCs 
(Figure 4F). No chaotic motifs are observed in this GRN. 

Computational analysis of LRCs in human cell lines 

The work of the ENCODE consortium allowed the derivation of a partial GRN for two 
human cell lines: GM12878 and K562. The GRN of the human non-cancer cell line 
GM12878 behaves as expected from our theory: LRCs are preferentially short and the longest 
transcriptional chains consist of only four TFs and one non-TF gene (Figure 5A and C). 
Moreover, LRCs are shorter than expected from random networks and the number of 
transcriptional regulators is higher for genes deeper in the longest LRCs (Figure 5C). 
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Compatible with the idea of a relatively stable phenotype of normal cells, no potentially 
chaotic motifs can be identified in this cell line. 

Despite there being a comparable number of TFs and comparable link density in the two 
human cells lines, the GRN of the human leukaemia cell line K562 displays remarkably 
different properties: very long LRCs can be found, although longer LRCs would be expected 
from random networks (Figure 5 B, C and E), and potentially chaotic motifs consisting 
interlinked feedback loops are common [9, 17] (Figure 5F and Figure 6 A and B). The 
longest LRCs are composed of 14 TFs and one non-TF gene (Figure 5 B and C, and Figure 6 
A). Interestingly, the “tail” of the longest LRCs contains several genes that are often 
dysregulated in cancer: EGR1 [26, 27] [28], IRF3 [29], POLR3A [30], and IRF1 [31, 32].  

All but one gene (GTF2F1) involved in the formation of potentially unstable long feedback 
loops are embedded into the longest LRCs found (Figure 6A). The probability of observing 
this embedding by chance is small (p-value < 10-2) and all the TFs involved in the formation 
of potentially chaotic feedback loops display a large MPAL (Figure 5F).  

The longest LRCs have a peculiar structure. Two four-gene LRCs control the complex set of 
feedback loops. Remarkably, a single four-gene LRC, composed by EGR1, IRF1, POLR3A 
and IRF1, can be found in the tail of the longest LRCs (Figure 6A), emanating from the 
feedback loops. Our theoretical analysis suggests that the dynamics of the final gene of this 
chain (IRF1) is highly constrained, and biological experimentation indicates that IRF1 is a 
tumour suppressor gene relevant to a number of cancers including leukaemia [32-34]. Our 
theoretical interpretation is that the dynamics of LRCs is exploited by cancer cells to inhibit 
the proper activity of this gene.  

Note that a group of genes with a high MPAL can be identified in the Stable group. These 
genes are therefore likely to be encountered in relatively long LRCs, and hence conceivably 
have very limited RE. Notably, all of these genes have been shown to have an important role 
in the survival of leukaemia cells (NFE2[35], POLR3A[36], JunD [37], Myc[38], GATA2[39], 
NR4A1[40], IRF3[41], IRF1[32-34]) suggesting that cancer cells may be dynamically 
controlling the variation of these genes. 

Potential biases introduced by under sampling and errors in the human GRNs limit the power 
of a direct mathematical approach. However, the strong diversity observed in different 
topological features of the non-cancer and cancer cell lines is an indication of a profound 
difference in their transcriptional programs. Therefore, a direct comparison between the 
GRNs of the two cell lines can be very informative in highlighting differences that may then 
be used to develop new therapies [9].  
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Discussion  
Theoretical and experimental efforts have provided strong evidence that variability in gene 
expression plays a significant role in controlling cellular phenotypes in development [42], 
health [43] and disease [44, 45]. While the transcriptional mechanisms responsible for 
controlling this variability continue to be an active area of research [46], the potential system-
level interactions are less well explored, and network analysis of GRNs is a powerful 
approach to fill this gap. GRNs provide a description of the coordination of gene expression 
at a systems level and can therefore be used to explore the potential role of topological 
features that control the variability of genes expression.  

Long LRCs “pin down” relative effectiveness 
Our mathematical model suggests that long LRCs “pin down” the expression of downstream 
genes, limiting their ability to vary in response to environmental or intracellular cues 
affecting the gene at the top of the chain. In fact, the variation is predicted to decay 
exponentially along the chain. This conclusion is supported by data derived from synthetic 
biology experiments on E. coli [12]. 

