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Abstract 

Wild birds are the major reservoir hosts for influenza A viruses (AIVs) and have been 

implicated in the emergence of pandemic events in livestock and human populations. 

Understanding how AIVs spread within and across continents is therefore critical to the 

development of successful strategies to manage and reduce the impact of influenza outbreaks. 

In North America many bird species undergo seasonal migratory movements along a North-

South axis, thereby fostering opportunities for viruses to spread over long distances. 

However, the role played by such avian flyways in shaping the genetic structure of AIV 

populations has proven controversial. To assess the relative contribution of bird migration 

along flyways to the genetic structure of AIV we performed a large-scale phylogeographic 

study of viruses sampled in the USA and Canada, involving the analysis of 3805 to 4505 

sequences from 36 to 38 geographic localities depending on the gene data set. To assist this 

we developed a maximum likelihood-based genetic algorithm to explore a wide range of 

complex spatial models, thereby depicting a more complete picture of the migration network 

than previous studies. Based on phylogenies estimated from nucleotide data sets, our results 

show that AIV migration rates within flyways are significantly higher than those between 

flyways, indicating that the migratory patterns of birds play a key role in pathogen dispersal. 

These findings provide valuable insights into the evolution, maintenance and transmission of 

AIVs, in turn allowing the development of improved programs for surveillance and risk 

assessment. 

 

Significance Statement 

Avian influenza viruses infect a wide variety of wild bird species and represent a potential 

disease threat to the poultry industry and hence to human and livestock populations. 

However, the ecological factors that drive the geographic spread and evolution of these 

viruses are both poorly understood and controversial at the continental scale, particularly the 

role played by migratory flyways in shaping patterns of virus dispersal. Using a novel 

phylogeographic analysis of large genomic data sets we show migration flyways act as 

important transmission barriers to the spread of avian influenza viruses in North America. 

Hence, these results indicate that the spread of avian influenza virus in wild birds in North 

America has an element of predictability.
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Avian influenza viruses (AIVs) infect a wide range of bird species, with sporadic species 

jumps to mammalian hosts, notably humans, causing short-lived epidemics and occasionally 

establishing endemic transmission cycles (1, 2). Wild birds, particularly Anseriformes (e.g. 

duck, geese, and swans) and Charadriiformes (e.g. gulls, shorebirds, and terns), act as the 

main natural reservoirs for AIV, and viral prevalence in these species is considerably higher 

than in other birds (3, 4). Many bird species that experience high levels of AIV infection 

undertake long-distance seasonal movements along migration routes or flyways for breeding, 

food, and climate purposes (5, 6). This natural phenomenon offers a powerful mechanism for 

AIVs to spread over long distances, connecting spatially disjunct localities and creating 

opportunities for viral transmission to those wild bird species and poultry resident in 

disparate geographic localities (7). Indeed, migrating wild birds have been linked to the 

geographic diffusion of a variety of types of AIV (3), including highly pathogenic H5N1 

influenza virus (8-11), as well as other RNA viruses such as West Nile virus (12, 13). 

Despite their classification into multiple subtypes based on sequence diversity in the 

hemagglutinin (HA) and neuraminidase (NA) genes, AIVs sampled from the Western and 

Eastern hemispheres tend to form distinct monophyletic groups, with relatively infrequent 

viral movement between hemispheres (14-16). This phylogenetic pattern implies that there is 

a low transmission rate between birds that are located in disjunct localities, in turn suggesting 

that bird movements, including bird migrations, between North America and the Old World 

are limited (17). It is therefore reasonable to assume that natural physical barriers like 

extended areas of water and mountain ranges lead to the ecological separation of bird species 

and, by extension, to their viral populations. One such obvious barrier at the continental scale 

is the presence of avian flyways, which loosely describe the migratory pathways followed by 

diverse avian species. Four such major flyways – the Pacific, Central, Mississippi, and 

Atlantic – have been described in North America, and describe (albeit loosely) the patterns by 

which migrate along the North-South axis within the continent. However, because the flyway 

assignments are often only approximate, and the borders between them fluid because they do 

not reflect absolute physical boundaries, there will evidently be some movement among 

flyways. 

