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ABSTRACT. Complex ecosystems, from food webs to our gut microbiota, are essential to hu-
man life. Understanding the dynamics of those ecosystems can help us better maintain or control
them. Yet, reverse-engineering complex ecosystems (i.e., extracting their dynamic models) di-
rectly from measured temporal data has not been very successful so far. Here we propose to
close this gap via symbolic regression. We validate our method using both synthetic and real
data. We firstly show this method allows reverse engineering two-species ecosystems, inferring
both the structure and the parameters of ordinary differential equation models that reveal the
mechanisms behind the system dynamics. We find that as the size of the ecosystem increases or
the complexity of the inter-species interactions grow, using a dictionary of known functional re-
sponses (either previously reported or reverse-engineered from small ecosystems using symbolic
regression) opens the door to correctly reverse-engineer large ecosystems.

1. INTRODUCTION

Understanding the dynamics of complex ecosystems, such as food webs or human micro-
biota, has the potential to transform how we approach some of the most pressing challenges
of our time, from better ecosystem management to improving human health [1–6]. The hu-
man microbiota, for example, is a large and complex community of microbial species primarily
residing in the gastrointestinal (GI) tract [7]. Many GI diseases such as C. difficile infection,
inflammatory bowel disease, irritable bowel syndrome, and chronic constipation, as well as a
variety of non-GI disorders as divergent as autism and obesity, have been associated with dis-
rupted microbiota [8–13]. Yet, despite the growing importance of research on those complex
ecosystems, there is a remarkable lack of mechanistic understanding of their dynamic behavior.
Our uncertainty about the dynamics of complex ecosystems originates in the intrinsic difficul-
ty of extracting useful dynamic models from poorly informative time-series data that we often
have. Existing approaches either (i) use parameter identification methods such as multivariate
regression [14], maximum likelihood [15] or downhill simplex [16]; or (ii) use a “black-box”
framework such as neural or Bayesian networks. In the first case, we must apriori choose the
model structure —an assumption that is always hard to justify given the existence of different
functional response models[17]. Indeed, this forces us to rely on “standard” models such as
the Generalized Lotka-Volterra(GLV) model [4, 18], despite we know its limitations occur even
at the scale of two-species [17, 19]. In the second case, despite those “black-box” approaches
can offer very accurate prediction of the system’s temporal behavior, they cannot provide any
mechanistic understanding of the underlying ecological dynamics.

Here we propose to fill this gap by combining Symbolic Regression (SR) with prior knowl-
edge of possible interaction types (i.e., so-called “functional responses” [17]). As a recent
system identification method based on evolutionary computation, SR searches in the space of
mathematical expressions both the structure and parameters of an ordinary differential equation
(ODE) model that accurately explains the given time-series data [20, 21]. Importantly, SR also
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provides several candidate models with different levels of complexity and accuracy, letting us
choose the model with the best and most significative tradeoff. We show that SR allows us to
discover the dynamics of two-species ecosystems with diverse functional responses from time-
series data without any prior knowledge of their dynamics, producing dynamic models that can
be mechanistically interpretable. Yet, in order to correctly discover the dynamics behind given
time time-series data, we find it is essential to have informative enough data. Otherwise, our
approach will infer accurate models with dynamics different to those that generated the data. As
the size of the ecosystem grows, we find it becomes harder for the data to be informative enough
to reveal the full dynamics of the system. In order to circumvent this problem, we propose to
use a “dictionary” of functional responses obtained by either reverse-engineering small systems
from informative time-series data or from domain knowledge [17]. We validated this method
using both synthetic and real data, showing that it can open the door to mechanistically under-
stand the dynamics of complex ecosystems. A schematic overview of the Symbolic Regression
workflow discovering the dynamics of a two-species ecosystem is shown in Fig. 1.

2. RESULTS

2.1. Two-species ecosystems. Consider synthetic time-series data {x1(t), x2(t)}, t ∈ [0, tf ],
generated from a general two-species predator-prey model{

ẋ1 = x1f(x1)− g(x1, x2)x2,
ẋ2 = mg(x1, x2)x2 − µx2,

(1)

where x1 and x2 denote the density of prey and predators, respectively [17]. The function
f : R → R represents the prey growth rate, and g : R × R → R is the so-called “functional
response” which describes the instantaneous, per capita feeding rate of the predator and rep-
resents the form of interaction between species [22]. The constants m > 0 and µ > 0 are
the conversion efficiency and the per capita death rate of predators, respectively. The standard
model for growth rate is given by the logistic equation

f(x1) = r (1− x1/K) ,

where the carrying capacityK > 0 is the maximum number of prey allowed by limited resource,
and r > 0 is the growth rate constant [17]. Empirical evidence has shown that ecosystems may
exhibit very different functional responses [17, 23–28]. Here we consider four representative
ones: Lotka-Volterra (LV), Holling Type II (H), DeAngelis-Beddington (DB) and Crowley-
Martin (CM):

gLV(x1, x2) = c1x1, gH(x1, x2) =
c1x1

1 + c1c2x1
,

gDB(x1, x2) =
c1x1

1 + c1c2x1 + c3x2
, gCM(x1, x2) =

c1x1
(1 + c1c2x1)(1 + c3x2)

,
(2)

where ci > 0 are constants. These functional responses describe different mechanisms for
the inter-species interactions with increasing complexity, which are key factors in determining
ecological dynamics (Remark 1 in SI-2.1).