A direct consequence of our model is that long LRCs are ineffective in transmitting variation 
in gene expression beyond a few transcriptional steps. Therefore, over evolutionary time, one 
might argue that long LRCs yield inefficient information transmission and will have been 
negatively selected, resulting in relatively small numbers of long LRCs in GRNs. This 
prediction is supported by an analysis of the GRNs of different organisms, ranging from 
bacteria (E. coli and M. tuberculosis), to yeast and human.  

It has been observed that the sensitivity of gene regulation becomes higher as LRCs get 
longer and a “switch-like” behaviour is observed; this can be interpreted as the result of an 
increasingly larger effective Hill-coefficient [12] . Whilst our findings do not contradict this, 
we present an additional observation that the terminal gene of a long LRC will display only a 
limited range of variation in response to changes in the concentration of the source gene. 
Beyond a length of approximately four links, due to the exponential decay, the range of 
variation is very small and likely to be comparable in magnitute to the fluctuations in gene 
expression due to intrinsic molecular noise. In addition, our modelling indicates that the 
effectiveness of regulation is compromised by the LRC topology itself. For example, a linear 
chain of an odd number of perfect inhibitors will have a net effect of imperfect inhibition, and 
the degree of imperfection will increase with the length of the chain. Taken together, these 
observations imply a tradeoff between the sharpness and the effectiveness of net regulation 
through a LRC, which depends on the specific parameters that characterize the interactions, 
but nonetheless strongly suggest that very long LRCs are of limited utility in GRNs, and 
hence negatively selected through evolution. 

Our model also suggests that the average behaviour of LRCs can be prevented by 
constraining the biological parameters associated with transcription to very specific values. 
This suggests that, under specific circumstances, biological processes may be in place to 
prevent the emergence of such average behaviour in LRC. The precise regulation of the 
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parameters required also suggests that molecular insults are very likely to push LRCs towards 
the average expectation, potentially changing the behaviour of cells. 

 

Chaotic motifs are potential drivers for heterogeneity  
Under normal conditions, cells must be able to filter the fluctuations of protein concentration, 
which are due to molecular noise. To this end, they need to display a stable response. A 
consequence of this type of response is the limitation of the heterogeneity of a population of 
cells, as each cell exposed to similar stimuli will react in a comparable way. Therefore, the 
very same stable behaviour that helps cells withstand a noisy environment can be detrimental 
under stress condition, such as an antibiotic treatment, as in this circumstance heterogeneity 
is helpful in allowing the emergence of resistant subpopulations of cells. 

Therefore, it has been suggested that network motifs in the GRNs of bacteria can be activated 
only when the cell is exposed to stress [19-21]. Ideally, these motifs should have the potential 
to produce chaos. Chaos theory is a well-known mathematical theory that studies the 
behaviour of systems that are extremely sensitive to initial conditions — a paradigm 
popularized by the so-called “butterfly effect”. In a chaotic system, small differences in initial 
conditions can yield widely diverging states after a relatively short time [47, 48].  

Theoretical studies indicate that certain network motifs have the potential to produce a 
chaotic response [17] and recent experimental work has shown complex oscillations and, 
loosely speaking, chaotic dynamics of certain GRN motifs both in cell-free system and in 
vivo [49]. Since a chaotic response is able to generate wildly different values by starting from 
very similar initial conditions, it has been suggested that chaos can act as a “heterogeneity 
engine” that allows a population of cells to quickly explore a large number of phenotypes [9]. 
Such phenotypic heterogeneity is likely to play a crucial role in allowing the emergence of 
resistant clones which will help a population to overcome challenging conditions such as 
environmental stress and antibiotic treatments [50, 51]. 

As discussed above, minimal chaotic motifs can be identified in the GRNs of E. coli and M. 
tuberculosis. Moreover, more complex and somewhat more disorganized chaotic motifs can 
be found in cancer. This suggests a strong parallelism between the systemic processes that 
allow bacteria and cancer to generate heterogeneity and ultimately to overcome the ability of 
the immune systems to properly fight infections and cancer. 

Long LRCs suppress generators of potential “butterfly effects” 
A limited number of long LRCs can be observed in the GRNs analysed. This suggests that 
such configurations may be important to limit the gene expression level of few selected 
genes. Remarkably, we found that in both E. coli and M. tuberculosis, long LRCs are 
associated with genes activated during stress and antibiotic response. The expression of stress 
response genes is associated with an increased metabolic cost, which generally results in a 
reduced growth rate [52-54]. Therefore, it is reasonable to expect a tight control of these 
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genes to prevent a dampening of the fitness of a population. Indeed, such tight control is 
embodied in the dynamics of LRCs. Additionally, the transcriptional control exerted by LRCs 
on genes downstream in the chain can help reduce noise arising from stochastic gene 
expression and fluctuations in the cellular environment [55-58].   

