
 Chung et al. 1 

 
 
 
 
 
 
 
 

Title: Risky decision-making in major depression is stable and intact  
 

Authors: Dongil Chung,1 Kelly Kadlec,1,2,3 Jason A. Aimone,1,4  
Katherine McCurry,1,5 Brooks King-Casas,1,5 Pearl H. Chiu1,5 

 
 
 
 
 
 
 
 
 

Affiliation: 
 

1Virginia Tech Carilion Research Institute, Roanoke, VA 
2Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 

3School of Neuroscience, Virginia Tech, Blacksburg, VA 
4Department of Economics, Baylor University, TX 

5Department of Psychology, Virginia Tech, Blacksburg, VA 
 
 

 
 
 
 
 
 
Correspondence may be addressed to Pearl Chiu (chiup@vtc.vt.edu) or Brooks King-
Casas (bkcasas@vtc.vt.edu) 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2016. ; https://doi.org/10.1101/074690doi: bioRxiv preprint 

https://doi.org/10.1101/074690
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Chung et al. 2 

Abstract: 
 
The clinical diagnosis and symptoms of major depressive disorder (MDD) have been 
closely associated with impairments in reward processing. In particular, various studies 
have shown blunted neural and behavioral responses to the experience of reward in 
depression. However, little is known about whether depression affects individuals’ 
valuation of potential rewards during decision-making, independent from reward 
experience. To address this question, we used a gambling task and a model-based 
analytic approach to measure two types of individual sensitivity to reward values in 
participants with MDD: ‘risk preference,’ indicating how objective values are 
subjectively perceived and ‘inverse temperature,’ determining the degree to which 
subjective value differences between options influences participants’ choices. On both of 
these measures of value sensitivity, participants with MDD were comparable to non-
psychiatric controls. Both risk preference and inverse temperature were also stable over 
four laboratory visits and comparable between the groups at each visit. Moreover, neither 
value sensitivity measure varied with severity of clinical symptoms in MDD. These data 
suggest intact and stable value processing in MDD during risky decision-making. 
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Main text: 
 
Major depressive disorder (MDD) has been associated with impairments in reward 
processing, and many studies indicate that symptoms of MDD correlate with diminished 
neural and behavioral responses when rewards are presented1-5. These studies have 
typically used reward learning and other tasks that provide feedback about rewards and 
focused on individuals’ responses at this feedback or ‘reward outcome’ phase (see Rizvi 
et al.6 for review). However,  little is known about how depression affects reward 
valuation during decision-making in the absence of learning and feedback. Understanding 
whether individuals with MDD have disrupted valuation during decision-making at the 
‘decision phase’, separate from reward outcome, will clarify whether individuals with 
MDD are disrupted overall in reward valuation or more specifically in experiencing 
rewards. Here, we used a risky decision-making task, a model-based analytic approach, 
and a repeated measures within-subject design across four visits to investigate whether 
participants with MDD have intact or disrupted valuation during decision-making in the 
absence of learning and feedback. 
 
Sixty-nine individuals with current MDD and 41 non-psychiatric controls were recruited 
in the current study. To investigate ‘value sensitivity’ during decision-making 
independent from feedback, we asked participants to complete a risky decision-making 
task (adapted from Holt & Laury7) (Fig. 1). During the task, participants made a series of 
nine choices between two gambles, one of which was objectively riskier than the other7. 
Each pair of gambles had the same high- and low-payoff probabilities that increased from 
10% to 90% in 10% increments along the nine pairs. Participants’ choices between the 
safer and riskier options, at each payoff and probability combination, were recorded to 
investigate individual value sensitivity. Participants were paid based on the actual 
outcome of one of their choices; the outcome was determined after all choices had been 
made (i.e., no feedback at each decision). This paradigm allowed us to examine valuation 
during decision-making, independent from potential learning and outcome effects.  
 
