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 2 

Abstract 23 

 24 

Top-down modulation of sensory processing is a critical neural mechanism 25 

subserving a number of important cognitive roles. Principally, top-down 26 

influences appear to inform lower-order sensory systems of the current ‘task at 27 

hand’, and thus may convey behavioral context to these systems. Accumulating 28 

evidence indicates that top-down cortical influences are carried by directed 29 

interareal synchronization of oscillatory neuronal populations. An important 30 

question currently under investigation by a number of laboratories is whether the 31 

information conveyed by directed interareal synchronization depends on the 32 

frequency band in which it is conveyed. Recent results point to the beta 33 

frequency band as being particularly important for conveying task-related 34 

information. However, little is known about the nature of the information 35 

conveyed by top-down directed influences. To investigate the information content 36 

of top-down directed beta-frequency influences, we measured spectral Granger 37 

Causality using local field potentials recorded from microelectrodes chronically 38 

implanted in visual cortical areas V1, V4, and TEO, and then applied multivariate 39 

pattern analysis to the spatial patterns of top-down spectral Granger Causality in 40 

the visual cortex. We decoded behavioral context by discriminating patterns of 41 

top-down (V4/TEO à V1) beta-peak spectral Granger Causality for two different 42 

task rules governing the correct responses to visual stimuli. The results indicate 43 

that top-down directed influences in visual cortex are carried by beta oscillations, 44 

and differentiate current task demands even before visual stimulus processing. 45 
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They suggest that top-down beta-frequency oscillatory processes may coordinate 46 

the processing of sensory information by conveying global knowledge states to 47 

early levels of the sensory cortical hierarchy independently of bottom-up 48 

stimulus-driven processing. 49 

  50 
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Introduction 51 

 52 

Perception is not driven solely by sensory stimulation. Rather, endogenous 53 

processing actively modulates and routes sensory input based on prior 54 

knowledge, adapts perception to satisfy task demands, and solves ambiguities in 55 

the sensory stream (Engel et al. 2001; Gilbert and Sigman 2007; Wang 2010). 56 

Mounting evidence indicates that oscillatory activity conveys information between 57 

visual cortical areas (Fries 2005; Bressler and Richter 2015; Fries 2015). 58 

Anatomical studies show that cortical areas are linked via unique patterns of 59 

cortical projections and terminations between the cortical laminae that define the 60 

cortical hierarchy (Felleman and van Essen, 1991; Hilgetag et al. 1996; Markov 61 

et al. 2014). Recent studies have revealed that information transfer across the 62 

cortical hierarchy occurs in unique frequency regimes, with gamma frequency 63 

rhythms subserving bottom-up (feedforward) information transfer, while beta 64 

rhythms mediate transfer in the reverse (top-down) direction (Bressler et al. 2007, 65 

Buschman and Miller 2007; Bosman et al. 2012; van Kerkoerle et al. 2014; 66 

Bastos et al. 2015; Richter et al. 2016; Michalareas et al. 2016). Furthermore, 67 

top-down beta frequency influences may directly affect stimulus-related 68 

processing, as indicated by recent studies demonstrating that the magnitude of 69 

top-down beta-frequency rhythms is increased to the hemisphere representing an 70 

attended stimulus, resulting in enhanced bottom-up processing of the attended 71 

stimulus (Bosman et al. 2012; Bastos et al. 2015; Richter et al. 2016). Top-down 72 

beta-frequency synchronization may play a general role in behavior by conveying 73 
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moment-to-moment task demands of the organism to lower level sensory 74 

systems in order to maintain global knowledge states (Engel and Fries 2010; 75 

Bressler and Richter 2015). Specifically, top-down beta rhythms may mediate the 76 

interaction between endogenously generated top-down information, variously 77 

described as hypotheses, prior knowledge, or attentional locus, and stimulus-78 

generated bottom-up information (Bastos et al. 2012; Bressler and Richter 2015, 79 

Richter et al., 2016). Consequently, we hypothesize that behavioral context is 80 

encoded in the pattern of top-down beta synchronization in visual cortex. 81 

 82 

We tested this hypothesis in two macaque monkeys performing a visual 83 

discrimination task (Figure 1), in which the behavioral context was determined by 84 

the task rule governing the correct response to each visual stimulus, the rule 85 

being randomly varied across trial blocks. Local field potentials were chronically 86 

recorded from microelectrodes in primary visual cortex (area V1) and extrastriate 87 

areas V4 and TEO. Both top-down (V4/TEO-to-V1) and bottom-up (V1-to-88 

V4/TEO) directed synchrony were quantified using spectral Granger Causality in 89 

a stationary time period when the animal could anticipate the visual stimulus, but 90 

before it was presented. In this way, top-down influences were isolated from any 91 

confounding effects of stimulus processing. We successfully decoded behavioral 92 

context at a level significantly exceeding chance (50%) in both monkeys (76% 93 

and 82%) by two-class multivariate pattern analysis, using the spatial pattern of 94 

prestimulus top-down beta synchrony directed from V4/TEO to V1 as the 95 

classification feature. 96 
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 97 

The results of this study indicate that the endogenous pattern of top-down beta 98 

influence from V4/TEO carries task-specific information to primary visual cortex 99 