Despite the potential importance of avian flyways in shaping the population structure of AIV 

and its patterns of spread, studies performed to date have produced strongly contradictory 

results (7, 14, 18, 19). For example, Lam et al. (14) showed that virus dispersion occurred 
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more frequently within than between migratory flyways and concluded both that flyways 

acted as physical barrier for viral dispersal and that there was significant virus isolation-by-

distance. In marked contrast, using a Bayesian phylogeographic approach Bahl et al. (7) 

suggested that migratory flyways had relatively little impact on the spatial spread of AIV, 

particularly as bird movements along the East-West axis in North America had a larger 

contribution to viral spread than previously proposed. However, these studies (7, 14) used 

relatively small data sets and applied very different analytical methods, although both made 

use of the underlying AIV phylogeny. As a consequence, the role played by flyways in AIV 

evolution is uncertain.  

To better determine the role played by avian migratory flyways in the dispersal of AIV in 

North America we analysed large data sets of the internal genes of AIVs sampled from 36 to 

38 administrative regions across the United States and Canada. As in previous studies (7, 14), 

we used continuous-time Markov models to characterize transmission rates between discrete 

geographic locations. We evaluated simple models such as the flyway-based models 

proposed by Lam et al. (7) and, more importantly, designed an efficient genetic algorithm 

that, given a fixed and small number of parameters, automatically finds the best model that 

fits the data. Critically, our results indicate that the mean transition (i.e. dispersal) rate within 

flyways is between 4 and 13 times greater than that between flyways, suggesting that the 

migratory patterns exhibited by birds have a major impact on the spread of AIV in North 

America. 

 

Results 

To investigate the structure of AIV transmission between US states and Canadian provinces 

and its association with patterns of bird migration (i.e. the presence of avian flyways) we 

constructed several continuous-time Markov chains (Table 1) and compared them when 

appropriate. In what follows we present the results based on the PB2 gene in detail below, as 

these are illustrative of the overall pattern, and provide those for the other genes in the 

Supplementary Information (Figure S1-S9). 

First, to assess the heterogeneity of the migration network we compared the (non-flyway) 

HRM model to the 3-TRM and 4-TRM (flyway-based) models using a likelihood ratio test. 
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For each gene, we found that the TRM models provided a significantly better fit to the data 

than the (non-flyway) HRM (LRT p-value << 10-10 for every gene analyzed). Most notably, 

the within-flyway rate is about 4 to 5 times greater than the between-flyway rate depending 

on the gene and the number of flyways assumed. Although the 3-TRM and 4-TRM have the 

same number of parameters, the log-likelihood of the former is higher than that of the latter in 

every analysis suggesting that the gene flow is relatively unconstrained between the Central 

and Mississippi flyways. Another explanation for this pattern is that the within-flyway rate of 

these two flyways is equal. Both the 3-FRM and 4-FRM models impose fewer constraints on 

the underlying structure of the migration network by allowing migration rate heterogeneity 

between flyways. These complex models fit the data better than any of the TRMs in all data 

sets (LRT p-values = 0). Similarly, the most parameter rich model 4-FRM also fit the data 

significantly better than the 3-FRM in each analysis (LRT p-value << 10-10). Migration rates 

inferred using the 3-TRM, 4-TRM, 3-FRM and 4-FRM revealed that, as expected, migration 

rates within flyways are higher than those between flyways (Tables 2 and 3). Importantly, the 

rate between the most distant flyways (i.e. Pacific and Atlantic flyways) was significantly 

lower than the other rates, indicating that there is clear isolation-by-distance along the East-

West axis. 