Tasks of this sort are classically used to study individuals’ value-based decision-making 
under risk, and expected utility theory8 points to two basic components that account for 
differences among individuals’ choices in such tasks. The first, ‘risk preference9,10 (RP)’ 
reflects how objective values are subjectively perceived (subjective value) and is 
quantified by the curvature of a power utility function8. The second component 
determines the degree to which subjective value differences between options affect the 
probability of choosing one option over the other, and is often referred to as ‘inverse 
temperature11 (IT)’. Both components characterize individual differences in the direction 
and the degree to which objective values impact individual choices, and thus are used as 
measures of value sensitivity in the current study. Note that each measure explains a 
different functional relationship between value and decision-making: RP accounts for 
nonlinear (concave or convex) subjective valuation and IT is a linear scaling of values 
(similar to ‘reward sensitivity’ in other MDD studies1; see Methods for expected utility 
model specifications). Based on maximum a posteriori fitting, the value sensitivity 
measures were estimated from individuals’ choices (see Methods for parameter 
estimation procedure). 
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Participants completed the decision-making task on up to four laboratory visits as part of 
a longitudinal study; on average, visits were separated by four weeks (mean of 116.27 
days between Time 1 and Time 4 visits). At each visit, participants were instructed that 
one of their actual choices would be randomly selected and played out to determine their 
payoff at the end of the visit. The payoff was determined by the values of a gamble 
selected via random number generator from the participant’s actual choices and a roll of a 
hundred-sided die (the first determining which gamble would be played and the second 
determining the payoff). Participants who made less than two visits to the laboratory, had 
Beck Depression Inventory (BDI-II) scores12 > 12 for controls or < 13 at Time 1 for 
MDD participants, or always chose the option with smaller expected value) were 
excluded from analyses (see Methods for numbers of excluded participants for each 
criterion). The analyzed sample for RP and IT parameter estimation included 33 non-
psychiatric controls (14 females; age = 33.00 ± 11.31) and 65 individuals with MDD (48 
females; age = 37.92 ± 11.48). See Table 1 for further demographic information.  
 
To compare value sensitivity in MDD participants with that of non-psychiatric controls, 
we estimated each individual’s inverse temperature and risk preference for each visit, and 
first compared the means of these parameters between groups (see Methods for details 
about parameter estimation). Thus, RP and IT at each of four visits were computed for 
each individual. Group mean parameter values were: RPcontrol = 0.50 ± 0.31; RPMDD = 
0.46 ± 0.31; ITcontrol = 3.41 ± 0.41; and ITMDD = 3.25 ± 0.43 (mean ± s.t.d). Note that both 
MDD and non-psychiatric control participants showed risk aversion (RP < 1) consistent 
with Holt & Laury7. Across four laboratory visits, participants with MDD showed 
comparable RP and IT to that of non-psychiatric controls (Fig. 2ai, 2bi; RP: F(1, 219) = 
0.63, P = 0.43; IT: F(1, 219) = 2.68, P = 0.11; Group × Time mixed-design ANOVAs 
with rank transformation13). For these temporal analyses, only those participants who 
visited all four times were examined (Ncontrol = 28, NMDD = 47), and within each group, 
both parameters were stable over time (RPcontrol: χ2(3, 81) = 2.12, P = 0.55; RPMDD: χ2(3, 
138) = 0.66, P = 0.88; ITcontrol: χ2(3, 81) = 2.94, P = 0.40; ITMDD: χ2(3, 138) = 2.40, P = 
0.49; Friedman’s tests). These results indicate that MDD and non-psychiatric control 
participants have comparable linear and nonlinear value sensitivities during decision-
making.   
 
Previous studies have shown that risk preferences measured with variations of the Holt & 
Laury task7 are stable over time in unselected control individuals, particularly when 
model-based estimates were used14,15. Adopting the approach of these studies for 
measuring temporal stability, we examined the stability of RP and IT within controls and 
participants with MDD by correlating the value of each parameter between pairs of visits 
([1st vs 2nd visit], [1st vs 3rd visit], … [3rd vs 4th visit]) (Fig. 2aii, 2bii). Both control and 
MDD participants showed moderate to high stability in both RP and IT, respectively 
(mean correlation coefficients: RPcontrol: Spearman ρ = 0.57; RPMDD: ρ = 0.54; ITcontrol: ρ 
= 0.48; ITMDD: ρ = 0.57; see Fig. 2aii and 2bii for full correlation matrix). Note that the 
proportion of risky choices, a model-free measure of risk preference, was also stable over 
time in both the MDD and control groups (see Fig. S2 in Supplementary materials for 
model-free risk preference stability over time). These significant correlations indicate that 
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for MDD and control participants, the risk preference and inverse temperature measures 
of value sensitivity at the decision phase are stable over time. 
 
