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Interpretation of biological causes of the predisposing markers identified through Genome Wide
Association Studies (GWAS) remains an open question®. One direct and powerful way to assess the
genetic causality behind GWAS is through expression quantitative trait loci (eQTLs)?. Here we
describe a novel approach to estimate the tissues giving rise to the genetic causality behind a wide
variety of GWAS traits, using the cis-eQTLs identified in 44 tissues of the GTEx consortium3*. We
have adapted the Regulatory Trait Concordance (RTC) score®, to on the one hand measure the
tissue sharing probabilities of eQTLs, and also to calculate the probability that a GWAS and an
eQTL variant tag the same underlying functional effect. We show that our tissue sharing estimates
significantly correlate with commonly used estimates of tissue sharing. By normalizing the GWAS-
eQTL probabilities with the tissue sharing estimates of the eQTLs, we can estimate the tissues
from which GWAS genetic causality arises. Our approach not only indicates the gene mediating
individual GWAS signals, but also can highlight tissues where the genetic causality for an individual

trait is manifested.

Over the last decade, Genome Wide Association Studies (GWAS) have become the norm in
describing genetic variants associated with common complex human diseases and traits*®. Although
we have accumulated an impressive number of GWAS findings, the vast majority of the variants
identified lie in the non-coding genome’, rendering their biological interpretation difficult.
Furthermore, GWAS find genetic markers associated with organismal traits, and fail to pinpoint the
specific tissues causing these associations®. Regulatory variants, like expression quantitative trait loci
(eQTLs), identified in multiple tissues could aid greatly in the interpretation of GWAS results not only

by linking the non-coding genome to genes, but also by identifying the causal tissues behind the
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genetic associations*>°. The Genotype Tissue Expression (GTEx) project was founded with the
intention of characterizing eQTLs across multiple tissues?, and currently comprises 44 tissues from
449 individuals (70-361 samples per tissue) for a total of 7051 transcriptomes (Supplementary
Figure 1). This makes GTEx the ideal dataset to estimate tissues from which the genetic causality of a
GWAS trait arises. Here we aim to address this question by first, assessing the tissue sharing of
eQTLs (the probability of an eQTL identified in one tissue being active in another tissue) on an
individual variant basis, and then using these tissue sharing estimates to infer the tissues where

GWAS variants exert their function.

For a given eQTL discovered in one tissue, we wanted to derive the probability that this eQTL is
active in each of the other 43 tissues. We have previously described the Regulatory Trait
Concordance (RTC) score, which tests whether co-localizing GWAS and eQTL variants (two variants
that fall into the same genomic region delimited by recombination hotspots) are tagging the same
functional variant® (Supplementary Methods & Supplementary Figure 3). This method can easily be
extended to assess tissue sharing between eQTLs identified in two separate tissues (Supplementary
Methods). However, the RTC score is not a probability in itself and is affected by the number of
variants and the linkage disequilibrium (LD) in a given region. Therefore, we derived a probability
from the RTC score by simulating two scenarios for each region: (1) two variants tagging different
functional effects (HO) and (2) two variants tagging the same functional effect (H1). Subsequently we
generate a distribution centered on the real RTC found in the region and quantify the overlap
between this distribution and simulated RTC scores under HO and H1. We then apply the Bayes’
theorem, in conjunction with the overall tissue sharing estimates found by the r; statistic'?, to
compute a probability of shared functional effect, which we call P(Shared), for a given RTC score in a
given region (Supplementary Methods, Supplementary Figure 4, Supplementary Figure 5 &
Supplementary Figure 6). By converting the RTC score into a probability we create a metric that
accounts for the differential power of calling shared functional effects in different regions and which

can be used in discovering tissue specificity of eQTLs.
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Having a probability of sharing between two variants allows us to estimate tissue sharing of eQTLs
amongst the 44 GTEXx tissues. The gold standard methods used to quantify tissue sharing of eQTLs,
such as the iy method, estimate overall sharing, thus we aimed to estimate individual tissue sharing
probabilities of each eQTL using 13 as a baseline. In order to ascertain a near-complete list of cis-
eQTLs, we conducted a conditional cis-eQTL discovery and identify 858-13259 independent cis-
eQTLs at FDR = 5% (Supplementary Methods, Supplementary Figure 2). Subsequently we took the
union of eQTLs identified in all of the tissues (Supplementary Methods) and calculated sharing
probabilities using the methodology described in the previous paragraph. We find a high degree of
sharing amongst biologically related tissues. For example, brain tissues form a cluster with high
sharing amongst themselves, coronary artery eQTLs are shared the most with aorta, and the uterus
and ovaries share the most eQTLs (Figure 1a, Supplementary Table 1). We compared these tissue
sharing estimates to the more commonly used m; estimates!! and find that the two metrics are
significantly positively correlated (r = 0.933, p < 1e-300, Figure 1b), confirming the validity of our
approach. The advantage of RTC over the m; estimates is that RTC can assess the tissue sharing
probabilities of an individual variant, whereas m; estimates the overall sharing and cannot directly
make a statement about individual eQTLs.