Using the same number of rates as in the 3-FRM (i.e. 6 rates), we relaxed the assumption that 

transition rates within flyways are identical and inferred the best model using a genetic 

algorithm. The genetic algorithm successfully identified models that fit the data better than 

the flyway-based models. Notably, although the 3-FRM and the general rate GRM have the 

same number of parameters, the log likelihood of the GRM is significantly higher than the 3-

FRM in every data set (Table 1), suggesting that the flyway-based classification of rates is 

too stringent or unrealistic. For example, Nevada and Alaska are allocated to the same 

(Pacific) flyway but are separated by thousands of kilometres, obviously providing fewer 

opportunities for direct transmission of avian viruses between birds than neighbouring 

localities. Overall, our analyses show that transmission rates vary widely not only within 

flyways but also between flyways (Figure 1-2 for gene PB2 and supplementary figures for 

other genes). For example, in the PB2 gene analysis, the highest migration rate category was 

assigned to pairs of localities that belong different flyways while some migration rate within 

flyways were equal to 0. Importantly, the three highest migration rate categories were not 

assigned to pairs of localities belonging to either the Pacific or Atlantic flyways. Overall, 

many of the estimated transmission rates were equal to 0, while non-zero rates span several 
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orders of magnitude, revealing a patchy and heterogeneous transmission network between 

localities. We also estimated the within and between flyway mean rates for each data set; 

their ratio suggested that the within-flyway rate is at least 4 times higher than the between-

flyway estimate (Tables 2 and 3). Figure 1 and 2 also suggests that Alaska is highly 

connected with localities belonging to any flyway, confirming its importance as a hub for 

wild bird migration. 

It can be argued that our estimates may be influenced by our a priori assignment of localities 

to flyways. To identify a potential bias in our analyses we therefore calculated the same ratio 

described above but using different combinations of locality-to-flyway assignments for 

localities located along flyway boundaries. In all cases the ratio is greater than two, thereby 

suggesting that our model is robust to uncertainties in locality-to-flyway assignments (Figure 

3). 

Finally, we determined the level of genetic differentiation among geographic localities using 

the nearest neighbour statistic (Snn). Although there appears to be no correlation between 

spatial distance and Snn, the results show that as the spatial distance between localities 

increases the mean Snn tends to be higher, suggesting the presence of a structured population 

(Figure 4). Furthermore, when three flyways are considered, the mean within-flyway Snn is 

lower (i.e. less structured) than the mean between-flyway Snn involving contiguous flyways, 

which in turn is lower that the between-flyway statistic involving non-contiguous flyways 

(i.e. the Pacific and Atlantic flyways) (Table 4). 

 

Discussion 

Our large-scale analysis reveals that the main gradient of diffusion of avian influenza viruses 

in North America is located along the North-South axis within the migratory flyways utilized 

by wild birds. In particular, our results show that the within-flyway migration rate was 4-13 

times greater than the between-flyway rate depending on the gene and the model used, 

thereby providing clear evidence that migratory flyway plays an important role in structuring 

AIV populations in North America. The most compelling observation in this context was that 

viruses sampled from the Pacific and Atlantic flyways, the most geographically distant 

flyways, showed the least gene flow implying a significant isolation-by-distance along the 
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East-West axis, in support of the suggestion of Lam et al. (14). However, it is also evident 

that gene flow between flyways has occurred at a measureable rate, as expected with 

geographically contiguous localities. As suggested before (14), our analyses suggest a strong 

overlap between the Central and Mississippi flyways characterized by high transmission rates 

between these two areas (Figure 1 and 2). Indeed, given that the barriers between flyways are 

obviously fluid, some viral spread between flyways is expected. This is in marked contrast to 

the separation of North American and European birds by the Atlantic Ocean, which provide a 

strong barrier to bird interaction (20, 21). 

Although genetic differentiation (Snn) and spatial distance appear to be uncorrelated, the trend 

depicted in Figure 4 provides a more nuanced explanation of the role of migratory flyways in 

the spread of AIV and the impact of isolation by distance on viral genetic diversity. Our 

results show that spatial distance tends to reduce genetic diversity less along the North-South 

axis than along the East-West axis, suggesting that gene flow occurs more frequently along 

migratory flyways. For example, the mean Snn calculated for distinct pairs of localities that 

belong to the Pacific and Atlantic flyways is higher than for pairs of localities that belong to 

the same flyway. 