(V1). We conclude from this that beta oscillations adaptively coordinate the 100 

processing of sensory information by conveying behavioral context to early levels 101 

of the sensory cortical hierarchy. We infer that behavioral context is conveyed 102 

from higher to lower levels of visual cortex by beta-frequency synchronized 103 

oscillations because pattern classification analysis successfully discriminated 104 

different visuomotor contingencies using higher-to-lower-level beta-frequency 105 

visual cortical influences as classification features. Our results thus support the 106 

notion that top-down beta-frequency oscillations play a general role in mediating 107 

the interaction between high-level cognitive processing and stimulus-related 108 

activity. 109 

 110 

Results 111 

 112 

Prestimulus Beta-Frequency Oscillatory Synchrony in Visual Cortex 113 

Beta-frequency oscillations in V1 and V4/TEO were detected as spectral peaks 114 

near 16 Hz in the de-noised LFP power spectra (Figure 2a,b) computed during a 115 

brief prestimulus window. Generally, LFP time series are well described as 116 

stochastic processes, and spectral power peaks indicate the frequency and 117 

magnitude of narrow-band oscillatory activity in those processes. During the 118 

prestimulus period, the monkey had already pressed a lever (and maintained it in 119 
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the depressed position) to begin the trial, and was awaiting well known visual 120 

stimuli. Prestimulus synchronization of the V1 and V4/TEO beta-frequency 121 

oscillations was observed as a peak in the average V1-extrastriate coherence 122 

spectrum at 17 Hz (Figure 2c). Coherence is a linear approximation of the total 123 

interdependence Fxy for values in the range (<~0.2) normally encountered 124 

physiologically (see Supplementary Figure 2). A peak in the coherence spectrum 125 

indicates narrow-band synchronization between the two processes used to derive 126 

it. 127 

 128 

Prestimulus Oscillatory Synchrony Supports Top-down Signaling to V1 129 

Based on this strong tendency for prestimulus V1 and V4/TEO LFPs to oscillate 130 

in the beta frequency range, we hypothesized that beta-frequency synchrony 131 

supports top-down signaling from extrastriate cortex to V1. To test this 132 

hypothesis, we next computed bottom-up and top-down spectral Granger 133 

Causality (sGC) between LFPs in V1 and V4/TEO. The sGC measures statistical 134 

causality at spectral frequencies in the Nyquist range, quantifying the degree to 135 

which the prediction of a value of one time series can be improved by knowledge 136 

of the past values of another time series as a function of frequency.  137 

 138 

The mean top-down sGC spectrum showed a peak at 16 Hz, closely matching 139 

the frequency of the power peaks and coherence peak, while the mean bottom-140 

up sGC spectrum did not show a beta peak (Figure 2d). A peak in the sGC 141 

spectrum indicates narrow-band directed synchrony between the two processes 142 
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used to derive it. This result supports the hypothesis that beta-frequency 143 

synchrony underlies top-down signaling from extrastriate cortex to V1. According 144 

to the known relation between coherence and sGC, we inferred that 145 

synchronization between V1 and extrastriate areas is dominated by a top-down 146 

transfer of information from extrastriate cortex to V1. 147 

 148 

To more precisely determine the difference between top-down and bottom-up 149 

sGC spectra shown in Fig 2d, we tested for an sGC directional asymmetry at all 150 

frequencies between 5 and 90 Hz using a bootstrap resampling approach. We 151 

found top-down sGC to be significantly greater than bottom-up sGC only for 152 

frequencies between 8 and 23 Hz (grey region in Fig 2d); this range was 153 

centered very close to the 16 Hz mean top-down peak (p < 0.001, two-tailed 154 

corrected bootstrap resampling test, n = 12). In fact, the probability density of top-155 

down sGC peaks was most prominent in the low-beta-frequency range, with the 156 

peak probability density at ~16 Hz being at least 2.5 times larger than at any 157 

other frequency examined (Fig 3a). These results point to the presence of top-158 

down physiological signaling from extrastriate low-beta-frequency oscillatory 159 

generators to V1 low-beta-frequency generators in subjects awaiting stimulus 160 

presentation as they performed the visual pattern discrimination task. 161 

 162 

Prestimulus Top-down Directed Beta-Frequency Synchrony Predicts 163 

Behavioral Context 164 
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The evidence for top-down V4/TEOàV1 physiological signaling suggested that 165 

the transmission of top-down influences from V4/TEO to V1 may carry task-166 

related behavioral information. We therefore tested the hypothesis that the spatial 167 

pattern of top-down beta-frequency sGC contains task-specific behavioral 168 

information. To perform this test, we applied a linear Support-Vector-Machine 169 

(SVM) classifier, using the top-down beta-frequency peak sGC magnitudes as 170 

classification features, in order to predict the task rule (behavioral context) that 171 

was in effect. The top-down beta-frequency peak sGC magnitudes used for 172 

classification were from the 8 site pairs (out of the 12 possible) that exhibited two 173 

important properties: (1) the mean peak frequency was inside the 95% 174 

confidence interval of the overall mean of 16 Hz; and (2) the standard deviation 175 

of peak frequency was low (Figure 3b, red bars). These 8 site pairs thus showed 176 

a consistent top-down directed synchrony in a narrow frequency band around 16 177 

Hz. By contrast, the other 4 site pairs had their mean peak frequency outside the 178 

95% confidence interval and had a large variability of that peak frequency (Figure 179 

3b, blue bars). They thus did not show a consistent top-down directed synchrony 180 

in a narrow frequency band. The subsequent analysis focused on these 8 site 181 

pairs showing consistent top-down directed synchrony in a narrow frequency 182 

band around 16 Hz. 183 

 184 

The spatial patterns of these consistent top-down narrow-band beta-frequency 185 

sGC peaks, and of their corresponding coherence peaks, are depicted in the 186 

maps of Figure 4, where peak coherence is represented by lines connecting 187 
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V4/TEO and V1 electrode sites, peak sGC is represented by arrows from a 188 

V4/TEO site to a V1 site, and line or arrow thickness represents the magnitude of 189 

peak coherence or sGC. 190 

 191 

We found that top-down, but not bottom-up, sGC was highly correlated with 192 

coherence (Figure 5).  At 16 Hz there was a significant linear correlation (R(6) = 193 

0.90, p < 0.005, Bonferroni corrected) between top-down sGC and coherence 194 

values,and top-down sGC explained 81% of the variance in coherence (Figure 195 

5a). By contrast, bottom-up sGC and coherence were not significantly correlated 196 

