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Abstract  
 
Recently developed methods that utilize partitioning of long genomic DNA fragments, 
and barcoding of shorter fragments derived from them, have succeeded in retaining 
long-range information in short sequencing reads. These so-called read cloud 
approaches represent a powerful, accurate, and cost-effective alternative to single-
molecule long-read sequencing. We developed software, GROC-SVs, that takes 
advantage of read clouds for structural variant detection and assembly. We apply the 
method to two 10x Genomics data sets, one chromothriptic sarcoma with several 
spatially separated samples, and one breast cancer cell line, all Illumina-sequenced to 
high coverage. Comparison to short-fragment data from the same samples, and 
validation by mate-pair data from a subset of the sarcoma samples, demonstrate 
substantial improvement in specificity of breakpoint detection compared to short-
fragment sequencing, at comparable sensitivity, and vice versa. The embedded long-
range information also facilitates sequence assembly of a large fraction of the 
breakpoints; importantly, consecutive breakpoints that are closer than the average 
length of the input DNA molecules can be assembled together and their order and 
arrangement reconstructed, with some events exhibiting remarkable complexity. These 
features facilitated an analysis of the structural evolution of the sarcoma. In the 
chromothripsis, rearrangements occurred before copy number amplifications, and using 
the phylogenetic tree built from point mutation data we show that single nucleotide 
variants and structural variants are not correlated. We predict significant future 
advances in structural variant science using 10x data analyzed with GROC-SVs and 
other read cloud-specific methods. 
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Introduction 
 
Structural variants (SVs) represent the highly heterogeneous class of large-scale 
changes in the genome, encompassing DNA edits that include but are not limited to 
deletions, tandem duplications, inversions, translocations, and combinations that are 
generally referred to as 'complex events'. Because each event affects a large genomic 
region, SVs are responsible for the majority of nucleotides varying between individuals1 
and in many cancer genomes2,3. 

Despite its importance in evolution and disease, structural variation remains 
difficult to comprehensively characterize. DNA breakage and subsequent fusions can 
connect any genomic locus to any other, and therefore the potential search space for 
variant detection is proportional to the square of the genome size. (The search space 
for small variants is proportional only to the genome size.) Repetitive loci, uneven or 
biased sequencing coverage, and the typically short length of sequenced fragments 
complicate accurate detection. Thus, for example, while the presence of a large 
duplication may be easy to identify from an increase in sequencing coverage, the exact 
breakpoints and location of the duplicate copy may be undetectable in data from current 
sequencing methods. Copy number-invariant types of structural variation, such as 
inversions and translocations, or smaller copy-number altering variants, are also difficult 
to detect and characterize. 

Previous work has illuminated the potential complexity of SVs4–7. One example of 
large-scale complexity is chromothripsis3, in which a chromosome shatters into many 
pieces that are then apparently randomly reassembled, leading to massive 
rearrangements and loss of heterozygosity in the intervening sequences. SVs may also 
exhibit local complexity arising from error-prone repair mechanisms that can, for 
example, result in insertion of short sequences at the sites of larger deletions (reviewed 
in ref. 8).These complex events can be difficult to interpret using existing sequencing 
technologies. For example, analyses of short-fragment sequence data can only 
confidently relate breakpoints that are within the fragment size distribution, typically 
<500 bp. Longer-distance reconstruction (e.g. ref 2) requires the assumptions that 
downstream events occur in the same haplotype and that all breakpoints have been 
accurately identified. Single-molecule long-read approaches are better suited for 
detection of SVs, but throughput and cost are typically limiting, and the high per-base 
error rate is a drawback. 

An alternative to long reads is short-read sequencing of bits of originally long 
fragments, as in mate-pair libraries, where both ends of a long fragment are brought 
together into a short fragment that can be Illumina-sequenced9. The resulting data 
exhibit very high physical coverage relative to sequence coverage such that a single-
copy SV breakpoint is typically covered by hundreds of mate-pairs10. However, high-
quality mate-pair libraries are difficult to generate and are practically limited in their 
fragment lengths.  

Read clouds represent the next generation of the long-fragment / short sequence 
approach, marrying the advantages of standard Illumina sequencing (high throughput 
and accuracy) with long-fragment information added through a barcode tag incorporated 
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during a molecular partitioning step11–13. We have previously shown that such an 
approach can improve the mapping of short reads to repetitive genomic regions14. The 
recently released 10x Genomics platform produces read cloud libraries with dramatically 
higher numbers of partitions compared to previous methods, enabling new 
applications15. 