Given previous reports that reward sensitivity at decision outcome varies with symptoms 
in depression1,16-18, we also examined whether RP and IT varied systematically with 
depressive or anxious symptoms. Symptoms were measured using the BDI-II12, the 
Spielberger Anxiety Inventory state measure (SAI)19, and the five subscales of the Mood 
and Anxiety Symptoms Questionnaire (MASQ) (Anhedonic Depression, Anxious 
Arousal, General distress (GD):Anxiety, GD:Depression, and GD:Mixed)20; correlations 
were performed within the MDD group. None of the clinical symptom scores were 
related to MDD participants’ RP or IT parameters (see Fig. S1, Table S1, and S2 in 
Supplementary materials for statistical test results). These data demonstrate that 
individual differences in value sensitivity during decision-making are not explained by 
clinical characteristics of MDD. 
 
The current study used a risky decision-making task to investigate MDD individuals’ 
value sensitivity at the decision phase independent from learning and feedback. The 
within subjects repeated-measures design allowed us to examine the stability of the value 
sensitivity measures, and the model-based approach dissociated linear (inverse 
temperature) and nonlinear (risk preference) value sensitivities that together determine 
behavioral choices during risky decision-making.  
 
A few previous studies have used risky decision-making paradigms and measured MDD 
individuals’ risk preferences. The results, however, have been inconsistent. Some studies 
reported decreased risk seeking behavior in individuals with MDD16,21,22, while other 
studies reported comparable risk preferences between individuals with MDD and healthy 
individuals23,24. In the current study, we showed that risk preferences (nonlinear value 
sensitivity) in individuals with MDD are comparable with those of healthy individuals. 
The stability of risk preferences was tested across four repeated visits, and consistent with 
previous findings in unselected control individuals14,15,25, MDD participants showed 
stable risk preferences over time (c.f., model-free measures showing low reliability26-28). 
In addition to estimating risk preference, we examined inverse temperature (linear value 
sensitivity, similar to ‘reward sensitivity’ in other MDD studies1) at the decision phase, 
and showed that MDD participants have stable and comparable inverse temperature 
compared with non-psychiatric controls. In addition, none of the clinical symptom 
severity measures within participants with MDD were related to individual differences in 
risk preference or inverse temperature. These results indicate that in contrast with 
previous decision-making studies showing blunted valuation at the outcome phase in 
MDD1, neither linear nor nonlinear value sensitivity at the decision phase in MDD is 
different from that of controls.  
 
To date, studies examining valuation in MDD have primarily focused on the outcome 
phase of reward learning tasks and shown impaired valuation, including diminished 
neural reward responses29-31, reduced learning rate32, lower reward sensitivity1, or 
enhanced exploration (more frequent choice shifting)33,34 in participants with MDD. A 
few other studies have used various non-learning tasks and have suggested that 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2016. ; https://doi.org/10.1101/074690doi: bioRxiv preprint 

https://doi.org/10.1101/074690
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Chung et al. 6 

individuals with MDD have low motivation for monetary reward16,35,36; however, in these 
studies, the focus was also on responses at the outcome phase17,18. Unlike the abundant 
literature about responses to reward outcome (particularly during reward learning), little 
is known about whether individuals with MDD have intact ability to process and compare 
values during value-based decision-making when no learning is required. The current 
study provided no outcome feedback during the task and thus focused on the decision 
phase, dissociated from reward experience. These data showed that during the decision 
phase, participants with MDD do not have impaired valuation compared with healthy 
individuals. This is consistent with previous studies showing intact neural responses in 
individuals with MDD during reward anticipation (prior to outcome)37,38. Together, the 
present data indicate that individuals with MDD have intact valuation when reward 
contingencies are fully known (no reward learning required) and suggest that previously 
reported valuation deficits in MDD are specific to the outcome phase of tasks in which 
reward experience and learning occur. 
 