Unlike the m; estimates, our RTC-based probability of sharing can be used to find the most likely set
of tissues where the eQTL effect is active. This is accomplished by enumerating the sharing
probabilities of an eQTL in all combinations of the 44 tissues (Supplementary Methods). Moreover,
we record the frequency of other tissues identified in the set of most likely tissues for an eQTL. The
distribution of number of tissues an eQTL is likely active in show that the majority (94%) of the eQTLs
are shared with at least one other tissue, in agreement with previous findings*'**3 (Figure 2a).
Furthermore, the number of tissues with shared effects decreases sharply as the number of tissues
increases, but there is a slight enrichment for eQTLs active across most or all of the 44 tissues (Figure
2a). When we compare the eQTL sharing estimates among tissues for significant eQTLs found in each

of the tissues, we discover two classes of tissues. Whereas the majority of the tissues exhibit higher
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degrees of tissue sharing, some tissues like testis and whole blood show a higher degree of tissue
specificity (Figure 2b, c, e, Supplementary Table 2). Since each eQTL identified in a given tissue was
predicted to be active in a set of other tissues, we next identified the most frequent other tissues
included across all these sets. This was done to measure the global impact of the individual
estimates, unlike the tissue sharing comparison in the previous section where we only quantify the
global sharing between tissues. The results indicate for tissues with biologically meaningful
similarity, shared eQTL effects are also more frequently observed. For example, brain tissues are
most similar to other brain tissues, ovaries are most similar to uterus and vagina tissues, and heart
left ventricle is most similar to heart arterial appendage (Figure 2d & f, Supplementary Figure 9,
Supplementary Table 3). In summary, our methodology uncovered two types of tissues, either with
high degrees of tissue specificity or with high tissue sharing, and showed individual tissue sharing
estimates identified biologically relevant tissues as shared, indicating the RTC method is capable of

assessing tissue specificity on a variant by variant basis.

Given that GTEx comprises a wide range of tissues and our novel methodology can assess tissue
sharing of each eQTL variant identified in these tissues, we are in an unprecedented position to infer
candidate causal regulatory effects and their genes that may mediate the GWAS variants. Since RTC
uses only the discovered GWAS variant, we are able to test GWAS-eQTL overlaps in all known GWAS
variants, and were not limited to GWAS signals with available summary statistics or raw data, which
unfortunately is very sparse. To this end we downloaded the NCBI GWAS catalogue’ and filtered the
complete list of 15929 GWAS variants to include 5751 genome-wide significant associations (p < 5e-
8) that overlapped with GTEx variants, and ran the RTC analysis with the independent significant
eQTLs (FDR = 5%) from each of the tissues, resulting in 4664 GWAS variants that co-localized with
eQTLs. We observe a large enrichment of high RTC scores across the GWAS-eQTL co-localizations
confirming, as previously described>**, that GWAS variants frequently manifest their effects
through regulatory effects (Figure 3a). We also observe a bimodal distribution for probabilities of

GWAS and eQTL tagging the same functional effect, where the majority of the probabilities are close
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to 0, but there also is an enrichment for high probabilities (Figure 3b). We have previously shown
that RTC score is a better estimate of the causality between two variants than other pairwise LD
metrics, r? and D’°>. When we compare the RTC score between two variants to their r?, we observe
that high r? generally means a high RTC score, however there many causal links found by RTC and
missed when using r? as a metric, extending our previous finding that RTC is preferable to r> when
predicting causality (Figure 3c, Supplementary Figure 10, Supplementary Table 4). Finally, we
tested how the probability of sharing, as calculated with our new methodology varies with the raw
RTC score and show that this probability behaves as expected with high RTC scores indicating a high
probability of shared functional effects between the GWAS and eQTL variants. However, the
probability is highly variable across regions that share the same RTC score, indicating the necessity of

calculating this probability on a region by region basis (Figure 3d).