(R(6) = 0.55, p = 0.315, Bonferroni corrected). We also computed the correlation 197 

between sGC and coherence at 16 Hz after first aligning the mean sGC and 198 

coherence magnitudes and standardizing the variance of each pair over 199 

bootstraps (Figure 5b). Even after this normalization, the fraction of the 200 

coherence variance explained by the top-down sGC of the 8 site pairs having 201 

consistent top-down narrow-beta-band directed synchrony (48%) greatly 202 

exceeded that explained by the bottom-up sGC of these site pairs (16%), and 203 

even more greatly exceeded that explained by the top-down sGC of the other 204 

(inconsistent) 4 site pairs (4%). 205 

 206 

Support-Vector-Machine (SVM) pattern classification, with the set of top-down 207 

narrow-beta-band peak sGC values (taken from the 8 consistent site pairs) as 208 

classification features, provided evidence that top-down beta-frequency sGC 209 

encodes the task rule (Figure 6). The classification accuracy was 76% for M1, 210 
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which was significantly greater than the 50% chance classification level (t(10177) 211 

= 2.05, p = 0.020), and 82% for M2, which was also significantly greater than the 212 

chance level (t(8266) = 2.70, p = 0.004). The results were verified by applying a 213 

linear discriminant analysis pattern classifier to the same classification data. 214 

 215 

To ensure that these results were specifically due to a difference in beta-216 

frequency spectral peak magnitudes between task contingencies, we performed 217 

an additional statistical contrast where the classification was based on the top-218 

down sGC magnitude at frequencies randomly selected between 5 and 50 Hz. 219 

This resulted in classification accuracies that were near the 50% chance level 220 

(Figure 6: M1: 51%, t(10177) = 0.21, p = 0.42); M2: 56%, t(8266) = 1.12, p = 221 

0.132)), thus demonstrating that significant classification performance critically 222 

depends on the peak frequencies in a narrow beta-frequency band.  223 

 224 

To summarize, these results demonstrate that a top-down narrow-beta-band 225 

synchrony directed to V1 from V4/TEO exists in a brief prestimulus window in 226 

monkeys highly trained to perform a visuomotor pattern discrimination task, and 227 

that this top-down narrow-beta-band directed synchrony predicts the task rule 228 

that is in effect. Since task rule determines the behavioral context under which 229 

the monkey was performing, the results indicate that behavioral context is 230 

conveyed to V1 from extrastriate cortex by top-down beta oscillatory signaling. 231 

 232 

Discussion 233 
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 234 

We report that prestimulus top-down beta-frequency directed synchrony in visual 235 

cortex discriminates the task rule (behavioral context) that governs correct 236 

behavioral performance. Our results indicate that task-related behavioral context 237 

is conveyed by endogenous top-down neural influences from extrastriate visual 238 

cortex (V4/TEO) to primary visual cortex (V1). Extrastriate visual cortex itself 239 

likely receives contextual information via influences from higher level areas 240 

located in frontal and parietal cortex, via known anatomical projections (Bressler 241 

et al. 2008; Markov et al. 2013). Overall, our findings support a cortical model in 242 

which contextual information about the behavioral significance of expected stimuli 243 

is propagated to V1 by a cascade of  top-down influences flowing down a cortical 244 

hierarchy (Bressler and Richter 2015). 245 

 246 

This main finding is based on the observation that before stimulus presentation in 247 

a visuomotor pattern discrimination task top-down directed synchrony is found in 248 

a narrow frequency band around 16 Hz for a majority of the site pairs examined. 249 

This result suggests the existence of an anticipatory network of visual cortical 250 

neuronal populations that are phase-synchronized in a narrow beta-frequency 251 

band. The findings of this report are thus consistent with the concept of phase-252 

synchronized large-scale cortical networks that have previously been proposed to 253 

operate in cognition (Bressler 1995, 2004, 2008; Bressler and Kelso 2001; 254 

Bressler and Tognoli 2006; Bressler et al. 2007; Meehan and Bressler 2012). 255 

 256 
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The sGC technique (Geweke 1982) that we employed to measure directed 257 

synchrony is based on a well-principled and long-established methodology 258 

(Bressler and Seth 2013). Although several studies (e.g., von Stein et al. 2000; 259 

Saalman et al. 2007) have attempted to infer cortical information transfer from the 260 

sign of oscillatory phase difference, it has previously been demonstrated that 261 

phase difference may not accurately reflect the direction of influence in cortical 262 

circuits (Brovelli et al. 2004; Salazar et al. 2012; Matias et al. 2014). 263 

 264 

The linear SVM pattern classification technique was used to discriminate task 265 

rule based on top-down beta-frequency directed synchrony entirely from within 266 

visual cortex. The classification results were validated by linear discriminant 267 

analysis. The classification findings may be considered surprising given that 268 

visual cortex is not traditionally considered to process task rules. However, they 269 

are consistent with an expanding body of evidence showing that visual 270 

processing is contextual (Gilbert and Sigman 2007), and that V1 can be “pre-271 

tuned” in preparation for visual perception (Farber et al. 2015). Only correct trials 272 

were considered in this study. Too few incorrect trials were left for analysis after 273 

artifact rejection, and so comparison of correct and incorrect performance was 274 

not possible. 275 

 276 

The top-down extrastriate-to-V1 directed synchrony that we report is in the beta 277 

frequency range (~16 Hz), consistent with a growing number of reports relating 278 

interareal beta-frequency interactions to endogenous cognitive processing (see 279 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 11, 2016. ; https://doi.org/10.1101/074609doi: bioRxiv preprint 

https://doi.org/10.1101/074609


 14 

reviews in Wang 2010 and Siegel et al. 2012). Although beta oscillations have 280 

previously been most associated with somatosensory-motor function (Jenkinson 281 

and Brown 2011), accumulating evidence supports the idea that they occur 282 

during wait periods when subjects are prepared for a sensory event or for motor 283 

behavior (Engel and Fries 2010). We now report that they appear to mediate the 284 

expectancy of visual processing as well. Moreover, our finding that top-down 285 

beta-frequency synchrony directed to V1 predicts behavioral contingency 286 

suggests that beta oscillations may also actively convey endogenous, task-287 

related contextual information to lower-order areas in other (non-visual) sensory 288 

systems. 289 

 290 

The precise neuronal mechanism by which top-down influences operate in visual 291 

cortex is unknown. However, top-down influences from extrastriate cortex may 292 

act on V1 inhibitory interneurons to increase their synchrony, and thereby 293 

increase their response gain (Lee et al. 2012; Mitchell et al. 2007; Tiesinga et al. 294 