We generated synthetic time-series data by numerically integrating (1) using different func-
tional responses in (2). Then, we used SR to reconstruct f̂(x1) and ĝ(x1, x2) from this data (see
Methods), providing estimates for the true f(x1) and g(x1, x2). The only prior knowledge used
in the SR algorithm is that ĝ(x1, x2) = p(x1)/q(x1, x2) for some unspecified functions p and q,
preventing the SR algorithm from searching over functional responses that are not ecologically
meaningful (Methods 3). In order to test the performance of SR, we considered two case studies
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FIGURE 1. The schematic overview of the Symbolic Regression workflow. a. With-
out any prior information on model structures or parameters, our aim is to find mech-
anistic understanding of ecological systems given the time-series data input. b. The
Symbolic Regression algorithm searches a set of functions illustrating the dynamics of
the given data, and we use root-mean-square errors (RMSE) to evaluate model fitness.
Less RMSE represents higher model fitness. c. The Pareto front can reflect the tradeoff
between complexity and fitness of candidate equations. With recorded optimal fitness
on ceratin value of model complexity, it is meaningful to keep an account of each cliff
in the plot corresponding with equation A,B,C,D,E and F , indicating the increase of
predictive ability as model structures evolve. After searching on a space of 1.9 × 108

equations, SR finds equation F revealing true model dynamics.

in which the data have different levels of “informativeness”. In the first case, the parameters
m,µ, r,K and ci are chosen such that the systems exhibit a limit cycle (i.e., stable oscillations).
In such case, the data was informative enough in the sense that SR was able to correctly recover
the functional form as well as parameter values for the LV, H and DB functional responses (Fig.
2a-c). For the CM functional response, SR finds an accurate model (i.e., fits the data accurate-
ly), but the inferred functional response ĝ does not match the correct functional response g that
was used to generate the data (Fig. 2d). This means that the data is still not informative enough
to reveal the correct functional response, since different model structures can fit the data equally
well. To resolve this problem, more information is needed, and a method often used in practice
is to collect time-series data from the response of the prey x1(t) in isolation [17]. This extra
information allows us to infer f(x1) first, and then to recover g(x1, x2) (Methods 3). Following
this process, the correct functional response can indeed be recovered even in the case of CM
interactions (Fig. 3).
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FIGURE 2. Reverse-engineering synthetic two-species ecosystems. For Lotka-
Volterra, Holling type II and DeAngelis-Beddington functional responses with limit cy-
cles, SR can directly reconstruct the correct growth functions and functional responses
from time-series data. For Crowley-Martin type with more complex functional response,
SR only reconstructs a model with high accuracy but incorrect model structure. Root-
mean-square errors (RMSE) are calculated to compare derived models with original
synthetic ones, while constant errors are the constant terms in the derived SR models.

In order to better study the role of the informativeness of the measured temporal data on
the discovered dynamics, in the second case study we choose the parameters of the system
such that its trajectories approach an equilibrium, Fig. 4. The synthetic data obtained in such
a way has no persistent oscillations, and SR finds accurate models but their growth rates and
functional responses differ from the true ones (solid blue lines in Fig. 4). To circumvent this
fundamental limitation, in Section 2.2 we show that prior knowledge of the functional form
of the interactions is extremely useful, letting us recover the correct dynamics from otherwise
uninformative time-series data.

Next we test our approach with real data from a predator (P.aurelia) and prey (D.nasutum)
ecosystem [29]. Following the methodology of [17], we first infer the growth rate function
f̂(x1) from experimental data of the prey growing in isolation, and we let f̂ and ĝ depend on
delayed values of x1 and x2. Using the SR method, we infer the model{

˙̂x1(t) =6.8534 + 0.9101x̂1(t)f̂(x1(t))− 0.8614 ĝ(x̂1(t), x̂2(t))x̂2(t),

˙̂x2(t) =0.3832ĝ(x̂1(t), x̂2(t))x̂2(t) + 6.7737 + 9.0267x̂2(t)− 9.1651x̂2(t− 0.1),
(3)

with the following growth rate and functional response

f̂(x1(t)) = 1.8878 + 0.0351x1(t)− 0.05835x1(t− 0.1) + 0.01297x1(t− 0.2) + 0.00680x1(t− 0.5)

ĝ(x1(t), x2(t)) =
3.6817x1(t− 0.2) + 0.02187x1(t− 0.1)x1(t− 0.2)− 1.9803x1(t)− 0.02705x1(t)x1(t− 1)

x1(t− 0.1)
.
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FIGURE 3. Reverse-engineering a two-specie ecosystem with Crowley-Martin
functional response. Without giving any prior knowledge of the interaction (red), SR
is able to infer an accurate model that does not use the CM functional response. In order
to reverse-engineer the correct functional response, we provide extra information using
the time-series data of the isolated prey (green) that allows us to correctly infer f(x1)
first (yellow). With such prior information (blue), SR correctly recover the functional
form for g(x1, x2).

Here the time t is in units of days. The inferred model contains constants in the right-hand
side of the differential equation for prey and predator, which can be interpreted as external
(constant) inputs from the environment acting on the system. The growth rate function f̂(x1)
includes several terms with delays in addition to the standard logistic model. For the death
rate of predators, the model also includes delays. These delayed terms indicate that the current
population affects the carrying capacity of their offsprings. Furthermore, the inferred functional
response depends only on the prey. The inferred model (3) using our SR approach has a Root
Mean Squared Error (RMSE) of 22.7123, while the best fitted model computed in [17] with
DeAngelis-Beddington functional response has an RMSE of 53.4867. Note that such model
also contains delays. This means that SR was able to automatically infer a model with more
than twice the accuracy, as can be also appreciated by visual inspection of the true and predicted
trajectories (Fig. 5).