Although GWAS provide a list of markers that predispose to a certain disease or trait, they fail to
identify the tissues where the genetic causality arises. Given that we can test all filtered GWAS
signals for eQTL overlap, we can attempt to answer this question. In order to do so, we need to
know not only whether co-localizing GWAS and eQTL variants are tagging the same functional effect,
as inferred by RTC, but also the tissue-wide activity of the eQTL in question. We expect that weighing
the probability of GWAS and eQTL variants being due to the same functional effect with the tissue
sharing of the eQTL should increase our power in detecting the causal tissue behind the genetic
associations of a GWAS trait. To do so, for each eQTL in a given tissue that co-localizes with a GWAS
variant, we divide the probability of GWAS variant and eQTL tagging the same functional variant,
with the sum of tissue sharing probabilities of that eQTL in that tissue. This enables us to weigh the
GWAS-eQTL probabilities so that tissue specific eQTLs will contribute to a tissue’s GWAS enrichment
more so than eQTLs that are shared with many other tissues. Next, for each disease in each tissue
we divide the sum of the normalized GWAS-eQTL probabilities from the previous step with the
number of independent eQTLs in the tissue, thereby controlling for the differential power of

discovery amongst the 44 tissues, and this is defined as our enrichment metric. We show that by
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using our normalization technique we can significantly reduce (Mann-Whitney p = 1.5e-21,
Supplementary Figure 11) the correlation between the number of eQTLs in the tissues and the
GWAS enrichment metric, thus allowing us to estimate the relative contribution of tissues to the

genetic causality of a trait.

We investigated the overall pattern in tissue causality of GWAS traits and looked at specific
examples. Therefore, for each GWAS trait we rank our normalized enrichment metric for each of the
tissues. Those tissues that are ranked higher are estimated to contribute more to the genetic
causality of a GWAS trait. We discover that liver is the top tissue implicated in most of the GWAS

15,16

traits (12%), which include, expectedly, variety of lipid measurements and uric acid levels?’

(Figure 4a, Supplementary Figure 12, Supplementary Table 5). Brain tissues are the top tissues

1920 and age of onset of puberty?l. Furthermore, for

relating to traits like height®®, schizophrenia
traits where we have a biological prior of a causal tissue and where this tissue is assayed in GTEX, this
tissue tends to be the most likely tissue discovered by our methodology. For example, the top causal
tissue for coronary heart disease is coronary artery followed by liver; for schizophrenia the top
tissues are brain tissues and for lipid metabolism traits like total cholesterol levels the top tissue
tends to be liver (Figure 4b, c, d). Thus, we show that by having access to eQTLs from multiple

tissues and controlling for the tissue specificity of eQTLs using our novel methodology, we can

estimate the relevant tissues from which the genetic causality of GWAS traits arise.

Since we estimated the tissue causality profiles for GWAS traits, we can compare the causal genes
for the GWAS associations between tissues likely contributing to the genetic causality of GWAS traits
and those that are not. We examined the rs12740374 variant in the 1p13 locus, which is not only

2223 3nd lipid measurements?®, but is also one of the few

associated with coronary artery disease
GWAS non-coding loci where the mechanistic causes are well established®. Liver is a key tissue in

both heart disease and lipid measurements (Figure 4b, d), and in liver the causal gene for the

rs12740374 association is correctly identified as SORT1?°, P(Shared) = 1. In tissues that do not
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contribute highly to the genetic causality of these traits, like testis and whole blood, we incorrectly
identified another nearby gene, PSRC1, as the putative causal gene, P(Shared) = 0.96 and 0.97,
respectively (Figure 5, Supplementary Table 6). Importantly, the tissues where SORT1 is correctly
identified contribute significantly (Mann-Whitney p = 0.0007) more to the genetic causality of heart
disease and lipid levels than tissues where the causal gene is different (Supplementary Figure 13).
This result shows the importance of identifying the causal tissues for GWAS traits, before stating

which genes may be responsible for these associations.