The entanglement of long LRCs with potentially chaotic motifs in E. coli and M. tuberculosis 
suggests that the dynamics of long LRCs may allow these organisms to directly influence 
phenotypic variability and hence population-level heterogeneity by allowing a chaotic 
response only when needed. This finding is supported by the biology of both the MarRAB 
operon and the GadW, GadX, and GadE genes in E. coli and suggests new ways to bolster the 
effectiveness of drug treatments by targeting the mechanisms that lead to the emergence of 
resistant clones in bacterial populations. In all the GRNs that we analysed, the chaotic motifs 
are observed after LRCs composed of exactly four genes. This is in remarkable agreement 
with our theoretical observation that the genetic variation is tightly restrained from the fourth 
gene onward, and leads us to propose that four-gene LRCs act as “universal attenuators”. 

Long LRCs and potential chaotic motifs are entangled in such a way to support both strong 
variations in the expression of certain genes, i.e. those within long feedback loops, such as 
EGR1 (a regulator of multiple tumour suppressor genes [59]) and a very limited variation in 
the expression of others, i.e. those residing at the end of LRCs, such as IRF1 (an essential 
regulator of growth of leukaemia and other cancer cell types [31-33]). Indeed, four-gene 
LRCs operate at both the “input” and “output” of non-linear feedback loops in the K562 
GRN. The combined action of these competing dynamics may be able to generate 
heterogeneity while limiting the necessary variation in gene expression associated with 
tumour suppression. 

Our findings may provide a mechanistic basis for “oncogene addiction” [60, 61]. The term is 
used to indicate that some tumours depend on the constitutive activation of a single oncogene 
for sustaining growth and proliferation and that transient inactivation of that particular 
oncogene may be enough to promote differentiation or apoptosis of cancer cells [62]. 
Universal attenuators may drive the constitutive activation of a gene, and thus targeting of 
LRCs could be a novel strategy for cancer cell killing.  

Analysis of LRCs shed new light on the topological pressure acting on GRNs  
We have previously shown that mathematical modelling can be used to explore the 
topological features associated with robustness in GRNs. In particular, the theory of Buffered 
Qualitative Stability (BQS) postulates that long causal chains of genes, irrespective of the in-
degree of the gene at the top of the chains, should be limited in number due to their 
evolutionary susceptibility to seeding long feedback loops, which can create instability[9]. 
Taken together with our current result, this indicates that long causal chains of TFs are 
dangerous and with limited functionalities, thus suggesting that healthy cells should have 
very limited instances of such configurations. This is indeed observed in real data. 

Further connections emerge when potential sources of instability (chaotic motifs) are 
contextualised with respect to LRCs. When chaotic motifs are identified in a GRN, they are 
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entangled downstream of long LRCs. Moreover, and quite unexpectedly, an LRC comprising 
exactly four genes (and therefore three transcriptional interactions) can be found upstream of 
all the chaotic motifs. This strongly suggests that four-gene LRC provides a general 
mechanism in GRNs to ‘pin down’ or insulate the genes involved in the generation of a 
chaotic response, hence allowing a topological control of heterogeneity. 

Conclusions 
 

We have presented a set of results arising from theoretical modelling, statistical simulations 
and data analysis, all focused on the role of two different topologies in GRNs, namely, long 
linear regulatory chains (LRCs) and chaotic motifs. Our modelling work indicates that LRCs 
have a key role in reducing variation in gene expression, while chaotic motifs can act in the 
opposite manner and generate strong variation through chaotic dynamics. LRCs are highly 
effective at shutting down variation, and hence there is no additional benefit for a GRN to 
have very long chains, a result which is consistent with the GRNs analysed. Chaotic motifs, 
in being able to generate variation so rapidly, would presumably be inactivated in the steady 
state of a cell’s life cycle, and indeed we find in bacteria and a human non-cancer cell line 
that such motifs, when present, always sit at the end of relatively long LRCs, implying that 
they are strongly suppressed. The GRN of a human cancer cell line exhibits a much richer 
interplay between LRCs and chaotic motifs, and we postulate this may allow a given cancer 
cell to drive strong variation in certain genes and inhibit expression of tumour suppression 
genes, thereby allowing optimal conditions for growth and survival in the challenging 
environment of host tissue. Due to the ubiquity in the GRNs studied of four-gene LRCs, we 
postulate these modules as “universal attenuators”, with a key role of controlling potentially 
chaotic feedback loops. 