2.2. Using prior knowledge of functional form of interactions. In the simulation examples
of the previous section, we found that if the data is not informative enough then SR can reverse-
engineer an accurate model in terms of trajectory prediction, but the model itself is totally dif-
ferent from the ground truth that was used to generate the synthetic data. In order to circumvent
this limitation and recover the correct functional response and growth rate, we propose to seed
the SR algorithm with a “dictionary” of possible functional responses, Methods 3. This dic-
tionary is built from either previously reported or reverse-engineered from informative enough
data using SR. With this additional information, SR can correctly reverse-engineer the correct
functional response even with the less informative data of Case 2 in Section 2.1, Fig. 4. Indeed,
this prior information is instrumental to infer the dynamics of larger ecosystems because, as the
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FIGURE 4. Reverse-engineering a two-species ecosystem from uninformative da-
ta. Compared to Fig.2, here the parameters of the system are such that its trajectories
quickly approach an equilibrium. From this data, SR is able to reverse-engineer an ac-
curate model without recovering the correct functional response or growth rates (blue).
In this sense, the data itself is not informative enough. In order to acquire more infor-
mation without needing more data, we provide to the SR algorithm a “dictionary” of the
possible functional responses. With this additional information, the SR algorithm is able
to correctly reverse-engineer both the growth rate and functional response (red).

size of the ecosystem grows, it becomes harder for the data to be informative enough to reveal
the full dynamics of the system.
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FIGURE 5. Reverse engineering a predator-prey ecosystem from experimental
time-series data. a. Experimental time-series obtained from the prey in isolation
(grey), and the estimated time-series from the reverse-engineered model using SR (blue).
b. Experimental time-series data of the prey. True (gray), reverse-engineered model
using SR (blue), best model fitted in [17] using the DeAngelis-Beddington functional
response with logistic growth (dashed red). c. Time-series data of the predator. True
(grey), reverse-engineered model using SR (blue), best model fitted in [17] using the
DeAngelis-Beddington functional response with logistic growth (dashed red).

2.3. Reverse-engineering larger ecosystems. Finally we test our framework in larger ecosys-
tems, generating data by simulating the following model with six species:

ẋ1 = 9x1 − 5x21 −
2x1x2

1 + 1.5x1
− 2x1x3

1 + 1.3x1
− 2x1x4

1 + 1.7x1
− 2.2x1x5

1 + 1.55x1
− 2.1x1x3

1 + 1.6x1
,

ẋ2 =
1.3x1x2
1 + 1.5x1

− 0.1x2x3
1 + 0.9x2

− 0.2x2,

ẋ3 =
0.67x1x3
1 + 1.3x1

+
0.12x2x3
1 + 0.9x2

− 0.2x3,

ẋ4 =
0.93x1x4
1 + 1.7x1

− 0.2x4,

ẋ5 =
0.91x1x5
1 + 1.55x1

− 0.2x5,

ẋ6 =
0.92x1x6
1 + 1.55x1

− 0.21x6,

(4)

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 11, 2016. ; https://doi.org/10.1101/074617doi: bioRxiv preprint 

https://doi.org/10.1101/074617


8 YIZE CHEN1,2, MARCO TULIO ANGULO1,3,5 AND YANG-YU LIU1,4

(a)

(c)

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 10 20 30 40 50

(b)

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50

0.2

Er
ro

r
ix

ix

time

time

time

(a)

 1x

 2x

 3x

 4x

 5x

 6x

Six Species True (b)  True-Estimated
 True

SR

SR with Prior Info

(c)  Error

SR

SR with Prior Info

ix

FIGURE 6. Reverse-engineering larger ecosystems using symbolic regression. a.
The data consists of the trajectories obtained by simulating system (4) containing six
species (each species shown in different color). b. True trajectories (grey), trajectories
estimated by the reverse-engineered models using symbolic regression without (dashed)
and with (solid) prior information. c. Error (euclidean norm of the difference between
the true trajectory x(t) and the estimated trajectory x̂(t)) as a function of time for the
reverse-engineered models using symbolic regression without (dashed) and with (solid)
prior information of the possible interaction types. In both cases, the reverse-engineered
models have good accuracy but only when the SR is given prior information the data is
informative enough to recover the correct functional responses.

whose interactions are of Holling Type II. We selected the parameters of this system such that
its trajectories oscillate as shown in Fig. 6a. By applying SR directly, we obtain an accurate
model but it does not contain the correct form of the interactions, Fig.6c and SI-4. Indeed, from
Fig. 6a, the time-series of the variables x4, x5 and x6 are very similar, making difficult for
any algorithm to distinguish between them (in other words, the effect of including any of these
variables in the right-hand side of an ODE model is very similar). Furthermore, SR often yields
accurate but very complex models (Methods 3 and dashed line in Fig. 6b). These problems
are circumvented by using the dictionary of possible functional responses described in Results
2.2. With this prior information, SR is able to significantly decrease its searching space, and
reverse-engineer an accurate model with the correct interactions (Methods 3 and solid line in
Fig. 6b).

3. DISCUSSION AND CONCLUDING REMARKS

There is an increasing need to understand the dynamics of complex ecosystems. Here we
introduced a novel method based on SR that is able to reverse-engineer ODE models from
time-series data of ecological systems. In particular, with sufficiently informative data, our
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approach can recover both the structure and the parameters of a model that accurately explains
the data. This performance is not shared by most system identification algorithms since, even if
the data is informative enough, they can at best fit the parameters of an a-priori selected model
(the selection of such model is hard to justify in practice) and often, even if the model accurately
explains the data, such models do not provide mechanistic understanding of the system (e.g.,
in neural network models). Moreover, the proposed SR approach has an additional degree of
freedom: it lets the user choose the model that has the best tradeoff between complexity and
accuracy for each particular application.