Finally, we asked how different diseases with shared pathophysiology differ with respect to which
tissues contribute to their genetic causality. To this end we investigated autoimmune and
cardiometabolic diseases and used hierarchical clustering to group the individual diseases according
to their relative tissue causality profiles. Among the autoimmune diseases we find that Crohn’s
disease and ulcerative colitis form a cluster, whereas celiac disease has a different tissue causality
profile. Type 1 diabetes and lupus seem most similar to each other and rheumatoid arthritis, vitiligo,
and psoriasis appear markedly different when compared to other autoimmune disorders (Figure 6a).
For cardiometabolic diseases, blood pressure related traits, coronary heart disease and type 2
diabetes form a cluster while stroke, where a strong effect in the brain is observed, is the outlier in
these types of disorders (Figure 6b). We demonstrate that by comparing the tissue causality profiles
of GWAS diseases we can begin to disentangle the common as well as diverging biology underlying

their development.

Here we describe a novel approach that is designed to estimate the causal tissues underlying the
genetic causality of GWAS traits, using eQTLs identified by the GTEx consortium. Given the tissue
and sample size limitations, there is still room for improvement in determining true tissue causality
profiles for GWAS traits. However, our analysis represents an unbiased and complete profiling of the
tissue contributions to GWAS genetic causality in an unprecedented scale. As the sample sizes and

the number of tissues assessed for eQTLs, and our resolution of the genetic etiology of complex
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disorders increase, we expect our methodology to yield even more powerful conclusions. We
believe this type of approach will be paramount in the interpretation of new GWAS results using a
publically available dataset, like GTEx, and will aid in the design of downstream functional
experiments to identify the mechanistic causes of complex disorders and traits, as well as new
avenues of treatment and prevention.

Data access The data used in this paper is available for controlled access at dbGaP (accession:

phs000424.v6.p1).

Methods are described in the supplementary methods and figures file available in the online

version of this paper.
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Figure 1 — (a) Tissue sharing matrix based on sharing probabilities calculated through RTC. Rows correspond to the
discovery tissue and columns to the replication tissue. Cells contain the mean probability multiplied by 100. (b) Correlation
between the mean tissue sharing estimated from RTC and the m; estimate, showing a significant positive correlation
between these estimates.

11


https://doi.org/10.1101/074682
http://creativecommons.org/licenses/by-nc-nd/4.0/

available under aCC-BY-NC-ND 4.0 International license.

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
a)

bioRxiv preprint doi: https://doi.org/10.1101/074682; this version posted September 11, 2016. The copyright holder for this preprint (which

Number of tissues an eQTL is active in
For union of eQTLs across all tissues

hﬂmﬂn_rrmﬂmﬂmﬂmnmnmnmnmﬂrrﬂ

0.14 —
0.12
0.10
0.06 —

0.04 —
0.02
0.00 -

€C

R N

TANOTOONONOTNNFIDONONO =N

5% and for genes tested in all tissues

Number of tissues an eQTL is active in for genes tested in all tissues
FDR

Distribution of number of tissues eQTLs are active infor each tissue

10 —
0

T T T
[=) =} o
< ® Y

AR A9y SI 1LD® Ue sanssi Jo JaquinN

poojg 8oy

euibep

sniayn

prosAy L

snsaL.

yoewols

uas|ds

wna||” [eulwia] sunsaju|” |[lewS

Ba| 1emo pasodx3 ung upg
olgndesdng ™ pasodx3 ung JON UNS
ajeIsold

Kseynig

sealoued

Kieno

[e1q! 1~ aAIN

[SEIEX SRR

Bun

J9AI

BJOLUBA Yo 1esH
abepuaddy |euy JesH
suenosn|\~snbeydosy

esoon|\~ snbeydos3y

uonounp” [eabeydosaolises)” snbeydosy
9sJaAsURl ~UOj0D

plowbig™uoj0)

S)SB|qOIqy~ PaWIOJSUBI] " S|[9D
so1fooydwA| pawojsuen-Ag3 sl
anssi|~ Alewwely iseaig

ellbueb |eseq” usweind” uleig
eljbueb |eseq” suaqunooe” snajonN” ulelg
snwejeyjodAH uleig
sndweooddiH ™ uleig

6Yd XeHo) |ejuoliq urelg

XoJ0) uleig

wnjjagale)”ulelg

aJaydsiwaH Je|jegala) ulelg
elbueb |eseq eyepne)  uleig

YZvd X100 ajenbuio Jousuy ulelg
[e1qr L~ Aoy

Areuoio) Atepy

eyoy Aoy

puejo”[euaipy

wnjuswQ~ [esa9siA~asodipy

snoauejnogng ™ asodipy

12


https://doi.org/10.1101/074682
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/074682; this version posted September 11, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

c) d)
Number of tissues an eQTL is active in Top 10 tissues with most sharing for
Testis FDR = 5%, common genes Testis FDR = 5%, common genes