2004). These V1 inhibitory interneurons likely control the infragranular V1 295 

pyramidal neuron, thought to be the principle projection neuron from V1 (Briggs 296 

2014). Modulatory inputs to the interneuron pool are likely to be transmitted by 297 

descending fiber pathways, which terminate in both supragranular and 298 

infragranular layers. Prominent beta activity has been reported in the 299 

infragranular layers of both V1 and extrastriate areas (Buffalo et al. 2011). Thus, 300 

in agreement with physiological and modeling studies (Wang 2010; Lee et al. 301 
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2012), beta oscillations are a strong candidate for the transmission of top-down 302 

influence down the visual hierarchy. 303 

 304 

The fact that no stimulus was present during the analysis period of our study 305 

suggests the reason why we did not observe prominent gamma-frequency 306 

influences. It may be that descending beta and ascending gamma influences can 307 

be decoupled in time. If so, top-down beta influences to V1 prior to stimulus onset 308 

may modify subsequent V1 stimulus responses. At times, top-down beta 309 

influences may also interact directly with stimulus-driven input. Both mechanisms 310 

dictate that feedforward stimulus-driven input carried by gamma oscillations is 311 

constrained by behavioral context, via descending beta frequency modulation 312 

(Bosman et al. 2012; Roberts et al. 2013; Bastos et al. 2015, Richter et al. 2016). 313 

 314 

Taken together, our results argue for the idea that extrastriate cortex transmits 315 

top-down influences to V1 when well-trained monkeys expect a familiar visual 316 

input. We find that these influences (1) depend on synchronous activity between 317 

extrastriate and V1 neuron populations, and (2) carry behaviorally relevant task 318 

information. The evidence provided here supports the hypothesis that top-down 319 

influences from higher areas within the visual cortical hierarchy dynamically 320 

constrain lower-level activity in an adaptive, task-specific manner. 321 

 322 

323 
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Materials and Methods 324 

 325 

Task 326 

Two well-trained adult rhesus macaque (Macaca mulatta) monkeys (M1 and M2) 327 

performed a go/no-go visual pattern discrimination task (Figure 1). The stimulus 328 

set contained four patterns (each belonging to one of two categories): two ”lines” 329 

and two ”diamonds”. The task rule determined the stimulus-response 330 

contingency that governed whether the correct behavioral response to a visual 331 

stimulus pattern type (line or diamond) was go or no-go. It was randomly 332 

reversed across trial blocks. Control of behavioral context was achieved by 333 

(randomly) changing the task rule. 334 

 335 

The stimuli were displayed on a screen at a distance of 57 centimeters from the 336 

eyes of the subject. Each of the four stimuli consisted of four solid white dots (0.9 337 

degrees visual angle per side), with two of the dots arranged diagonally on 338 

opposite corners of an outer square (six degrees visual angle), and the other two 339 

dots arranged diagonally on the opposite corners of an inner square (two 340 

degrees visual angle) (Figure 1). Line stimuli were patterns where the dots on the 341 

outer and inner squares were slanted in the same direction, while diamond 342 

stimuli had outer and inner dots slanted in opposing directions. Although the V1 343 

recording sites were expected to have a precise retinotopic relation with the 344 

stimulus dots, V1 retinotopic mapping was not available for these monkeys. 345 

However, the design of the stimulus ensured that categorization could not be 346 
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accomplished by observing any single dot, and that the total area, contrast, edge 347 

length, and brightness were constant across all stimulus types. 348 

 349 

The mean level of correct performance was 92.4 +/- 3.9% for M1 (18 sessions, 350 

minimum 84%, maximum 97%) and 95.7 +/- 3.3% for M2 (19 sessions, minimum 351 

89%, maximum 99%). Each trial was initiated when the monkey engaged a lever 352 

with the dominant hand. When the lever was depressed and maintained in the 353 

depressed position, the trial commenced. After initiation of the trial by the lever 354 

press, there was a random period of 200 - 1215 ms before the appearance of the 355 

visual stimulus. The visual stimulus was displayed for 100 ms followed by a 400 356 

ms window during which the monkey was required to release the lever on go 357 

trials, or maintain lever pressure on no-go trials. Correct go responses were 358 

rewarded. 359 

 360 

Electrophysiological Recordings 361 

In both M1 and M2, local field potentials (LFPs), which index the local synaptic 362 

activity of the neuronal population at a recording site (Lopes da Silva 2013), were 363 

differentially recorded from bipolar Teflon-coated platinum-iridium 364 

microelectrodes (more advanced tip near the boundary between the gray and 365 

white matter, less advanced tip at the pial surface) chronically implanted at up to 366 

16 cortical sites in the hemisphere contralateral to the dominant hand (for further 367 

details see Ledberg et al. 2007). The bipolar microelectrodes were composed of 368 

0.125 mm diameter wires having 2.5 mm tip separation. Electrode positions were 369 
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verified in one monkey (M1) by both postmortem visual inspection and magnetic 370 

resonance imaging. New to the present study, recordings were from areas in the 371 

ventral visual stream corresponding to V1, V4, and the temporal occipital area 372 