With uninformative data, our approach discovers different ODE models (with different func-
tional response and growth rate functions) that explain the data equally well. This implies that
the “true” system dynamics is unidentifiable from the given data [30], reflecting a fundamental
limitation to infer the correct dynamics using any method. We found that the informativeness of
the data decreases with the complexity of the interactions between species and with the number
of species. In order to increase the informativeness we can acquire more data (e.g., time-series
from the prey in isolation) and use a dictionary of prior information of the possible functional
form of the interactions (functional responses). By seeding the SR algorithm with a dictionary
of possible functional responses, we found it is possible to correctly reverse-engineer more com-
plex and larger ecosystems for which the data alone is not informative enough. In particular, in
the case of experimental data, we found our approach can produce models twice as accurate as
the best model previously fitted.
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METHODS

Reverse-engineering dynamic systems using symbolic regression. Consider we are given
time-series data xi(t), t ∈ {0, · · · , tf}, i = 1, · · · , N , for the abundance of each of the N
species composing the ecosystem. Our objective is to find functions fi : RN → R, i =
1, · · · , N , such that the model

˙̂xi(t) = fi
(
x̂1(t), · · · , x̂N(t)

)
, x̂i(0) = xi(0); i = 1, · · · , N

accurately explains the mechanisms behind the data: x̂i(t) ≈ xi(t), ∀t ∈ {0, · · · , tf} and
i = 1, · · · , N .

We are particularly interested in functions fi that simultaneously are (i) simple (i.e., they
can be constructed with the least number of operations), (ii) meaningful from an ecological
perspective, and (iii) have good fitness. Here the fitness of a given function fi is defined using
the root-mean-square error (RMSE) between the true and estimated derivatives

RMSE(fi) =
1

tf − t0

√√√√ tf∑
t=0

( ˙̂xi(t)− ẋi(t))2,

where ẋi(t) is the estimated derivative of the time-series data and ˙̂xi(t) = fi
(
x̂1(t), · · · , x̂N(t)

)
.

A good tradeoff between these three characteristics yields simple and powerful models, which
can be interpreted to understand the dynamic behavior of the ecosystem. SR starts by randomly
assembling several candidate a function fi using the set of admissible operators {+,−,×}
and terminals {x1, · · · , xN} ∪ {const.}. Next, the SR algorithm computes the fitness of each
candidate function, keeps the better ones, and uses mutation and crossover [31] among these
functions to build better ones [21] with evolution in structures and parameters. This process is
iteratively repeated until sufficiently “good” functions are found. In order to achieve this, it is
very useful to keep track of the so-called Pareto front that plots several models according to its
complexity and fitness, see Fig. 1c.

Unlike typical regression methods like second-order polynomials that specify a model struc-
ture with model’s parameters adjusted to fit the data, SR can infer both the model structures and
the parameters. In particular, since the functions fi in ecological models tends to be the sum
of small nonlinear functions (i.e., sum of functional responses for each species), multi-gene
algorithms [32] are useful.

Expressing models in multi-gene approach uses several genes combined together to evolve
equations containing many variables, and it also carries benefits for analyzing the Pareto front,
since we can clearly record improvements in the accuracy and complexity of the functions [33].
With such Pareto-aware SR algorithms, we can explicitly explore the trade-off between model
complexity and accuracy, letting us select those models that provide the best balance between
accuracy and complexity.

Applying SR to ecological systems with two species. Given time-series data of the two species
{x1(t), x2(t)}, we first estimate their derivatives {ẋ1(t), ẋ2(t)} using central difference method.
Next, we reverse-engineer a model that accurately fit ẋ2(t). For this, we use SR to find a func-
tion ĝ(x1, x2) such that

˙̂x2 = ĝ(x1, x2)x2 − µ̂x2
has good fitness/complexity tradeoff for some constant µ̂ > 0. Finally, with the function
ĝ(x1, x2), we use SR again to find a function f̂(x1) such that

˙̂x1 = x1f̂(x1)− 1
m
ĝ(x1, x2)x2
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has again a good fitness/complexity tradeoff for some constant m > 0. For the results shown
in all figures, we used the SR algorithms incorporated in Eureqa [34]. Eureqa also lets us
incorporate the constraint ĝ(x1, x2) = p(x1)/q(x1, x2) for some function p and q, preventing
the SR algorithm to search over model spaces of functional responses that are not ecologically
meaningful.

Prior information I: additional data from the prey in isolation. We explored two methods
to incorporate prior information. The first one uses more data from the response of the prey
x1,isolated(t) in isolation. We estimate again the derivative of this data ẋ1,isolated(t) and use SR to
find a good function f̂(x1) such that

˙̂x1,isolated = x1,isolatedf̂(x1,isolated)

has a good fitness/complexity tradeoff. With this estimated f̂ , we can use the time-series data
from the prey interacting with the predator {x1(t), x2(t)} to reverse-engineer the functional
response ĝ(x1, x2) by using

˙̂x1 = x1f̂(x1)− ĝ(x1, x2)x2.
We found this approach very efficient, reducing the time required to correctly reverse-engineer
ĝ(x1, x2), which in turn reduces the reverse-engineering process to find parameters m and µ.
This method allows us to correctly reverse-engineer a synthetic ecosystems of CM functional
responses (results shown in Fig. 3b).