150 I M
I 1 g
— _ [z}
A _ k)
_ ini— _ S
100 _ M §
M ml . — [ o
1 M M a

50
o]

Number of tissues an eQTL is active in f)
e)
Number of tissues an eQTL is active in Top 10 tissues with most sharing for
Heart_Left_Ventricle FDR = 5%, common genes Heart_Left_Ventricle FDR = 5%, common genes
250
200 +
2
i g
_ B
k]
150 — s
- £
S ) S Q
- o
M o
100
50
04 HI_IHH

NI OO RO Or NN ITVON VDO T NN T DO
FFFFFFFFFF SINN]IICR

Number of tissues an eQTL is active in

Figure 2 — (a) Frequency distribution of the number of tissues that an eQTL is active in (plotted for the union of eQTLs
across all tissues) which shows that most eQTLs are shared with at least one or a few other tissues, while eQTL sharing
among high numbers of tissues is rare (b) Distribution of number of other tissues an eQTL is active in for the significant
(FDR =5%) eQTLs in each of the tissues. We see two types of tissues, one where the majority of eQTLs are shared with
other tissues like the brain tissues and another set where there are higher rates of tissue specificity like testis and whole
blood. (c) Testis as an example of a tissue with a higher degree of tissue specificity of eQTLs and (d) the top 10 tissues that
share eQTLs with testis. (e) Heart left ventricle as an example of a tissue that shares most of its eQTLs with other tissues
and (f) the top 10 tissues that share eQTLs with left ventricle.

13


https://doi.org/10.1101/074682
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/074682; this version posted September 11, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a) Distribution of RTC scores b) Distribution of P(Shared)
All tissues merged All tissues merged
o
Q _ [Te}
- -
8 <
& 2
— «©
8 —_ <
g m 2
E - —1 <C>f 8
g — g
g — g
£ g -
= o
<
g | 3
3 &
8
o - T J
I T T T T 1 8 I T T T T 1
0.0 02 04 06 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0
RTC P(Shared)
c) 12 vs. RTC d) RTC vs. P(Shared|RTC)
All tissues merged All tissues merged

RTC
P(Shared|RTC)

r2 RTC
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Figure 4 — (a) Heat map of the relative likelihood of any tissue to be causally linked to any of the top 50 traits with the
highest number of GWAS variants in the NCBI GWAS catalogue. Plotted are the relative normalized probabilities, which are
centred and scaled per disease. The darker shades of red indicate higher likelihood of GWAS genetic causality is acting
through this tissue. Rows correspond to the GWAS trait and columns to the tissues. Examples of traits with a prior on a
biologically causal tissue: coronary heart disease (b), schizophrenia (c), total cholesterol (d). On the primary y-axis the
normalized probabilities per tissue are plotted as bars and on the secondary y-axis number of GWAS variants that co-
localized with eQTLs per tissue are plotted as a line.
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Figure 5 — The coronary artery disease (CAD) and lipid levels associated GWAS 1p13 locus eQTLs in liver (a) and whole
blood (b). Points are the —log10(p-value) eQTL associations for SORT1 in liver and PSRC1 in whole blood. The cyan line is
the recombination rate, given in the secondary y-axis, and the boxes highlight the positions of the two genes. In both
tissues the best eQTL association is genome-wide significant (FDR = 5%), however the eQTL gene, for which the eQTL and
the causal rs12740374 variant are tagging the same functional effect as identified by our method, is different. Liver, which
we estimate to play a key role in the development of both CAD and regulation of lipid levels, correctly identifies the SORT1
as the causal gene for this GWAS association, however the more easily collectable whole blood tissue, which is estimated
not to contribute to these traits, fails to do so. If we had just whole blood eQTLs, and did not know the tissue causality
profile for these traits, we would have incorrectly identified PSRCI as a putative causal gene.
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Figure 6 — Relative contribution of tissues to the genetic causality of autoimmune diseases (a) and cardiometabolic
disorders (b). Rows list tissues and columns list diseases. Darker shades represent higher contribution per tissue. The left
most column shows the relative tissue contributions across all diseases combined. The hierarchical clustering of the

diseases is shown as a dendrogram.
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