Our work provides evidence that one can exploit knowledge of the topology of GRNs to exert 
a direct control on the variability of genes, even if a precise characterization of the parameters 
that control gene regulation is unavailable. Given the qualitative differences between the 
GRN topologies of normal and cancer cells [9], this may provide a way to design new 
targeted therapies that selectively affect gene expression variability only in cancer cells.  
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Materials and Methods 

Mathematical model of linear regulatory chains (LRCs) 
Each gene forming a given LRC was associated with a value that identifies both its 
expression level and the concentration of its transcribed protein. Moreover, we assumed the 
delays due to transcription initiation and translation to be negligible. Additionally, we 
assumed the linear chain to be autonomous, i.e. the concentration of a gene depends directly 
only on the concentration of the gene directly upstream. Therefore, the level of expression of 
each gene in the chain depends, directly or indirectly, on the concentration of the gene at the 
top of the LRC.  The interaction among sequential genes was modelled by a deterministic 
interaction function. In particular, by assuming steady state dynamics, we can describe the 
concentration of gene y in the LRC as  

� � ����	�


��	�
        Eqn.  1     

In this equation, x is the concentration of the transcriptional regulator directly upstream of the 
gene under consideration. The parameters of the equation characterize the mode and intensity 
of the interaction: � models the concentration of y when x is not present, � models the 
concentration of y when x is highly expressed, h is the Hill coefficient which describes the 
“cooperativity” of transcriptional regulation, and s is a quantity associated with the shape of 
the interaction function. When β>α, the equation describes a transcriptional activator and 
when β<α, it describes a transcriptional inhibitor (Figure S.1A and Figure S. 1 D-G). 

 

Quantitation of general properties of transcriptional regulation 

The interaction term described by Eqn. 1 was used to model the response of the terminal gene 
of a LRC with a different number of genes when the concentration of the gene at the top of 
the LRC is varied between zero and infinity. To this end, we introduced three measures 
relative to the response function of the terminal gene: “Relative Effectiveness” (RE), “Lowest 
Level of Expression” (LLE), and “Highest Level of Expression” (HLE). These quantities are 
described in the main text and in Table 1. 

Simulation of LRCs and sensitivity analysis 
The RE, LLE and HLE of 10000 simulated LRCs with 2 to 10 genes were computed. Both 
concentration and parameter values were measured in arbitrary units. For each gene of the 
LRC, the parameters that control the interactions were randomly generated using a uniform 
sampling. The parameters α, β were sampled between 0 and 1000 to indicate up to a 1000-
fold activation or inhibition, h was sampled between 1 and 10 to account for polymeric 
regulation of up to 10 transctiption factors and s was sampled between 0 and 10 to account 
for different activation thresholds. For all the sampling ranges, the boundaries were excluded. 
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Simulations and statistical analyses were performed in R version 3.2.2. To assess the 
sensitivity of our results to different parameters values, we performed an exhaustive 
computational analysis to explore the outcome of our analysis when different ranges for the 
parameter were used (Figure S. 2). This analysis supports the robustness of our conclusions. 

Assessment of the exponential decrease of RE 
To formally assess the exponential decrease of RE, we used a logarithmic transformation. If a 
quantity decreases exponentially, at each step the previous value is divided by a constant (d). 
Therefore, calling RE� the average RE after n regulatory interactions, we have: 

��� �
 ���



�
 

And therefore 

��� ����� � ��� ���
� �  �  ��� ��� 

We used a linear regression on the log-transformed data and computed the p-value for the 
estimation of the slope and the adjusted R2 for the liner model. A p-value close to zero 
indicates that the slope is significantly different from zero and therefore that a clear 
exponential decay was present in the non-log-transformed data. An adjusted R2 close to 1 
indicate that the lineal model describes the data very well. Therefore, the values reported in 
the main text support the existence of a strong exponential trend. 