Since we can expect that the functional response of real ecosystems are at least as complex as
the CM functional response, we applied the same method to the experimental data of Veilleux
[29]. We exploit interpolation and delay operator to build the candidate functions for the SR
algorithm.

Prior information II: prior knowledge of possible functional responses. The second method
to incorporate prior information simply seeds the SR algorithm with prior knowledge of possi-
ble functional responses. Instead of trying to reverse-engineer the equation for ˆ̇x1 = x1f(x1)−
g(x1, x2)x2, we listed all possible units which may exist in the denominator of g(x1, x2), like
ax1, bx2, cx1x2 and dx2, and treated them as a dictionary of interaction forms for inputs of SR.
In the next step, we transformed the reverse-engineering process of ˆ̇x2 = mĝ(x1, x2)x2 − µx2
into a multi-gene SR problem of finding parameters for different units in our interaction dic-
tionary. Some parameters simply equal to 0, indicating the non-existence of some types of
functional responses. We performed the multi-gene symbolic regression using the Matlab pack-
age GPTIPS2 [35], combined with a post-analysis on Pareto-front to select the best transformed
model with the fintness/complexity tradeoff. From a technical perspective, compared to previ-
ous symbolic regression procedures, we found that combining the dictionary of possible inter-
actions with multi-gene genetic programming increases the accuracy of the method and helps
avoid bloated equations (i.e., accurate but extremely large models). Nevertheless, this choice
tends to produce models with a small constant error that is accumulated when the ODE models
are integrated. This could be remediated by using a different norm for evaluating the fitness
of the candidate models in the SR algorithm. Such choice, however, would slow down the SR
algorithms because it requires to numerically integrate an ODE system to evaluate the fitness of
a candidate model.

This approach is pretty useful in selecting the true functional response for uninformative data
and finding the model for ˆ̇x2, and then we follow the same step in Methods 3 to reverse-engineer
f̂(x1). Thus prior information on the possible functional responses proves to be very useful in
recovering the model structures, especially for those uninformative data sets.
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Applying SR for larger ecosystems. We comprehensively employed prior information men-
tioned in Methods 3 and Methods 3. In our results shown in Fig. 6, at the initial stage, as x4, x5
and x6 all conforms to the model structure of

˙̂xi = ĝ(x1, xi)xi − µ̂ixi, i = 4, 5, 6.

SR can directly reverse-engineer ĝ(x1, xi) and µi by only providing time-series data x1(t) −
x6(t) as inputs, which is the same case in recovering ˙̂x2 in Methods 3. It selected out the related
variables to the derivativeẋ4, ẋ5 or ẋ6, and successfully reverse-engineers the ODEs.

We then found SR was stuck at finding the correct models for the dynamics of x2, x3 if we
provided no more knowledge of model itself, as it had three species included in one ODE. At
this stage we listed all the possible forms of interactions described in Methods 3, and instructed
SR to use this dictionary as the prior knowledge for model reconstruction. Then multi-gene
SR helped selecting existing forms of functional responses, and reverse-engineering ĝ(x2, x3),
ĝ(x1, x2) and ĝ(x1, x3). With all the recovered functional responses ĝ concerned with x1 pro-
vided as inputs, the SR algorithm was able to correctly infer the model of ˆ̇x1, which has the
highest complexity including pairwise interactions with other 5 species. The typical three steps
of revered engineering plots are shown in Fig. 6b, with a comparison to the original synthetic
model and direct SR model with good fitness but poor structures.
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1. PRIMER ON SYMBOLIC REGRESSION

Based on genetic programming [1], symbolic regression (SR) is a methodology to search
in a space of mathematical expressions for those that accurately fit given temporal data [2, 3].
Note that SR is able to search for both the parameters and the functional form of such expres-
sions, letting us build models based on Ordinary Differential Equations (ODEs) [2] for dynam-
ical systems. In order to perform SR, we need to predefine a set of admissible operators (bi-
nary operations like {+,−,×} and unary operations like {log, exp})and the set of “terminals”
({x1, · · · , xN}∪{const.}), which the algorithm can use to build mathematical expressions. For
example, the function fi(x1, · · · , xn) = 2x1 + 1.6 requires two operators and three terminals.

In the initial stage, the classical SR algorithm randomly generates assigned number of can-
didate functions {fi} combining randomly a subset of terminals and operators. The fitness of
each of those candidate functions is computed, quantifying how fit the data (see Methods in the
main text for details). In addition, model-building information for each evolved equation, such
as function complexity and individual fitness are also recorded as criteria in selecting meaning-
ful while concise candidates during the searching process. In the next stage, the SR algorithm
keeps the candidate functions with better fitness, and uses evolutionary computation [1] to con-
struct “better” candidate functions from them. This is done via two methods: mutation (alters,
deletes or adds an terminal or operator to an existing function) and crossover (creates two new
offspring functions for the new generation by genetically recombining randomly chosen parts
of two selected parent functions). This process is iteratively repeated until models with high
fitness and low complexity (measured by number of operators and terminals used) are found.
Using the “Pareto front” —a plot of inferred models according to their complexity and fitness—
SR algorithms are able to efficiently track and control this process.

Date: September 10, 2016.
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Note that unlike typical regression methods in which a model structure must be a-priori fixed
(e.g., second-order polynomials, wavelets, sigmoids, etc.) and only the model’s parameters
are adjusted to fit the data, SR can infer both the structure of the model and its parameters
simultaneously. In other words, SR algorithms let us search over the (infinite dimensional)
space of possible ODE models for those accurately fitting the data. It has also been shown that
incorporating intermediate regression and ensemble steps, such as providing a group of sigmoid
functions or selecting the most representative candidates during a generation, can enhance and
accelerate its performance [4].