(TEO). Recording sites posterior to the lunate sulcus corresponded to V1, while 373 

sites within the prelunate gyrus (V4) and posterior inferotemporal cortex (TEO) 374 

were designated as extrastriate cortex. Recordings from M1 were from three V1 375 

recording sites, and three extrastriate recording sites. Of these three extrastriate 376 

sites, two were in area V4 and one was in TEO. All recording sites were posterior 377 

to the posterior middle temporal sulcus. Recordings from M2 were from three V1 378 

recording sites, and one extrastriate site lying in area V4. The LFP from each 379 

bipolar recording electrode was differentially recorded, amplified, and band-380 

passed filtered (-6 dB at 1 and 100 Hz, 6 dB per octave falloff) using a Grass 381 

model P511J amplifier, and digitized (12 bits/sample at 200 samples/sec). 382 

Differential recording reduced the common contributions to the two electrode tips 383 

by more than 10000 times, thus excluding propagated fields from more than a 384 

few millimeters away and localizing activity to the tissue between the tips of the 385 

bipolar electrode. All experiments were performed by Dr. Richard Nakamura at 386 

the Laboratory of Neuropsychology of the National Institute for Mental Health. 387 

Animal care was in accordance with institutional guidelines at the time. Surgical 388 

methods were as previously described (Ledberg et al. 2007).  389 

 390 

The data used in this report were recorded during multiple daily sessions 391 

spanning several months, and have not previously been studied. One session 392 

was recorded from each monkey per day with a typical recording session 393 
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composed of 1000 trials. The study employed 18 and 19 sessions from M1 and 394 

M2, respectively. Visual and automated artifact rejection reduced the number of 395 

correct trials (including both go and no-go responses) available for spectral 396 

analysis to 10178 and 8267 for M1 and M2, respectively. An analysis of 397 

interactions between other cortical areas in the same monkeys was previously 398 

published (Brovelli et al. 2004). However, the current report represents a new 399 

analysis of interactions between visual cortical areas. Since interactions between 400 

extrastriate cortex and V1 are known to be hierarchical, this study used these 401 

regions to investigate cortical top-down and bottom-up influences. 402 

 403 

Data acquisition began 85 msec before stimulus onset. Data were not recorded 404 

immediately following the lever press due to data storage limitations, and so it 405 

was not possible to analyze the temporal evolution of changes taking place 406 

between the lever press and the stimulus. Neural activity evoked by the stimulus 407 

was absent during the prestimulus period (Ledberg et al. 2007). 408 

 409 

Spectral Analysis 410 

Short-window autoregressive (AR) spectral analysis was performed on all 411 

available prestimulus (85 ms) LFP time series data. AR spectral analysis involves 412 

application of Fourier-based techniques to an AR model rather than directly to the 413 

LFP data. These techniques were utilized instead of direct-data Fourier-based 414 

techniques since the spectral resolution of the latter is not sufficient for the short 415 

time window analyzed (Nalatore and Rangarajan 2009), whereas the spectral 416 
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resolution and minimal frequency that may be resolved by the AR approach are 417 

not limited by the data period that is analyzed (Cohen 2014; Ozaki 2012). Despite 418 

this advantage, AR models might be unstable at low frequencies and near the 419 

Nyquist frequency, and so we limited analysis to frequencies between 5 and 90 420 

Hz, based on the 200 Hz sampling frequency of the data. To ensure that each 421 

trial of local field potential data could be considered a realization of a zero-mean 422 

stochastic process, as required by the AR modeling procedure, the ensemble 423 

average was subtracted from each trial for each recording site included in the 424 

model (Ding et al. 2006). A model order of 10 was used based on the Akaike 425 

Information Criterion (AIC) and previous determination that this value is optimal 426 

for this type of data (Brovelli et al. 2004). Extensive testing revealed that the 427 

spectral results of this study were not sensitive to the choice of 10 as the model 428 

order. In fact, recomputing AR models, with model order varying from 5 to 15, 429 

produced spectral peaks having the same peak frequency but differing in peak 430 

width (increasing width with decreasing model order). 431 

 432 

Subtracting the mean value of the trial ensemble from each trial of the 433 

prestimulus V4/TEO and V1 local field potential time series allowed the LFPs to 434 

be treated as stochastic processes with stationary mean and variance (Bressler 435 

and Seth 2011). We constructed two AR models (restricted and unrestricted) 436 

each for each pair of LFPs, represented in the following as variables X and Y. 437 

(Definitions are given for AR models of X. Similar definitions may be given for Y.) 438 

 439 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 11, 2016. ; https://doi.org/10.1101/074609doi: bioRxiv preprint 

https://doi.org/10.1101/074609


 21 

First, the restricted AR model of X is defined as:  440 

 
(1) 

 441 

where Xt represents the present value of X, Xt-i represents past values of X, α1i 442 

are the model coefficients, m is the model order, and ε1t is the restricted residual 443 

error. Second, X may also be represented by the unrestricted AR model:  444 

 (2) 

where Y t-i represents past values of Y , α2i and β2i are model coefficients, and ε2t 445 

is the unrestricted residual error. Spectral power, coherence, and Granger 446 

Causality were computed by well-established methods (Geweke 1982; Ding et al. 447 

2006). For a value of spectral Granger Causality (sGC) to be significant requires 448 

that the unrestricted residual error variance be significantly less than the 449 

restricted residual error variance. This requirement also controls for the fact that 450 

the number of parameters is greater in the unrestricted than the restricted model. 451 

 452 

The expression for sGC has a natural interpretation as the fraction of the total 453 

power of X that is predicted by Y. It is expressed as a ratio, where the numerator 454 

represents the total power of X at a given frequency ω, and the denominator 455 

represents the intrinsic power, i.e. the power not predicted by Y. If the intrinsic 456 

power equals the total power, it means that Y provides no additional predictability 457 

of X (in the unrestricted model) above that provided solely by the past of X alone 458 