Other studies have investigated the extent of the correlation between viral spread and 

migratory birds using different data sets and methods, which have provided contradicting 

conclusions. One early study (14) utilized a combination of parsimony and maximum 

likelihood phylogenetic methods and provided evidence that gene flow was greater within 

flyways than between flyways, hence supporting a key role for flyways. However, at the time 

of this study, AIV sequences were only available from 16 localities (states and provinces) in 

North America, thereby increasing the chance that intermediate transmission chains between 

close localities would be missed. Indeed, a later study based on the Bayesian analysis of a 

larger data set (although still restricted to 16 geographic localities) suggested that viral spread 

was mainly independent of bird migration patterns (7). Herein, we have greatly expanded 

these data to an analysis of 36 to 38 localities, employing a model-based approach similar to 

Lam et al. (14) but extending the intuitive but rather inflexible flyway-based models to allow 

variable rates within flyways without increasing parameter space. Our models, which showed 

a better fit to the data than the 3-FRM with the same complexity, depicted a more intricate 

picture of viral spread in North America, but still captured strong correlation between gene 

flow and migratory bird along flyways. More specifically, our analysis shows that migration 
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rates within flyways are not homogeneous. In addition, the GRM reveals the absence of viral 

transmission between some localities, especially between pairs of localities that belong to the 

Pacific and Atlantic flyways.  

Another key element in our study is that transition rates are estimated using a fixed 

phylogenetic tree topology with branch lengths that are inferred from nucleotide sequences. 

While transition rates expressed in units of time would have a more natural interpretation, 

avian influenza virus shows strong substitution rate heterogeneity (22), rendering the 

estimation of chronograms and substitution rates challenging. In addition, sampling dates of 

many sequences were either absent or incomplete adding more uncertainty in inferring a 

reliable molecular clock (an approach that was not used here). 

Overall, the results presented here provide compelling evidence that the North-South 

migration of birds in North America, reflected in the presence of geographically-based 

flyways, does play an important role in shaping the genetic structure of populations of avian 

influenza virus. As such, the spread of AIV in wild birds at the continental scale has some 

degree of predictability that may eventually assist in our attempts to control the future spread 

of any highly pathogenic influenza viruses that emerge in North America. 

 

Materials and Methods 

Data Preparation 

To investigate the strength of association between viral and bird migration we focused on the 

internal genes of AIV, encoding the PB2, PB1, PA, NP, and MP (M1 and M2 coding regions 

were concatenated) proteins. Those genes encoding the viral HA and NA proteins were 

excluded due to the very deep divergences between subtypes, while NS was excluded due to 

the presence of two phylogenetically distinct alleles (A and B). Full-length nucleotide 

sequences of AIV isolated in North America were downloaded from the Influenza Virus 

Resource Database at NCBI (http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html). For 

each gene, sequences were aligned using MAFFT (23) and were manually edited using 

Seqotron (24). The sampling location within North America was extracted from the sequence 

name, and each sequence was labelled with a discrete geographic location using either the 

state classification in the USA or the province classification in Canada. Sequences belonging 
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to a geographic location that was represented less than 6 times were discarded. This resulted 

in final data sets of 4346 (PB2), 4421 (PB1), 4505 (PA), 3853 (NP), and 3805 (MP) 

sequences. The number of distinct geographic locations per gene was 36, 38, 38, 37, and 37 

for the PB2, PB1, PA, NP, and MP data sets, respectively. All data sets are available at the 

Zenodo repository https://doi.org/10.5281/zenodo.153883. 