An intrinsic drawback of SR is that the search spaces increases exponentially as the num-
ber of terminals or operators increases leading to more complex equations. This implies that
it becomes harder for SR algorithms to correctly infer the interactions between species (i.e.,
functional forms) as the number of species increases or as the interactions become more com-
plex. Nonetheless, since reported functional responses in ecological systems tend to be linear
combinations of rather simple nonlinear functions [5], we found that a variant of traditional SR
known as multi-gene algorithms [6] can be very useful. Instead of using a single genetic pro-
gramming tree that easily becomes very large with complicated structure in each of its branches,
in multi-gene SR we evolve simultaneously several (independent) trees restricting their com-
plexity. Trees represent genes that can be combined to build candidate equations and hence
candidate ODE models. The multi-gene approach is also useful for analyzing the Pareto front,
since we can more easily record improvements in the accuracy and complexity of the functions
[4]. Indeed, we can decompose the equations on the Pareto fronts during each run, helping
us extract sub-blocks (e.g., xixj or xixj/(const. + xj)) that recurrently appear in the interac-
tions between different species. This allow us to explicitly explore the trade-off between model
complexity and accuracy by select those models that provide the most useful balance between
accuracy and complexity.

2. SYMBOLIC REGRESSION TO INFER MATHEMATICAL MODELS OF ECOSYSTEMS

Previous studies have focused on establishing a useful class of mathematical models than
can describe ecological systems [7, 8]. A general class of such models can be written as the
following set of ODEs

ẋi = xifi(x1, · · · , xN), i = 1, ..., N, (S1)

where xi represents the state (e.g., abundance) of the i-th specie in a community of N species.
The properties of such models provide useful information about the mechanisms behind ecosys-
tems, from stability to the existence of periodic orbits as well as model chaos. Therefore, given
temporal data of each species in the system {xi(t)}Ni=1, t ∈ {0, · · · , tf}, we aim to find functions
fi : RN → R, i = 1, · · · , N , such that the model

˙̂xi(t) = x̂i(t)fi
(
x̂1(t), · · · , x̂N(t)

)
, x̂i(0) = xi(0); i = 1, · · · , N (S2)

accurately fits the data: x̂i(t) ≈ xi(t), ∀t ∈ {0, · · · , tf} and i = 1, · · · , N . Since, in principle,
there is an infinite number of such functions, it is useful to discriminate between them according
to their complexity and fitness. In other words, we will be interested only in those functions
{fi} which have low complexity and high fitness.

2.1. Two-species Ecosystem Dynamics. Consider a general two-species predator-prey model:{
ẋ1 = x1f(x1)− g(x1, x2)x2,
ẋ2 = mg(x1, x2)x2 − µx2,

(S3)

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 11, 2016. ; https://doi.org/10.1101/074617doi: bioRxiv preprint 

https://doi.org/10.1101/074617


REVEALING COMPLEX ECOLOGICAL DYNAMICS VIA SYMBOLIC REGRESSION—SUPPLEMENTARY INFORMATION—3

where x1 and x2 denote the density of prey and predators, respectively [5]. The function
f : R → R represents the prey growth rate, and g : R × R → R is the so-called “func-
tional response” which describes the instantaneous, per capita feeding rate of the predator and
represents the form of interaction between species [7]. The constants m > 0 and µ > 0 are the
conversion efficiency and the per capita death rate of predators. Different forms of functional
responses represent different distribution of predators through space as well as the stability of
predator-prey systems [9].

The standard model for growth rate is given by the logistic equation

f(x1) = r (1− x1/K) ,

where the carrying capacityK > 0 is the maximum number of prey allowed by limited resource,
and r > 0 is the growth rate constant [5]. Empirical evidence has shown that ecosystems may
exhibit very different functional responses [5, 9–13]. Four representative ones are the Lotka-
Volterra (LV), Holling Type II (H), DeAngelis-Beddington (DB) and Crowley-Martin (CM)
interactions. Their structure is as follows:

gLV(x1, x2) = c1x1, gH(x1, x2) =
c1x1

1 + c1c2x1
,

gDB(x1, x2) =
c1x1

1 + c1c2x1 + c3x2
, gCM(x1, x2) =

c1x1
(1 + c1c2x1)(1 + c3x2)

(S4)

where ci > 0 are constants. In Fig. S1 we also show the parameters we use in our synthetic
models of different types of interactions. Other types of functional responses like Holling Type
III, Hassell-Varley [14] and Holling-Tanner [15] have structures similar to these four ones or
include less complex interactions. Therefore the successful dynamics discovery of these four
functional responses can be fundamental to the research of other ecological models.
Remark 1. Different functional responses in (S4) correspond to different mechanisms of in-
teraction between species. In the Lotka-Volterra model, the rate of predation is proportional to
the rate of instantaneous number of predator. The functional response of Lotka-Volterra model
is also regarded as the Holling Type I with the linear increase on food density. On the other
hand, in the Holling Type II model, the predator spends time searching and processing the prey.
Indeed, the parameter c1 encodes the effects of capture rate and c1c2 describe the effects of
handling time for captured prey. In the DeAngelis-Beddington functional response, the param-
eter c3 is added to model interference between different predators. The Crowley-Martin models
“preemption” allowing for interference among predators regardless of whether a particular in-
dividual is currently handling prey or searching for prey. Therefore, by inferring the functional
response using SR algorithms, we can learn the ecological mechanisms behind given time-series
data.