Xt =
mX

i=1

�1iXt�i + ⇥1t

Xt =
mX

i=1

�2iXt�i +
mX

i=1

⇥2iYt�i + ⇤2t
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(in the restricted model). In the restricted AR model (Equation 1), the causal 459 

influence from Y to X must be zero. The causal power is the amount of additional 460 

predictability provided by Y in the unrestricted AR model (Equation 2). 461 

 462 

sGC can also be viewed as a directional decomposition of neuronal 463 

synchronization via its relationship with coherence. The total interdependence is 464 

the sum of: 1) the sGC from stochastic process X to stochastic process Y; 2) the 465 

sGC from Y to X; and 3) the instantaneous causality, which accounts for 466 

instantaneous correlation between X and Y, as would be caused by a mutual 467 

simultaneous input to X and Y (see Ding et al., 2006). 468 

 469 

To facilitate statistical analysis, site pair identification, and pattern classification, 470 

AR spectral estimates were computed on 1000 bootstrap resamples of the data 471 

(Efron and Tibshirani 1994), and then averaged over sites (for power spectra) or 472 

site pairs (for coherence and sGC spectra). The resulting mean of the resampled 473 

spectra is equivalent to the spectrum that would result from an AR model fit over 474 

all trials. 475 

 476 

To determine frequencies where the top-down and bottom-up spectra 477 

significantly differed, a directional asymmetry analysis was performed according 478 

to the following procedure (Richter et al. 2016): 1000 bootstrap spectra gave rise 479 

to 1000 difference spectra computed (over the entire spectrum from 5 to 90 Hz) 480 

as the top-down (V4/TEO to V1) GC spectrum minus the bottom-up (V1 to 481 
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V4/TEO) GC spectrum for each bootstrap resample. The standard error of the 482 

directional asymmetry was then computed from the bootstraps via the following 483 

equation (Efron and Tibshirani 1994): 484 

 
(3) 

where 𝐵 is the number of bootstraps, in this case 1000, 𝜃∗ 𝑏  is the statistic of 485 

interest computed on each bootstrap 𝑏, and 𝜃∗ ∙  is the mean of all 𝜃∗ 𝑏 . 486 

 487 

To correct for multiple comparisons across frequencies (Richter et al. 2016), the 488 

maximal absolute deviation of each bootstrap difference spectrum from the mean 489 

of all bootstrap difference spectra was calculated for each frequency. This 490 

resulted in the following modification to Equation 3: 491 

 
(4) 

where 𝜔 indexes each frequency of the spectrum. The resulting standard error 492 

was then the maximal standard error that could have been generated across all 493 

frequencies and was thus the omnibus standard error (Westfall and Young 1993; 494 

Nichols and Holmes 2002; Holmes et al. 1996). Using this standard error, a 495 

confidence interval of the mean corresponding to a two-tailed test of p<0.001 was 496 

derived as:  497 

 
(5) 
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where n is the number of trials, and the standard error is multiplied by the t-value 498 

with df = n-1, at the 99.95th percentile of student’s t-distribution. Statistical 499 

significance was then assessed at those frequencies where the confidence 500 

interval did not contain zero. The frequencies where top-down and bottom-up 501 

sGC spectra were significantly different (p<0.001) are indicated by the shaded 502 

grey region in Figure 2d, indicating that significant directional asymmetry (top-503 

down sGC > bottom-up sGC) only exists in a limited portion of the spectrum 504 

around 16 Hz. 505 

 506 

Removal of 1/f Background Component 507 

The V1 and V4/TEO power spectra had a large 1/f background component that 508 

masked the beta oscillatory component (He 2014).  To observe the oscillatory 509 

component, it was necessary to remove this background component. Power in 510 

microvolts was first converted to dB, and then the data were linearized with a 511 

logarithmic transform and a line was fit to the data via robust regression between 512 

5 and 30 Hz, using the Welsh weighting function. The resulting regression 513 

coefficients were used to specify an exponential function, which was subtracted 514 

from the non-log transformed data. The residual is plotted in Figure 2a,b as the 515 

de-noised power spectra. The fitting region of 5 – 30 Hz was roughly centered on 516 

the dominant top-down beta peak frequency of 16 Hz, such that the robust fit 517 

would maximally expose deviations from linearity at this frequency after the log-518 

transform. A wider fitting region would result in greater error due to the 519 

contribution of deviations from other possible spectral concentrations, such as in 520 
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the gamma or delta bands. This also explains why the resulting residual 521 

spectrum appears clipped at zero, which is due to the power after the subtraction 522 

of the estimated 1/f background component becoming less than zero as a result 523 

of error at the left and right extrema of the fit. 524 

 525 

Identification of Top-down Spectral Peaks 526 

A total of twelve V4/TEO-V1 pairs of the recording sites in M1 and M2 were 527 

possible. Our goal was to identify the site pairs which had a significant top-down 528 

(V4/TEO to V1) spectral peak in the range of frequencies showing significant 529 

directional asymmetry (as depicted by the grey region on the mean (across-pair) 530 

spectra of Figure 2d). To accomplish this aim, top-down sGC spectra were first 531 

computed over the 1000 bootstrap resamples (taken from all trials). Spectral 532 

peaks between 5 and 90 Hz were then identified in each bootstrap resample 533 

(using the findpeaksG.m Matlab function written by T.C. O’Haver) for all site pairs 534 

in the study. Each peak was then tested for significance at the p < 0.05 level 535 

against a null distribution. 536 

 537 

The null distribution was created as follows: 1) for one null resample, trial order 538 

was randomized so that for each AR model the order of trials for site 1 was 539 

random with respect to site 2; 2) AR models were fit, and sGC spectra derived; 3) 540 

the significance threshold was defined as the maximum value across all 541 

frequencies of all top-down sGC spectra; and 4) steps 1-3 were repeated 1000 542 
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times to create the null distribution. This procedure controlled for the possibility of 543 

spurious results due to multiple comparisons across frequencies and pairs. 544 

 545 

The empirical probability density for significant top-down sGC spectral peaks, 546 