Graph manipulation and analysis  
GRNs described in the main text were derived with the same procedures and parameters 
described in a previous work [9]. In particular, the E. coli GNR was obtained from 
RegulonDB version 8 [13] by considering only interactions supported by at least two 
evidence codes, the M. tuberculosis GRN was obtained from literature [63]  by considering 
all interactions, the yeast GRN was constructed from literature by considering interactions 
obtained under rich media growth supported by a p-value lower than 10−3, the human non-
cancer and cancer cell GRNs were constructed from the proximal filtered network derived 
from the ENCODE data [64] for the GM12878 and K562 cell lines respectively. See our 
previous work [9] for a discussion on the rationale behind these choices. 

The number of LRCs can be very high in complex networks with a high edge density. 
Therefore, we decided to develop a probabilistic algorithm to sample from the complete set 
of LRCs. Specifically, an LRC was grown from a starting node S selected with a probability 
proportional to its total degree. Starting from S a biased random walk was performed by 
randomly selecting an upstream node (with a probability proportional to its in-degree) or a 
downstream node (with a probability proportional to its out-degree). Nodes already present in 
the LRC were excluded from further sampling. This growing procedure was repeated until no 
upstream or downstream nodes were available. 10000 LRC samples were considered for each 
network and duplicates were removed from the count. The procedure described along with all 
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the other operations on the networks were implemented using R version 3.2.2 and the 
“igraph” package version 1.0.1 [65]. The code is available as a supplementary file. 

To perform the statistical analysis of the embeddedness of chaotic motifs with the aim of 
assessing the probability of interaction of the chaotic motifs with the longest LRCs of the 
network we employed a simple statistical model that could avoid many of the mathematical 
and computational complications arising from the comparison of real networks with a 
randomised null model. In particular, we focused on the behaviour of the TF directly 
upstream of the chaotic motifs, which will be referred as U. In all of the GRNs considered in 
this article, this U is the third gene of the longest LRCs. U regulates n other TFs. Of these, n� 
are chaotic TFs, i.e. TFs that take part in the formation of chaotic motifs, and n� � n � n� are 
stable TFs, i.e. TFs that do not take part in the formation of chaotic motifs. Due to the way in 
which GRNs have been constructed, U cannot regulate itself. Moreover, due to the structure 
of LRCs U cannot regulate the two TFs upstream in the longest LRCs. It is important to stress 
that these two upstream TFs are not chaotic. Therefore, if a GRN contains N�� TFs, U could 
in principle regulate up to N�� � 3 TFs. The N�� genes can be further divided into N� chaotic 
TFs and N� � N�� � N� stable TFs. Using a hypergeometric distribution, it is possible to 
compute the probability that when n TFs are selected from a set of containing N� chaotic 
genes and N� � 3 � N�� � N� � 3 stable genes at least n� chaotic genes are selected. This 
probability represents the p-value included in the main text. 

Random and randomized GRNs 
A random network associated with a GRN formed by g genes, n TFs and e edges was 
obtained by randomly placing e edges on an empty network with g nodes, in such a way that 
the source of each edge was randomly selected from a fixed set of n nodes. The randomised 
(rewired) GRNs were derived from original GRNs of the corresponding organisms using the 
“rewire.edge” function of the igraph package version 1.0.1 in R version 3.24. The number of 
rewiring iterations for each GRNs was set to ten times the number of edges in the network. 
100 randomised GRNs were generated for each organism or cell type.  

Sources for biological data used 
The values of RE, HLE and LLE along the linear transcriptional chains in the bacterium E. 
coli K12 were obtained from the experiments conducted by Hooshangi et al. 2005 [12]. Gene 
and transcription regulation data for E. coli K12 were obtained from RegulonDB [13] with 
the same procedures and parameters described before [9]. Data on the functions of genes in 
E. coli K12 were obtained from the referenced literature and the EcoCyc web resource [66, 
67]. The GRN for M. tuberculosis, S. cerevisiae and human were derived from experimental 
data [23, 63, 64] using the same procedures and parameters described before [9]. 
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Figure 1 Dynamics of long regulatory chains (LRC). (A) Schematic of a 5 gene LRC 
formed by inhibitory transcriptional regulations. (B) Net transcriptional activation. The 
figures summarize the salient features of transcriptional activation. The concentration of a 
target gene (y axis, arbitrary units) varies as a function of the concentration of an upstream 
transcriptional activator (x axis, arbitrary units). Three features used to summarize the 
dynamics of transcriptional response are highlighted: the effectiveness is reported by the 
orange line, the highest level of expression (HLE) is reported by the pink line, and the lowest 
level of expression (LLE) is reported by the green line. (C) Net transcriptional inhibition. 
The salient feature of a transcriptional inhibition is reported using the same conventions of 
panel B. (D) Net response in an LRC of transcriptional inhibitors. Responses of the genes 
in a LRC formed by transcriptional inhibitors are reported using conventions comparable to 
those of panels (B) and (C). Note i) how inhibition and activation alternate and ii) the 
changes in LLE (dotted blue line), HLE (dotted red line), and effectiveness (orange line).	
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Table	1.	Interpretation	of	the	quantities	introduced	to	describe	transcriptional	activation	and	
inhibition	