2.2. The role of the informativeness of the data. In order to discover the true dynamics be-
hind given temporal data, it is crucial that the given data itself is informative enough. Otherwise,
different dynamics (e.g., models with completely different functional responses) can all fit pre-
cisely the same temporal data.

On one hand, when the number of samples is limited, it is usually reluctant to reveal the
overall temporal characteristics of each species that decreases data informativeness. On the
other hand, we tuned parameters for different types of functional responses based on [16, 17]
to produce different time-domain characteristics, and found that informative enough data can
be obtained when it records oscillations in the time-series trajectories of the system in the first
row of Fig. S1. If the trajectories of the system simply converge to an equilibrium point as
shown in the second row of Fig. S1, the data is considered as not informative enough, in the

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 11, 2016. ; https://doi.org/10.1101/074617doi: bioRxiv preprint 

https://doi.org/10.1101/074617


4 YIZE CHEN1,2, MARCO TULIO ANGULO1,3,5 AND YANG-YU LIU1,4∗

Lotka-Volterra Holling type II DeAngelis-Beddington Crowley-Martin

1( )f x

1 2( , )g x x

( , )mµ

10.5 3.3x−

12x

(0.7,  1.5)

18 8x−

1

1

2
1 1.5

x
x+

(0.2,  0.475)

11.2 0.12x−

1

1 2

14.5
15 16 17

x
x x+ +

(0.1,  0.5)

11 0.8x−
1

1 2 1 2

0.2
0.5 0.1 0.3

x
x x x x+ + +

(0.1,  2)

Model Parameters

Model Parameters

0 200 400 6000

0.2

0.6

1.4

0 50 100 150 200−0.05

0.05

0.15

0. 2

0 50 100 150 2000

2

4

6

0 100 200 3000

1.5

2.5

3.5

4.5

0 50 100 150 200
0

20

40

60

70

0 50 100 150 2002

6

10

14

16

0 50 100 150 2000

2

4

6

0 40 80 120 160 1800.5

1.5

2.5

3.5

4.5

1 2( (0), (0))x x

1x1 2( , )g x x
1( )f x

1

1 2

14.5
15 16 17

x
x x+ +

( , )m µ

1

1

2
1 1.5

x
x+

(1.5,  0.7) (0.475,  0.2) (0.5,  0.02)

11 0.3x− 18 5x− 10.83 0.0166x− 10.7 0.8x−
1

1 1 2

0.1
(0.03 0.1 ) 0.28)

x
x x x+ + +

(4, 0.1)−

1

1 2( (0), (0))x x

1x

1x

2x

2x

time time time time

time time time time

(0.5,1)

(0.2,0.1)

(1.014,3.813)

(1,0.5)

(4,6)

(2,2)

(0.5,0.5)

(0.5,2)

FIGURE S1. Model inference using informative and uninformative data (same as
Fig. 1 and 3 of the main text). Parameters and functional form of the ODE model,
and its initial conditions. (a) With oscillations in the trajectories, the temporal data is
informative enough for the SR algorithm to recover the correct functional response. (b)
Without oscillations, the data is not informative enough and the SR algorithm recovers
different functional responses.

sense that the SR algorithms are able to find ODE models that correctly fit the data yet having
different structures of functional responses. For the ODEs we want to recover, such states of
quick equilibrium could reflect little of the functional responses’ characteristics itself, while
on the other side, from the perception of SR algorithm, it can find a set of eligible candidate
ODE models, which fit the original temporal data equally well. Indeed, in such case, we find
that it is often possible to fit the data using the simple LV functional response to some extent
(Fig. S2 green). This result also helps us explain the wide-spread use of the LV to model
diverse ecological systems, because the simple LV model can roughly depict the oscillating and
periodic dynamics of ecological systems.

Next we move further to build a model for a six-species food web. Based on our analysis of
the case of two species, we carefully designed the interactions its parameters in to produce os-
cillations that could potentially be informative enough to reveal the correct interactions between
species. With these considerations, we obtained
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FIGURE S2. Comparison of direct SR, SR with LV functional response, and SR
with a dictionary of functional responses. We consider temporal data in which the
trajectories of the system converge to an equilibrium point. The SR algorithms discov-
ers accurate models that have different structures (blue). Indeed, we can force SR to
derive models containing the Lotka-Volterra functional response showing the ability of
the LV model to fit the response of other functional responses (green). Transforming
the model into a linear regression form and using a dictionary of possible functional
responses, SR can efficiently infer the growth-rate and functional response even with
poorly informative data (red).
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(S5)
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FIGURE S3. Synthesizing a six-species ecosystem. (a) With x1 playing as a central
role in this synthetic system, pairwise interactions are constructed using Holling Type II
functional responses. (b) Model parameters are tuned to obtain oscillations in all of the
six species, providing informative time-series data for SR.

whose functional responses are of Holling Type II. The trajectories of the system and the inter-
actions between species are shown in Fig. S3.

3. SR USING TEMPORAL DATA OF THE PREY IN ISOLATION

In the main text, we showed that additional temporal data of the prey in isolation x1,isolated(t)
can be used to correctly infer complex functional responses. For this, we first estimate the
derivative of this data ẋ1,isolated(t) and use SR to find a good function f̂(x1) such that

˙̂x1,isolated = x1,isolatedf̂(x1,isolated)

has a good fitness/complexity tradeoff. In the next step, we use the inferred f̂(x1) as prior
information to the predator-prey model. Indeed, we can use the time-series data from the prey
interacting with the predator {x1(t), x2(t)} to reverse-engineer the functional response ĝ(x1, x2)
by using

˙̂x1 = x1f̂(x1)− ĝ(x1, x2)x2.
We found this approach very efficient, reducing the informativeness of the data needed to cor-
rectly infer g(x1, x2) and the parameters m and µ. In particular, this method allows us to cor-
rectly reverse-engineer a synthetic ecosystems with CM functional responses (results shown in
Fig. 2b in main text).