computed as a function of frequency between 5 and 90 Hz from all site pairs and 547 

bootstrap resamples, and fit via a smoothing spline (with a smoothing parameter 548 

of 0.075), is presented in Figure 3a. The largest concentration of significant top-549 

down peaks was observed at approximately 16 Hz. To focus analysis on this 550 

largest concentration, we computed the empirical probability density by selecting 551 

the top-down spectral peak closest to the ~16 Hz peak for all site pairs and 552 

bootstrap resamples (shown in Figure 3b). To isolate site pairs with a consistent 553 

top-down spectral peak concentration sufficiently near the average (~16 Hz), we 554 

computed the mean peak frequency over pairs for each bootstrap (solid vertical 555 

line in Figure 3b) and derived its standard error via Equation 3. This allowed us to 556 

compute the 95% confidence interval via Equation 5 (vertical dashed lines in 557 

Figure 3b). The site pairs having their mean peak frequency inside this 95% 558 

confidence interval were considered to have a top-down spectral peak sufficiently 559 

close to the peak significant directional asymmetry, indicating that they may be 560 

members of a synchronized oscillatory network.  561 

 562 

To ensure that the top-down sGC peaks were not driven by differences in signal 563 

to noise ratio, we computed the spectral asymmetry for each pair as the 564 

difference between top-down sGC and bottom-up sGC, and compared this 565 
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difference to the same quantity computed on the time reversed data (one time 566 

series reversed).  As proposed by Haufe et al. (2012), if the difference between 567 

the net flow and reverse-net flow is significantly different from zero, then the 568 

causal relation is not rejected as spurious, since spurious contributions will not 569 

reverse. The test involved computing a single-sample t-test (df = 10) for each pair 570 

between the net flow difference (net flow – reverse-net flow), and zero, with the 571 

two-tailed p-value for all pairs being significant at p<0.05 after Bonferroni 572 

correction for multiple comparisons.  573 

 574 

Pattern Classification 575 

A linear Support-Vector-Machine (SVM) was implemented via libSVM (Chang 576 

and Lin 2011) to attempt to classify the spatial patterns of prestimulus top-down 577 

sGC according to which stimulus-response contingency (task rule) was in effect 578 

(Cortes and Vapnik 1995). The go response was the correct response to a line 579 

stimulus for contingency 1 trials (no-go response to diamond stimuli), whereas 580 

the go response was the correct response to a diamond stimulus for contingency 581 

2 trials (no-go response to line stimuli). The spatial patterns used to train the 582 

SVM corresponded to the set of significant magnitudes of the top-down sGC 583 

pairs shown by arrows in Figure 4. The machine learning process progressed, 584 

individually for M1 and M2, as follows: 585 

1) The trial data for each contingency were randomly split in half into testing 586 

and training sets. 587 
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2) A bootstrap resample was drawn for the training and testing sets of each 588 

contingency, AR models were fit, and top-down sGC spectra were derived.  589 

This procedure was repeated 200 times, resulting in 200 exemplars of the 590 

top-down sGC pattern, for both training and testing sets of each 591 

contingency. 592 

3) The SVM pattern classification feature for each site pair in each of the 200 593 

bootstrap resamples was taken as the magnitude of the closest top-down 594 

sGC peak to 16 Hz. If all pairs did not exhibit a peak for a particular 595 

bootstrap resample, that resample was deleted.  Deletion was a rare event 596 

that occurred for less than ½ a percent of all bootstrap resamples (M1: 597 

0.32 %, M2: 0.041). The resulting top-down sGC values were normalized 598 

(converted to z-scores) so that each feature (top-down sGC magnitude) 599 

had a mean of zero, and unit variance across training and testing sets of 600 

both contingencies.  Thus the data were not disturbed relative to each 601 

condition (training and testing set, and contingency), but the SVM features 602 

were balanced (Juszczak et al. 2002). 603 

4) The classification model was created by fitting the linear SVM, with a cost 604 

parameter of 1, to the data of the testing set. 605 

5) The classification model from 4) was validated by application to the 606 

training data, resulting in a scalar classification accuracy. 607 

These steps together, comprising a delete-d jackknife cross-validation procedure, 608 

were repeated 5000 times, producing a mean classification accuracy, and an 609 

estimate of its standard error. 610 
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 611 

Statistical evaluation of the SVM results was performed via application of delete-612 

d jackknife cross-validation (Efron and Tibshirani 1994).  Delete-d jackknife 613 

cross-validation entails training (model fitting) on a portion of the total data (n – 614 

d), and then testing the model accuracy on the remaining d samples. This is an 615 

attractive approach for the current problem since sGC is biased as a function of 616 

the number of trials. Thus, by selecting d to be half the data, the bootstrap sGC 617 

will have equal trial numbers yielding equivalent bias across training and testing 618 

groups and between contingencies. Since the number of contingency 1 and 619 

contingency 2 trials was not exactly equal, each bootstrap resample used 620 

selections with an n equal to the contingency with the lowest number of trials. 621 

The delete-d jackknife is computed according to the following formula: 622 

 

(7) 

where n is the number of trials,  is the total number of possible selections of  623 

d elements that can be made from n,  𝜃∗ 𝑧  is the statistic computed on each of 624 

the possible subsets, and 𝜃∗ ∙  is the mean of that statistic over subsets. In the 625 

current case of approximately 10 000 trials per monkey, the number of possible 626 

subsets is effectively infinite. However, Shao (1989) has demonstrated that a 627 
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Monte Carlo approach known as the jackknife-sampling variance estimator 628 

(JSVE) well approximates the variance of the estimator. The standard error 629 

based on the JSVE method is estimated as: 630 

 