In MDD, the intact valuation, dissociated from learning, may provide mechanistic insight 
about behavioral activation therapies for depression39. These type of therapies engage 
individuals with potential positive reinforcers (rewards) in a structured manner and, in 
essence, allow individuals with MDD to largely bypass disrupted learning processes. 
That is, behavioral activation provides a guided learning environment wherein action-
reward contingencies can evolve from being unsampled and ambiguous to sampled and 
fully known. As our data indicate, when action-reward contingencies are fully known, 
participants with MDD show intact valuation processes. We speculate that this state is 
comparable to the endpoint of successful behavioral activation wherein the experience of 
reward is restored. In brief conclusion, the current study both suggests specificity of 
previously reported value processing disruptions in MDD to the experience of reward 
during learning and calls attention to mechanistic precision about disease processes and 
treatment that may be obtained through task-specific decision models. 
 
Methods and Materials: 
 
Participants. Fifty non-psychiatric controls and 80 individuals with MDD were recruited 
as part of a larger ongoing study examining neural substrates of treatment response in 
MDD (neural and treatment data will be analyzed as part of another manuscript). Among 
these participants, for the current study, we included individuals who at least participated 
in both Time 1 and 4 laboratory visits to maximize the time interval for test-retest 
reliability. These inclusion criteria yielded 41 non-psychiatric controls and 69 individuals 
with MDD for the present study. Basic inclusion/exclusion criteria were initially assessed 
via telephone and were confirmed during the first laboratory visit using the Structured 
Clinical Interview for DSM-IV-TR Axis I Disorders – Research Version – Patient Edition 
(With Psychotic Screen) (SCID-I/P)40 and selected modules of the Mini-International 
Neuropsychiatric Interview (M.I.N.I.)41. At study intake, individuals in the MDD group 
met DSM-IV criteria for MDD and/or dysthymia while individuals in the control group 
did not meet criteria for any current Axis I disorder. Exclusion criteria for all participants 
included contraindications to magnetic resonance imaging (MRI) and history of 
neurological disease. Following the initial screening visit (Time 1), participants returned 
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to the lab up to three times; on average, there were four-week intervals in between each 
visit. All participants provided written informed consent and were given instruction about 
the task. The study was approved by the Institutional Review Board of Virginia Tech. 
Three controls whose BDI-II scores were above the non-depressive range (i.e., greater 
than 12) at any visit and two individuals with MDD who had BDI-II scores in the non-
depressive range (i.e., less than 13) at Time 1 were additionally excluded from analyses42. 
Five controls and two individuals with MDD who always chose the option with smaller 
expected value were also excluded. Therefore, the analyzed sample for RP and IT 
parameter estimation included 33 healthy controls (14 females; age = 33.00 ± 11.31) and 
65 participants with MDD (48 females; age = 37.92 ± 11.48). See Table 1 for additional 
demographic information.  
 
Experimental procedure. Participants made a series of nine choices between two 
gambles, one of which was objectively riskier than the other (adapted from Holt & 
Laury7) (Fig. 1). Each pair of gambles had the same high- and low-payoff probabilities 
that varied from 10% to 90% in 10% increments along the nine pairs. Payoff spreads 
between high- and low- payoffs were fixed for each option; ‘Option A’ had $5.00 and 
$4.00, and ‘Option B’ had $9.63 and $0.25 as potential payoffs. Participants were paid 
based on the actual outcome of one of their choices; the payoff was determined by the 
values of a gamble selected via random number generator from the participant’s actual 
choices and a roll of a hundred-sided die (the first determining which gamble would be 
played and the second determining the payoff).   
 
Model-free analyses. For model-free behavioral analyses, the proportion of choosing the 
risky option (P(risky)) among the nine pairs of gambles was used as a measure of risk 
preference. Given the expected value (EV) between pairs of choices (Fig. 1), a risk 
neutral individual should show P(risky) = 5/9 ≈ 0.56 (as per expected utility theory, a risk 
neutral individual is expected to choose Option B in the trials where EV(B) > EV(A), 
decisions 5-9, and to choose Option A in the trials where EV(B) < EV(A)). Higher 
P(risky) thus indicates risk seeking; P(risky) was calculated per visit and used to examine 
stability of model-free risk preferences over time in each group.  
  