		 Net	transcriptional	activation		 Net	transcriptional	inhibition	
Lowest	level	of	
Expression	(LLE)	

Baseline	transcriptional	level,	i.e.	level	
of	transcription	in	the	absence	of	the	
activator.	

Limit	of	transcriptional	inhibition,	i.e.	
minimum	level	of	transcription	when	the	
concentration	of	the	inhibitor	is	
arbitrarily	large.	

Highest	Level	of	
Expression	(HLE)	

Limit	of	transcriptional	activation,	i.e.	
maximum	level	of	transcription	when	
the	concentration	of	the	activator	is	
arbitrarily	large.	

Baseline	transcriptional	level,	i.e.	level	of	
transcription	in	the	absence	of	the	
inhibitor.	

Relative	
Effectiveness	(RE)	

Maximum	range	of	variation	in	the	
concentration	of	the	target	gene	
(Effectiveness)	normalised	by	the	
mean	of	the	extreme	points.	

Maximum	range	of	variation	in	the	
concentration	of	the	target	gene	
(Effectiveness)	normalised	by	the	mean	
of	the	extreme	points.	

	

Table	2.	Statistics	for	the	length	of	LRCs	across	different	GRNs		

Organism/Cell	type	 Median	 Maximum	

E.	coli	 4	 7	
M.	tuberculosis	 6	 10	
S.	cerevisiae	 6	 11	
Human	non-cancer	(GM12878)	cell	line	 3	 6	
Human	cancer	(K562	leukaemia)	cell	line	 8	 15	
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Figure 2 Properties of simulated LRCs and comparison with experimental data. (A) RE 
for LRCs of inhibitor. Mean RE across 10 000 simulations is reported, on a log scale, for 
LRCs of different lengths composed of transcriptional inhibitors (crosses). The dashed line 
indicates the linear regression on the points. Note the very good fit of the model with the data 
(adjusted R2 = 0.99). Values of REs are normalised so that RE(1)=1. Errors bars indicate the 
standard error. “d” indicates the strength of exponential decrease (See Materials and 
Methods). In this and the following panels LRC lengths are associated with different colours. 
(B) LLE for LRCs of inhibitors. Mean LLE across 10 000 simulations is reported, on a log 
scale, for LRCs of different lengths composed of transcriptional inhibitors. Note the steady 
increase. Errors bars indicate the standard error. (C) HLE for LRCs of inhibitors. Mean 
LLE across 10 000 simulations is reported for LRCs of different length composed of 
transcriptional inhibitors. Note the steady decrease. Errors bars indicate the standard errors. 
(D) RE computed from the synthetic biology experiments of Hooshangi et al. 2005[1] . 
The y-axis reports, on a log scale, RE. Note the good fit with an exponential decrease as 
predicted by the mathematical model (dashed line) with a value of “d” compatible with 
expectations. (E) LLE for the biological experiments referenced in the description of 
panel D. The y-axis reports, on a log scale, the number of proteins per cell (R.P.P.C.). Note 
the steady increase as predicted by the mathematical model (Panel B). (F) HLE for the 
biological experiments referenced in the description of panel D. Note the steady decrease 
as predicted by the mathematical model (Panel C). (G) Average response function for the 
inhibitory regulation of LRCs. The average transcriptional response is reported for LRCs 
composed of an odd number of inhibitors, which results in a net inhibition. Note the 
decreasing Effectiveness, the increasing LLE, and the decreasing HLE as more regulatory 
steps separate the TF from the source gene. (H). Average response function for the 
activating regulations of LRCs. The average transcriptional response is reported for LRCs 
composed of an even number of inhibitors, which results in a net activation. Note the 
decreasing Effectiveness, the increasing LLE, and the decreasing HLE as more regulatory 
steps separate the TF from the source gene. 
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Figure 3 Interplay of LRCs and feedback loops in E. coli K12. (A) Distribution of the 
length of LRCs in E. coli K12. The number of LRCs of different lengths is reported. Note 
how most LRCs are formed by 5 or less genes. Length distribution of the real network is in 
blue and those for average random networks are in red. (B) Degree of regulation in the 
longest LRCs. The two box plots report the distribution of the number of transcriptional 
inputs of the genes in the upper half (2nd to 4th) and lower half (5th to 7th) of the longest 
transcriptional cascades in E. coli. The top genes of the chains are unregulated by 
construction and were not included. Note the highly statistically significant difference. (C) 
Chaotic motifs in E. coli and their upstream regulation. The network reports the two 
chaotic motifs found in E. coli with all the genes involved in their regulation either directly or 