Flyway Designation 

Each US state and Canadian province was assigned to one of the four North American 

flyways as defined by the United States Fish and Wildlife Service and Flyway Councils 

(Lincoln 1979) and usually referred to as localities in the text. From the west coast to east 

coast the designated flyways are the Atlantic flyway (AF), Mississippi flyway (MF), Central 

flyway (CF), and the Pacific flyway (PF). The assignment of individual localities to specific 

flyways is described in supplementary file S1, although flyways are better regarded as loose 

assemblages rather than entities with fixed boundaries. The spatial distance between each pair 

of states ⁄ provinces was calculated as the great circle distance between the average latitude 

and longitude of each locality.  

Phylogenetic Analyses 

Maximum likelihood trees for each data set were inferred using ExaML (25) assuming the 

generalised time-reversible (GTR) substitution model and a discretised gamma distribution (4 

categories) of substitution rate across sites using the default settings. 

Genetic Differentiation of AIV Among Sampling Localities 

We used the nearest neighbour statistic Snn (26) to determine the genetic differentiation 

among localities. This statistic measures how often the nearest neighbors of sequences are 

found in the same geographic locality. Accordingly, an Snn estimate close to 1 suggests that 

populations at two localities are highly differentiated, while an estimate near 0.5 indicates 

little differentiation (i.e. a panmictic population). This method requires pairwise genetic 

distances to be calculated for every sequence. To this end we used the phylogenetic tree 

inferred from the nucleotide data sets of each internal gene and calculated patristic distances 

between each pair of taxa, in which the patristic distance is the sum of branches over the 

shortest path between two taxa (27). A C++ program implementing this procedure is 

available from Github repository https://github.com/4ment/gdp. 

Estimation of AIV Migration between Geographic Localities 
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Migration rates of avian influenza viruses between discrete geographic locations were 

analysed using a reversible continuous-time Markov chain model as described in Pagel (28) 

and was implemented in Physher (29). The state space of the Markov chain was defined as 

the set of geographic locations. For the phylogeographic analysis of each gene, we fixed the 

tree topology and the branch lengths to their maximum likelihood estimates obtained in the 

phylogenetic inference of the corresponding nucleotide alignment. Time in this Markov chain 

is therefore measured in units of nucleotide substitutions per site. 

To investigate the patterns of viral migration we use several classes of models: (i) a 

homogeneous rate model (HRM) with equal transition rates among localities; (ii) a two-rate 

model (TRM) in which transition rates within any flyway are equal and transition rates of 

pairs of states belonging to different flyways are equal; (iii) flyway-specific rate models 

(FRM) where transition rates within a flyway are equal and transition rates between flyways 

are different; (iv) a general rate model (GRM) in which given a fixed number of rates, the 

equal transition rate within flyways assumption is relaxed. We refer to 4-FRM for models 

based on four flyways (i.e. AF, CF, MF, and AF) and 3-FRM when the central and 

Mississippi flyways are merged into a single flyway due to their geographic overlap. 

Similarly, the TRM are named either 4-TRM or 3-TRM depending on the number of flyways 

under investigation. 

Calculating the maximum likelihood of the HRM, TRM, and FRM models is relatively 

straightforward as it only requires standard numerical methods to optimize continuous 

parameters. In contrast, the parameter space in the GRM is highly dimensional and contains 

both discrete and continuous parameters. Given a fixed number of transition rate categories k 

and a symmetric � � � transition rate matrix, the GRM will have the following parameters: 

r = (r1,…,rk) the value of the rate for each category 

z = (z1,…,zd*(d-1)/2) vector of rate-class assignments for each non-diagonal element of the rate 

matrix where �� � 1…�. 

Rate parameters r1,…,rk are optimized using standard numerical methods while rate-class 

assignment is optimized using a genetic algorithm (GA). We implemented the GA as a 

generational genetic search algorithm CHC GA, an approach that was previously applied to 

natural selection and molecular clock inference (29, 30). Each individual of the GA 
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population is represented as a vector containing a particular rate-class assignment (�). We 

implemented the method in Physher (29) and the genetic algorithm was parallelized using 

POSIX threads. 