Estimates of individual risk preference. We applied expected utility theory8 to estimate 
each individual’s risk preference (RP) and inverse temperature (IT) that predict the 
individual’s choices. We used a standard power utility function and softmax choice rule 
as described below: 
 

UA = Phigh-payoff (Vhigh-payoff:A)α + (1 – Phigh-payoff) (Vlow-payoff:A)α    (eq. 1) 
UB = Phigh-payoff (Vhigh-payoff:B)α + (1 – Phigh-payoff) (Vlow-payoff:B)α   (eq. 2) 
P(risky) = PB = (1 + exp[–µ (UB – UA)])–1      (eq. 3) 

 
where UA (UB) is the utility of the Option A (Option B), Phigh-payoff is the probability of 
earning the high-payoff, V represents the payoff amount for each gamble, α is the risk 
preference, and µ is the inverse temperature. The estimated RP, α, indicates whether an 
individual is risk averse (0 < α < 1), risk neutral (α = 1), or risk seeking (α > 1). The 
estimated IT, µ, indicates how sensitive an individual is to the utility differences between 
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 Chung et al. 8 

the two gambles; larger µ indicates higher sensitivity to utility differences and µ ≈ 0 
indicates utility (subjective value) insensitivity. 

To achieve a more stable parameter estimation for each individual, we adopted a 
hierarchical model structure of the population43 in which it is assumed that a participant 
i's parameters (µi and αi) are sampled from the population’s parameter distribution. Of 
importance, both controls and participants with MDD were considered to share the same 
group-level (the population) distribution (equal prior), which allowed us to compare the 
two participant groups in the further analyses. This is a conservative approach, because 
the equal prior does not introduce potential bias about different parameter distributions 
between groups. Based on these assumptions, we estimated the group-level parameter 
distribution for each parameter and set the distribution as a prior for individual estimation 
(maximum a posteriori (MAP) estimation). In the current study, we set the group-level 
distribution of each parameter as a gamma distribution44 with a shape parameter, k, and a 
scale parameter, θ, (µ ~ Γ(kµ, θµ); and α ~ Γ(kα, θα)). For each iteration of the group-
parameter estimation (max iteration of 15,000), 100 random samples were drawn from 
each parameter distribution for each participant, and the average of the calculated 
likelihoods were used as an approximation of the integral in the following equation: 
 
P(choice! | kµ, kα, θµ, θα) = 𝑑µ!𝑑α!  P(µ! | kµ, θµ)P(α! | kα, θα) P(choice! | µ!, α!) (eq. 4) 
P(choiceall participants | kµ, kα, θµ, θα) = P(choice! | kµ, kα, θµ, θα)!! {all participants}  (eq. 5) 
 
Note that all participants visited at least twice, including the 1st and the 4th visits. 
Because we tested whether an individual’s value sensitivity (RP and IT) changes across 
multiple visits, we chose not to provide any information about the subject’s identity in the 
estimation step; behavioral choices from a participant’s two visits were considered as 
decision patterns from two independent participants. Note that estimated value 
sensitivities for the same subject from repeated visits were considered as repeated-
measures for post estimation stability testing. This is a more stringent approach 
examining within-subject stability over repeated visits. To apply this method, we used 
196 sets of behavioral choices for the group-level parameter estimation ([33 HC + 65 
MDD] × [1st visit + 4th visit]; only 1st and 4th visits were used to provide an equal 
amount of choice information from each individual participant). The group-level 
parameters were used to define each parameter’s prior distribution for individual-level 
estimation, which was equally applied to individual-level estimations for all four visits. 
We fit the data using MAP, with posterior function as below.  
 
 P(choice! | µ!, α!) P(µ! | kµ, θµ) P(α! | kα, θα)    (eq. 6) 
 
All parameter estimations were conducted with custom MATLAB R2015b (MathWorks) 
scripts and the fminsearch function in MATLAB with multiple initial values.  
 