indirectly. The genes forming the chaotic motifs are highlighted in red. The genes that control 
only the Marr-Mara-Rob motif are highlighted in blue, the genes that control only the Gadw-
Gadx-Gade motif are highlighted in green, while the genes that regulate both are highlighted 
in violet. Note how the longest LRC upstream of the chaotic motifs is the shared one (violet 
genes). (D) Mean position across all LRCs (MPAL) of genes involved in chaotic motifs 
versus other genes. The box plots report the distribution of MPAL for each gene involved in 
the formation of the chaotic motifs (Chaotic) and for the other genes (Stable). Note how the 
MPALs of chaotic genes are significantly larger than the MPAL of stable genes, indicating 
that chaotic motif genes are encountered more frequently than average in long LRCs. (E) 
Interplay of the longest LRCs and of one of the chaotic motifs of E.coli. The Marr and 
Mara genes found in a chaotic motif (red arrows) are part of two of the longest LRCs in E. 
coli: Ihf-Fis-Crp-Mara-Rob-Marr and Ihf-Fis-Crp-Marr-Rob-Mara (thick violet and red 
arrows). Note that the motif is controlled by a 3-gene upstream LRC (Ihf, Fis and Crp) when 
marbox is not active (in violet), while it is regulated by a 2-gene LRC (Ihf and Fis) when 
marbox is active (see the orange arrows). A similar behaviour can be identified for the other 
chaotic motif. (F) Dynamics of one of the chaotic motifs of E.coli. A cartoon of the 
transcriptional regulation of the marRAB operon is plotted as derived from [2-7]. Note that 
Fis only activates the marRAB operon when marbox is already activated. 
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Figure 4. Interplay of LRCs and feedback loops in M. tuberculosis and S. cerevisiae. (A) 
Distribution of the length of LRCs in M. tuberculosis. The number of LRCs of different 
lengths is reported. Note how most LRCs are formed by 7 or less genes.	Length distribution 
of the real network is in blue and those for average random networks are in red.  (B) Degree 
of regulation in the longest LRCs of M. tuberculosis. The two box plots report the 
distribution of the number of transcriptional inputs of the genes in the upper half (2nd to 4th) 
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and lower half (5th to 7th) of the longest transcriptional cascades in M. tuberculosis. The top 
genes of the chains are unregulated by construction and were not included. Note the highly 
statistically significant difference. (C) Chaotic motifs in M. tuberculosis and their 
upstream regulation. The network reports the two chaotic motifs found in M. tuberculosis 
with all the genes involved in their regulation either directly or indirectly. The genes forming 
the chaotic motifs are highlighted in red, while the genes that regulate them are highlighted in 
purple. Note how the LRC upstream of the chaotic motifs is the composed by three genes as 
in E. coli. (D) Mean position across all LRCs (MPAL) of genes involved in the chaotic 
motif versus the other genes in M. tuberculosis. The box plots report the distribution of 
MPAL for each gene involved in the formation of the chaotic motifs (Chaotic) and for the 
other genes (Stable). In agreement with expectation, chaotic motif genes show significantly 
higher MPAL compared with others. (E) Distribution the length of LRCs in S. cerevisiae. 
The number of LRCs of different lengths is reported. Note how most LRCs are formed by 8 
or less genes. (F). Degree of regulation in the longest LRCs in S. cerevisiae. The two box 
plots report the distribution of the number of transcriptional inputs of the genes in the upper 
half (7th to 11th) and lower half (2nd to 6th) of the longest transcriptional cascades in S. 
cerevisiae. The top genes of the chains are unregulated by construction and were not 
included. Note the highly statistically significant difference.	
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Figure 5 Interplay of LRCs and feedback loops in human cell lines. (A,B,C) Distribution 
of the length of LRCs in the two human cell lines GM12878 (non-cancer) and K562 
(leukaemia). The number of LRCs of different lengths is reported. Note the striking 
difference in the number and length of LRCs across the different cell lines. (D, E) Degree of 
regulation in the longest LRCs of human cell lines. The two box plots report the 
distribution of the number of transcriptional inputs of the genes in the upper half (4th to 6th in 
GM12878 and 9th to 15th in K562) and lower half (2nd to 3rd in GM12878 and 2nd to 8th in 