(8) 

where M is a random number of subsets of d selected from the total possible. 631 

Shao (1989) shows that even when M is dramatically smaller than the total 632 

number of possible selections, the JSVE still outperforms a number of estimators, 633 

such as the bootstrap. Supplementary Fig 1 shows that in the current data the 634 

standard error estimate quickly reaches an asymptote as M exceeds 250 635 

subsamples, and remains very stable as it approaches the 5 000 subsamples 636 

used to estimate the standard error. In addition, the estimation error falls to 637 

negligible levels as M increases beyond. Using the standard error derived via the 638 

JSVE procedure, a single-sample t-test was conducted to determine if the mean 639 

classification accuracy differed from the chance level of 50%. 640 
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 850 

 851 

 852 

 853 

 854 

 855 
Figure 1. Task Structure  856 

Task components of a Go trial are shown in blue, with the analysis window in 857 

gold. No-go trials followed the same event time course, except that for no-go 858 

trials the lever press was maintained throughout the trial, and there was no 859 

reward.  860 
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 862 

Figure 2. Prestimulus Beta-Frequency Power, Coherence, and sGC Spectra 863 

of V1 and V4/TEO LFPs 864 

a. Average striate power spectrum over sites (black line ± s.e.m.), and the 865 

residual power spectrum after 1/f removal (red line ± s.e.m.) for V1 sites. b. 866 

Average extrastriate power spectrum over sites and monkeys (black line ± 867 

s.e.m.), and the residual power spectrum after 1/f removal (red line ± s.e.m.) for 868 

the V4/TEO sites. c. Average coherence spectrum over V1-extrastriate site pairs 869 

± s.e.m. for V1-extrastriate pairs. d. Average top-down (red line ± s.e.m.), and 870 

bottom-up (blue line ± s.e.m.) GC spectra for V1-extrastriate pairs. Shaded grey 871 

region denotes the frequencies (8-23 Hz) where top-down and bottom-up sGC 872 

were significantly different (p<0.001).  873 
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 875 

Figure 3. Probability Density of Top-down sGC Peaks 876 

a. Probability density as a function of spectral frequency for top-down sGC 877 

spectral peaks between 5 and 90 Hz from all V1-extrastriate pairs and bootstrap 878 

resamples, showing the greatest probability density at ~16 Hz. b. Probability 879 

density as a function of frequency for top-down sGC spectral peaks between 5 880 

and 50 Hz from all V1-extrastriate pairs and bootstrap resamples (grey shaded 881 

distribution). The mean peak frequency (~16 Hz) across pairs and bootstraps is 882 

shown as a solid black vertical line with the 95% confidence interval bounded by 883 

vertical dashed lines. The probability density for site pairs having their mean peak 884 

frequency inside this 95% confidence interval is shown by the red shaded 885 
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distribution. The mean peak frequency (± 1 standard deviation) is shown for each 886 

of the 12 site pairs, with that for the 8 having their mean peak frequency inside 887 

this 95% confidence interval shown by red bars, and that for the other 4 site pairs 888 

shown by blue bars. 889 
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 891 

Figure 4. Prestimulus Beta-Frequency Coherence and Top-down sGC Maps 892 

Top: Maps of the recording sites for M1 and M2. V1 electrode locations are 893 

marked in gold, and extrastriate (V4 and TEO) locations in grey. Middle: enlarged 894 

maps of visual cortex showing top-down sGC at 16 Hz as red arrows for V1-895 

extrastriate pairs having their mean peak frequency inside the 95% confidence 896 

interval of Figure 3. Bottom: corresponding maps of coherence for the same site 897 

pairs. Thickness of the top-down sGC arrows and coherence bars is proportional 898 

to the magnitude of sGC or coherence at 16 Hz. 899 
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 901 

Figure 5. Correlation Between Coherence and sGC  902 

a. Correlation between coherence and top-down (left) and bottom-up (right) sGC 903 

at 16 Hz across V1-extrastriate site pairs. Coherence was significantly correlated 904 

with top-down sGC  (R(6) = 0.90, p = 0.005, Bonferroni corrected), but not with 905 

bottom-up sGC. b. Correlation between normalized coherence and top-down 906 

(left), and bottom-up (middle) sGC at 16 Hz averaged over the bootstrap 907 

resamples of all 8 V1-extrastriate pairs, having their mean peak frequency inside 908 

the 95% confidence interval of Figure 3. The correlation between coherence and 909 

top-down and bottom-up sGC explained 48% and 16% of the coherence 910 

variance, respectively. Correlation between coherence and top-down (right) sGC 911 

at 16 Hz for the other 4 site pairs explained only 4% of the coherence variance. 912 
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 914 

Figure 6. SVM Classification of Task Contingency 915 

Classification accuracy ± s.e.m. based on V1-extrastriate top-down narrow-beta-916 

band sGC peak magnitudes (left group) and randomly selected sGC magnitudes 917 

between 5 and 50 Hz (right group). The top-down sGC peak-based classifier 918 

significantly exceeded chance (dashed line) for M1 (76%, t(10177) = 2.05, p = 919 

0.020) and M2 (82%, (t(8266) = 2.70, p = 0.004). The SVM classifiers based on 920 

randomly selected magnitudes were near the chance level (50%). 921 
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 923 
Supplementary Figure 1. Average Estimated Standard Error of the Mean 924 

and Estimator Variance as a Function of Subsamples 925 

Average estimated standard error for M1 (solid blue curve) and M2 (dashed blue 926 

curve) as a function of subsamples. The estimate stabilizes above a subsample 927 

size of 250. The variance of the estimator for M1 (solid red curve) and M2 928 

(dashed red curve), estimated over 10000 random subsamples for each level of 929 

M, monotonically decreases with subsample size quickly become negligible as M 930 

increases. 931 
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 933 

Supplementary Figure 2. Coherence and Total Interdependence as a 934 

Function of Coupling Strength 935 

Coherence and Total Interdependence are strongly correlated for physiologically 936 

realistic levels of coherence (~< 0.2). Values are computed based on the 937 

coherence, which was derived using unit power for both simulated signals and a 938 

coupling term (numerator of the coherence equation) varied between 0 and 0.8. 939 
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