Clinical measures. At each visit, participants completed a battery of self-report measures 
to assess current depression and anxiety symptoms. Depressive symptom severity was 
measured using the BDI-II and the Anhedonic Depression subscale score of the MASQ. 
Anxiety symptom severity was measured using the State scale of the SAI (Spielberger 
Anxiety Inventory) and the Anxious Arousal subscale of the MASQ. Additionally, 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2016. ; https://doi.org/10.1101/074690doi: bioRxiv preprint 

https://doi.org/10.1101/074690
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Chung et al. 9 

general distress (GD) related to depressive symptoms, anxious symptoms, or a mixture of 
the two were measured using the MASQ subscales, GD: Anxiety, GD: Depression, and 
GD: Mixed, respectively. 
 
Statistical analyses. We examined if model-free risk preference (P(risky)) and model-
based measures of value sensitivity (inverse temperature and risk preference) were 
consistent across multiple visits. IT and RP measures in both participant groups were not 
normally distributed (Shapiro-Wilk test P < 0.01 for IT and RP in each group and in each 
visit), and thus non-parametric tests were used as appropriate and available. First, to 
compare the means of IT and RP across four laboratory visits and between groups, we 
used mixed-design ANOVA where visit number (Time 1, Time 2, Time 3, Time 4) was 
the within-subject factor and diagnostic group (MDD, control) was the between-subject 
factor. Parameters were first rank transformed and then inserted for mixed-design 
ANOVA13. In addition, we used Friedman’s test to examine whether IT and RP across 
four visits were stable or not, within each group. Second, Spearman’s correlations 
between risk preference measures from two different visits (‘1st visit’ (T1) vs T2, T1 vs 
T3, T1 vs T4, T2 vs T3, T2 vs T4, and T3 vs T4) were calculated to test if the rank-order 
of risk preference within each group is consistent across multiple visits. False discovery 
rate (FDR) adjusted q-values where indicated were reported for multiple comparisons45. 
MATLAB R2015b was used for all statistical tests. 
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Figure Legends 
 
Figure 1: 

		  
 
Figure 1. Payoffs and probabilities of paired gambles. Participants played a gambling 
task that consisted of a menu of probabilities of high and low payoff values. As per Holt 
& Laury7, participants made nine choices between two risky gambles ‘Option A’ and 
‘Option B’. The high and low payoffs assigned to each option were fixed as shown here. 
The probability associated with payoff values was represented as a range of numbers; this 
allowed participants to easily match the probability of each outcome with a roll of a 
hundred-sided die; this roll was performed after the task for one randomly selected 
gamble to determine the final outcome for payoff. The rightmost column shows the 
expected value differences between the Option A and B. Expected utility theory predicts 
that a risk neutral individual will choose Option A in decisions 1-4 where EV(B) < EV(A) 
and Option B in decisions 5-9 where EV(B) > EV(A). 
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Figure 2: 
	

 
 
Figure 2. Estimated value sensitivities are comparable between non-psychiatric 
controls and individuals with MDD, and stable across visits. We used a standard 
power utility function and softmax choice rule to identify separate ‘risk preference’ and 
‘inverse temperature’ parameters to explain nonlinear and linear value sensitivities in 
decision-making. (ai, bi) Estimated RP and IT were stable across four repeated visits for 
both MDD and control participants. Across the repeated visits, both RP and IT were 
comparable between the control and MDD groups (no main effect of group using mixed-
design ANOVA with rank transformation). (aii, bii) Spearman’s correlation coefficients 
were calculated to test whether the rank order of the parameters among individuals was 
consistent between visits to the lab (([1st vs 2nd visit], [1st vs 3rd visit], … [3rd vs 4th visit]). 
Each point represents an individual participant, and the color-coded lines are the robust 
regression line between measures from two visits. Gray and red shades represent 
distribution of data points along the y-axis; *P < 0.05, **P < 0.01, ***P < 0.001, 
uncorrected; all correlations were significant after applying multiple comparison 
correction (FDR q < 0.0001). 
  