N
um

be
r o

f r
eg

ul
at

in
g 

TF
s 

2nd to 3rd gene 4th to 6th gene

P	value	<2×10-16

(D)

(E)

N
um

be
r o

f r
eg

ul
at

in
g 

TF
s 

2nd to 8th gene 9th to 15th gene

P	value	<2×10-16

(F)

M
ea

n 
po

si
tio

n 
ac

ro
ss

 a
ll 

LR
C

s

Stable Chaotic

P	value	=1.3×10-5

IRF1
NFE2POLR3A
JUNDMYC GATA2

NR4A1 IRF3

(C)

Le
ng

th
 o

f L
R

C
s 

in
 h

um
an

Noncancer Cancer

P	value	<2×10-16

N
um

be
r o

f L
R

C
s 

in
 h

um
an

 n
on

-c
an

ce
r c

el
l

real

random

real

random

N
um

be
r o

f L
R

C
s 

in
 h

um
an

 c
an

ce
r c

el
l

(A) (B)
.CC-BY-NC-ND 4.0 International licenseunder a

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 
The copyright holder for this preprint (which wasthis version posted September 12, 2016. ; https://doi.org/10.1101/074716doi: bioRxiv preprint 

https://doi.org/10.1101/074716
http://creativecommons.org/licenses/by-nc-nd/4.0/


10	
	

K562) of the longest transcriptional cascades in the two cell lines. The top genes of the chains 
are unregulated by construction and were not included. Note the highly statistically 
significant difference. (F) Mean position across all LRCs (MPAL) of genes involved in 
chaotic motifs versus the other genes in cancer. The box plots report the distribution of 
MPAL for each gene involved in the formation of the chaotic motifs (Chaotic) and for the 
other genes (Stable). In agreement with expectation, chaotic motif genes show significantly 
higher MPAL compared with others. Also note how various genes implicated in cancer 
progression, despite not being involved in chaotic motifs, have a very high MPAL. 
Suggesting a narrow variation of their expression  
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Figure 6 Chaotic motifs in cancer cells (K562) and their upstream regulations (A) 
Interplay of the longest LRCs and chaotic motifs in cancer. The network formed by all the 
TFs implicated in the longest LRCs of the cancer cell line K562 is reported. Note how the 
longest chains (thick arrows) are entangled with the feedback loops. Two 3-gene LRCs can 
be observed upstream of the feedback loops and one 3-gene LRC can be observed 
downstream (blue arrows). The presence of the 3-gene LRCs upstream of potentially chaotic 
motifs is consistent with our findings in E. coli and M. tuberculosis. Also note how IRF1, a 
gene which is a key regulator of growth of leukaemia and other cancer cells [8-10], is found 
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downstream of the long feedback loops. (B) Chaotic motifs in K562 and their upstream 
regulation. The network reports the genes involved in the formation of the chaotic motifs of 
K562 (red) with all the genes involved in their regulation either directly or indirectly (violet). 
Note how the chaotic motifs sit at the bottom of multiple LRCs. (C) A cartoon 
demonstration of proposed functional interaction between long linear regulatory chains 
(LRCs) and chaotic motif. In gene regulatory networks, upstream long LRC restricts 
transcriptional dynamics of chaotic motif, which has the potential to produce diverse 
transcriptional profiles under similar biological conditions. This restriction can be walked 
around via alternative regulatory path in certain organism such as E. coli upon activation. In 
addition, Long LRC can be used to insulate important downstream gene from the dynamics 
of chaotic motifs. 	
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