Since it is natural to expect that the functional response of real ecosystems are at least as
complex as the CM functional response, we applied the above method to the experimental data
of Veilleux [18] with a predator-prey system of P.aurelia and D.nasutum. In such experiment,
the authors reported data in which the isolated prey is cultured under the same conditions as the
predator-prey system. We first interpolated these measurements using cubic splines and then
sampled them every 0.1 days in order to generate the data {x1(t), x2(t)}, t ∈ {0, 0.1, · · · , 35}.
We also included the delay operator delay(xi(t)) = xi(t−0.1) in the set of operators that the SR
algorithm can use to build the candidate functions. Using this process, SR successfully inferred
a biologically meaningful model with high fitness shown in Fig. S4.
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FIGURE S4. Inferring dynamics from experimental data of a predator-prey
ecosystem. (a). We use splines to interpolate the original experimental data [18] of
the prey in isolation (black), and the density of predator and prey (blue and green re-
spectively). (b). we first use SR to discover the dynamics of prey in isolation, which
accurately depicts both the prey density (blue) as well as prey variations (red), with
dashed lines depicting the original datasets. (c). With the prior knowledge on the prey
growth rate of prey, SR is able to discover meaningful models with ˙̂x1(t) on the left hand
side of the derived equation. We could recover both the prey density(blue) and prey vari-
ations (red) with the existence of predators, with dashed lines depicting original data in
Fig. S4a.

4. USING A DICTIONARY OF POSSIBLE FUNCTIONAL RESPONSES

In case the temporal data is not informative enough, we can seed the SR algorithm with prior
knowledge of possible functional responses. Indeed, we have explained that the main obstacle
for directly using SR is that it cannot infer complex interactions with uninformative data, for
instance, equilibrium points rather than limit cycles. Here we show that the prior knowledge
about the system interactions —which is often available— can be used to decrease the neces-
sary informativeness of the temporal data. This form of prior information can be regarded as the
“dictionary” of possible structures of interactions revealing the temporal phenomenon, which
we refer as the information blocks provided to the SR algorithm. We first collected and com-
bined terms existing on the right-hand side of Equation. S3, such as ax1, bx2, cx21 and dx2/α in
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FIGURE S5. Model decomposition for multi-gene SR. When the data is not infor-
mative, which is shown in the case of Fig. S2, it is insightful to provide a dictionary
of possible structures of interactions as prior knowledge. We firstly decompose right-
hand side of original ODEs and transform the equations consisting of blocks of possible
model structures.

Fig. S5. Note that for different types of functional responses, α denotes different structures of
interactions in the denominator of g(x1, x2). We treat them as the prior knowledge we can get of
interaction forms for inputs of SR in advance. Since it is rather difficult for SR to search through
solution space to identify the exact structures of α, we move furthur to transform the equations,
and put term x1x2 on the left side of the previous ODE, which is regarded as the output variable.
Instead of providing SR algorithm with input species variables directly, we instructed SR with
a set of possible terms existing in our interaction dictionary. To take the example of Holling
type II functional response, on the right side now it should have terms x21, x

3
1, x̂1 and x̂1x1.

In this way the algorithm is provided with the previous knowledge for some extent of model
structures hidden behind the temporal data. We listed all possible terms which may exist in
the right hand side of the transformed target equations. In the next step, we could transform
the reverse-engineering process of ˆ̇x2 = mĝ(x1, x2)x2 − µx2 into a multi-gene SR problem of
finding parameters for different units which are listed in our interaction dictionary. Some pa-
rameters simply equal to 0, indicating the absence of some types of functional responses. In this
case, the multi-gene symbolic regression on the Matlab package GPTIPS2 [19] is efficient in
extracting the meaningful blocks. Combined with a post-analysis on Pareto-front, it is possible
to select the most insightful interaction units with the fitness/complexity tradeoff. Thus we can
transform back the derived model into structure of Equation. S3, and we found it efficient in
treating uninformative datasets.

Since this method decreases the needed informativeness of the data, it is also useful for
inferring the dynamics of multi-species systems such as (S5). In the results shown in Fig. S3,
at the initial stage, the x4, x5 and x6 satisfy the structure

˙̂xi = ĝi(x1, xi)xi − µ̂ixi, i = 4, 5, 6.

Therefore, applying the results of Section 2 we can infer ĝ1j(x1, xj) and µj , j = 4, 5, 6, from
informative time-series data {x1(t), · · · , x6(t)}. We then found the data was not informative
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enough for SR to recover the correct models for x2, x3. Hence we used the dictionary of possi-
ble functional responses together with multi-gene SR, allowing us to correctly infer ĝij(xi, xj)
for i = 1, 2, 3 and j = 1, · · · , 5. With all the recovered functional responses ĝ concerned with
x1 provided as inputs, the SR algorithm was able to correctly infer the model of ˆ̇x1, which
has the highest complexity including pairwise interactions with all other 5 species. With the
combination of multi-gene encoding of the model expressions and representative blocks trans-
formation for the system dynamics, we manage to get rid of bloated equations or overfitting of
specific models, and retrieve system dynamics with exact structures of function and accurate
variable parameters.
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