Model comparison 

Since the homogeneous, 2-rate model, and flyway-based models are nested, we used the 

likelihood ratio test (LRT) to test their goodness-of-fit (31). The HRM is the simplest model 

is at contains only one transition rate. The number of flyways under investigation will 

determine the number of parameter in the FRM models. For a four-flyway rate model (4-

FRM) the number of free parameters is 10, while the number of free parameters for three 

flyways (3-FRM) is reduced to 6. Although GRM and HRM models are nested, the GRM and 

FRM models are not necessarily nested, hence the LRT cannot be used to compare these 

models. 

Another approach to model selection is to use information theory-based criteria such as the 

Akaike information criterion (AIC) and Bayesian information criterion (32). Unlike the LRT, 

these selection criteria are applicable to non-nested models. The AIC penalizes the number of 

parameters using the following formula: 

	
� � 
2��� � 2� 

where LnL is the log-likelihood and k is the number of estimated parameters. When the 

number of observation is small, it is recommended to use a second order correction to the 

AIC: 

	
�� � 
2��� � 2� �
2��� � 1�

� 
 � 
 1
 

where LnL is the log-likelihood, s is the number of observations, and k is the number of 

estimated parameters. To be valid, the AICc requires that the number of observations exceed 

the number of estimated parameters. Unfortunately, it is difficult to define the number of 

observations in phylogenetics. In nucleotide-based inference, the number of observations is 

usually assumed to be either the number of characters or the number of unique sites in the 

alignment (32). Using the total number of characters is likely to be an over-estimate due to 

the correlation of characters among sites, while the number of unique sites would 
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underestimate the effective sample size. In the context of phylogeography we can only 

observe one realization of the spatial process that generated the discrete geographic locations.  

Due to the difficulty to statistically compare models of different dimensionality, we fixed a 

priori the number of parameters to 6, the number of free parameters in the 3-FRM. 

Assessing the Impact of Migratory Flyway on Viral Spread 

We assessed the influence of migratory flyways on viral spread by calculating the within- and 

between-flyway mean rates and their ratio, in which a ratio greater than 1.0 suggests that 

migratory flyways act as a barrier to viral dispersal. The locality-to-flyway assignment is 

defined in supplementary file S1. 

Importantly, however, this flyway assignment is unlikely to be accurate since flyway 

boundaries coincide with administrative boundaries of localities and are therefore not entirely 

based on ecological data. To investigate the impact of flyway boundary choices we changed 

the flyway boundaries and calculated both mean rates and calculated their ratio. Depending 

on the gene under investigation there are at most 8 localities abutting flyway boundaries, so 

we redefined the boundaries around these localities. For example, using the flyway 

classification used in this paper Alberta belongs to the Central flyway while the neighboring 

province of British Columbia belongs to the Pacific flyway. In this particular case we 

recalculated means rates and their ratios twice by assigning both states to either the Pacific or 

Atlantic flyway. Specifically, we tried every combination where one or more localities were 

assigned to the flyway of its neighbour, while avoiding flyway overlaps (i.e. we do not test 

Alberta/Pacific and British Columbia/Central). 
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Figure Legends 

 

Figures 1. Viral migration and migratory flyways in North America inferred from the PB2 

gene segment (those for other internal genes of AIV are provided in the Supplementary 

Information Figures S1-S4). US states and Canadian provinces (locations) are color-coded 

according to their flyway assignment. No viruses were analysed from locations that have a 

light color. The color of each line connecting two locations corresponds to the inferred rate. 

The absence of a line connecting two locations suggests that the migration rate was 0. 

 

Figure 2. Plots of migration rates using the PB2 phylogeny on a two-dimensional matrix 

where each cell represents a rate between two locations (those for other the internal genes of 

AIV are provided in the Supplementary Information Figures S5-S8). Each cell is color-coded 

according to the migration rate between the locations. The matrix is symmetric and location 

labels on the x- and y-axis are ordered so that locations belonging to the same flyway are next 

to each other. 