  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2016. ; https://doi.org/10.1101/074690doi: bioRxiv preprint 

https://doi.org/10.1101/074690
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Chung et al. 16 

Tables 
 
Table 1. Demographic and symptom data 

 Control 
(N = 33) 

Major depression 
(N = 65) 

Male/female participants 14/19 17/48 
Age (years) 33.00 ± 11.31 37.92 ± 11.48 
Verbal intelligence quotienta 105.15 ± 14.90 107.06 ± 12.18 
BDI-II   
   Time 1 1.55 ± 2.05 (33) 30.71 ± 7.75 (65) 
   Time 2 1.40 ± 2.19 (30) 22.83 ± 10.70 (53) 
   Time 3 1.28 ± 1.79 (29) 19.12 ± 12.79 (49) 
   Time 4 1.64 ± 2.57 (33) 17.14 ± 13.34 (64) 
State anxiety   
   Time 1 28.48 ± 6.55 (33) 49.05 ± 10.82 (65) 
   Time 2 27.39 ± 6.35 (31) 46.47 ± 10.97 (53) 
   Time 3 27.86 ± 7.72 (29) 42.04 ± 12.40 (51) 
   Time 4 27.79 ± 6.73 (33) 39.52 ± 12.76 (64) 
MASQ subscales   
 Anhedonic Depression   
   Time 1 45.09 ± 8.97 (33) 83.11 ± 9.12 (65) 
   Time 2 43.29 ± 9.84 (31) 71.63 ± 14.39 (52) 
   Time 3 42.86 ± 10.72 (29) 66.47 ± 18.96 (51) 
   Time 4 43.38 ± 10.36 (32) 65.00 ± 16.86 (65) 
 Anxious Arousal   
   Time 1 18.55 ± 1.99 (33) 26.85 ± 7.25 (65) 
   Time 2 18.39 ± 1.87 (31) 23.79 ± 6.90 (52) 
   Time 3 18.69 ± 3.29 (29) 23.80 ± 8.31 (51) 
   Time 4 18.28 ± 1.49 (32) 23.62 ± 8.21 (65) 
 GD: Anxiety   
   Time 1 14.48 ± 2.59 (33) 25.03 ± 6.97 (65) 
   Time 2 13.42 ± 2.47 (31) 20.81 ± 6.18 (52) 
   Time 3 14.00 ± 2.60 (29) 20.59 ± 7.57 (51) 
   Time 4 13.44 ± 2.06 (32) 18.95 ± 6.86 (65) 
GD: Depression   
   Time 1 15.72 ± 2.82 (33) 38.94 ± 8.91 (65) 
   Time 2 15.16 ± 2.27 (31) 31.10 ± 9.57 (52) 
   Time 3 15.07 ± 3.62 (29) 27.49 ± 11.08 (51) 
   Time 4 15.09 ± 2.44 (32) 26.68 ± 11.74 (65) 
 GD: Mixed   
   Time 1 22.55 ± 4.49 (33) 45.91 ± 8.41 (65) 
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   Time 2 21.03 ± 4.53 (31) 39.08 ± 9.13 (52) 
   Time 3 20.79 ± 3.80 (29) 37.00 ± 11.01 (51) 
   Time 4 21.38 ± 4.83 (32) 34.55 ± 11.16 (65) 
BDI-II, Beck Depression Inventory, Second Edition; State anxiety, Spielberger Anxiety 
Inventory state measure; MASQ, Mood and Anxiety Symptom Questionnaire; GD, 
General Distress; aVerbal intelligence quotient scores were measured with the Wechsler 
Test of Adult Reading (WTAR);a few participants’ questionnaire scores were missing. 
Numbers of participants who were included for calculating mean and standard deviation 
of each questionnaire score are noted in parentheses; see Fig. S1 for the BDI-II, SAI, and 
MASQ scores in the smallest subset of included participants (visiting all four times), and 
see Methods for details about inclusion criteria. 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2016. ; https://doi.org/10.1101/074690doi: bioRxiv preprint 

https://doi.org/10.1101/074690
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2016. ; https://doi.org/10.1101/074690doi: bioRxiv preprint 

https://doi.org/10.1101/074690
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2016. ; https://doi.org/10.1101/074690doi: bioRxiv preprint 

https://doi.org/10.1101/074690
http://creativecommons.org/licenses/by-nc-nd/4.0/