 

Figure 3. Plots showing the distribution of the mean within-to-between ratios with alternative 

location to flyway assignments for each gene. 

 

Figure 4. Plots of the nearest neighbour statistic (Snn) against spatial distance for each pair of 

localities using the phylogeny inferred from the PB2 gene (those for other the internal genes 

of AIV are provided in the Supplementary Information Figures S9). 
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Table 1. Log-likelihoods and the number of the parameters of the homogeneous rate model 
(HRM), two-rate models (3-TRM and 4-TRM), general rate model (GRM), and flyway rate 
models (3-FRM and 4-FRM). 
  Log-likelihoods (number of parameters) 
 HRM 3-TRM 4-TRM 3-FRM 4-FRM GRM 
Gene 1 2 2 6 10 6 
PB2 -8074.00 -7800.43 -7824.98 -7722.97 -7681.91 -6597.88 
PB1 -8615.70 -8296.80 -8347.27 -8215.62 -8180.37 -6790.40 
PA -8630.13 -8296.92 -8344.78 -8221.35 -8147.05 -6965.91 
NP -8246.47 -7943.91 -7951.55 -7885.42 -7820.08 -6664.63 
MP -8939.48 -8645.74 -8698.52 -8579.15 -8541.34 -7362 
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Table 2. Estimates of the within- and between-flyway rates and their ratio under 4-TRM for each 
gene. Mean within- and between-flyway rates under 4-FRM and GRM for each gene. Under 4-
TRM, the ratio is equal to the within flyway rate estimate over the between flyway rate estimate. 
Under 4-FRM and GRM, the ratio is equal to the mean within flyway rate over the mean 
between flyway rate. Mean rates are calculated assuming four flyways. 

 4-TRM 4-FRM GRM 
Gene within between ratio within between ratio within between ratio 
PB2 7.7 1.75 4.4 8.37 1.67 5.01 6.06 1.4 4.33 
PB1 7.96 1.75 4.55 8.48 1.69 5.02 14.75 1.75 8.43 
PA 8.92 1.92 4.64 8.8 1.92 4.58 6.85 1.5 4.57 
NP 8.56 1.7 5.03 8.76 1.64 5.34 7.18 1.45 4.95 
MP 11.52 2.68 4.3 11.55 2.67 4.33 9.85 2.09 4.71 
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Table 3. Estimates of the within- and between-flyway rates and their ratio under 3-TRM 
assuming 3 flyways for each gene. Mean within- and between-flyway rates under 4-FRM and 
GRM for each gene. Under 3-TRM, the ratio is equal to the within flyway rate estimate over the 
between flyway rate estimate. Under 4-FRM and GRM, the ratio is equal to the mean within 
flyway rate over the mean between flyway rate. Mean rates are calculated assuming three 
flyways. 

 3-TRM 3-FRM GRM 
 within between ratio within between ratio within between ratio 
PB2 6.39 1.34 4.77 7.13 1.3 5.48 5.37 1.1 4.88 
PB1 6.81 1.32 5.16 7.52 1.28 5.7 12.86 1.07 12.02 
PA 7.47 1.41 5.3 7.75 1.39 5.58 6.04 1.12 5.39 
NP 6.85 1.32 5.19 7.25 1.28 5.66 6.08 1.27 4.79 
MP 9.94 2.04 4.87 10.3 2.01 5.12 8.86 1.56 5.68 
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Table 4 Mean nearest-neighbor statistic (Snn) for each gene. Each column represents how pairs of 
localities are related. 

Gene Within 
flyway 

Contiguous 
flyways 

Flyways separated 
by one flyway 

Flyways separated 
by two flyways 

PB2 0.88 0.89 0.91 0.94 
PB1 0.9 0.91 0.91 0.94 
PA 0.88 0.9 0.9 0.94 
NP 0.86 0.88 0.9 0.92 
MP 0.87 0.89 0.9 0.93 
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