To prepare 10x Genomics libraries, long DNA fragments are diluted into ~105 
(previous generation, GemCode) to 106 (current generation, Chromium) microfluidic 
droplets, each of which contains a unique barcode. Within each droplet, randomly 
primed amplification produces many short fragments templated off the long fragments, 
all of which share that same barcode. When these barcoded short fragments are 
Illumina-sequenced, their alignments to the reference genome form clusters. We refer to 
the clusters of identically barcoded, linked reads, as clouds. Each individual cloud of 
linked reads is a sample of sequence information from the originating long fragments. 

The long-range information in read clouds can in principle be leveraged to 
identify, sequence-assemble, and reconstruct complex SVs. Using a novel method that 
we developed for this purpose, Genome-wide Reconstruction of Complex Structural 
Variants (GROC-SVs), we show that 10x data substantially improves detection of SVs 
compared to standard short-fragment sequencing and that it enables the reconstruction 
of much more distant events compared to mate-pair sequencing. In addition, we use the 
read cloud information to produce high-quality assemblies of the sequences spanning 
the breakpoints, enabling us to better interpret local complexity. We applied GROC-SVs 
to characterize chromothripsis and subsequent evolution of structural variation in a 
liposarcoma and to analyze SVs in a breast cancer cell line. 
 
 
Results 
 
Sequence Data Generation and Characteristics 
We Illumina-sequenced 10x GemCode libraries from each of 7 spatially distinct sites 
within a well-differentiated liposarcoma, as well as a matched control sample from the 
kidney of the same patient. For purposes of comparison and validation, we also 
sequenced PCR-free Illumina libraries from all 8 samples to ~35x sequence coverage, 
and, from 3 of the 7 sites plus the control, long-insert (~7kb) mate-pair libraries to ~20x 
sequence coverage. 

We size-selected the sarcoma DNAs prior to 10x library preparation, resulting in 
a tight fragment size distribution (mean > 30 kb, depending on sample; 95th percentile = 
~80kb; Supplementary Fig. 1), with half of the bases in fragments longer than 53 kb 
(N50). After filtering, the libraries had ~170,000 barcodes per sample. We estimated 
coverage of the genome by long fragments, CF (physical coverage, see ref. 14), to be 
~250x. Coverage of each long fragment by short reads, CR, was ~0.10x, meaning that 
an average of 10% of positions in each long fragment were covered by reads. Thus, the 
overall sequence coverage per sample was C = CR x CF = 25x. 

In addition to the liposarcoma case, we also analyzed Chromium data from the 
HCC1143 breast cancer and matched-normal cell lines. Prepared without size-
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selection, HCC1143 fragment sizes covered a wide distribution (mean=41 kb; 95th 
percentile = 148kb; N50 > 80 kb). After filtering, there were ~700,000 barcodes per cell 
line. Physical coverage was CF=145x, and sequence coverage of each fragment was 
CR=0.34x, resulting in an approximate overall sequence coverage of 49x. 

 
Overview of GROC-SVs 
We developed new methods to leverage the long-fragment information inherent in 10x 
data for the purpose of SV identification and characterization. We begin by looking for 
statistical evidence of inferred long fragments that span breakpoints. This is 
accomplished by quantification of barcode similarity between all pairs of genomic 
locations (Figure 1a). Levels of barcode similarity are highest between any two nearby 
loci since input long fragments tend to overlap both loci (Figure 1a, diagonal). Loci 
separated by distances larger than the input fragment size share zero or only a small 
number of barcodes. (This is because each barcoded partition contains only a small 
number of fragments randomly drawn from the genome, and thus the chance that 
multiple partitions contain long fragments from the same two distant loci is small; Figure 
1a, background). Thus, the presence of multiple barcodes that are shared between two 
distant locations at a level higher than that background is indicative of a breakpoint 
where the two locations are joined (Figure 1a, translocation). Subsequent to breakpoint 
identification and refinement we perform sequence assembly of the linked reads from 
the relevant breakpoints. This includes the reconstruction of complex events on the 
basis of breakpoints that are connected by long clouds (Figure 1b). 
 
Structural variant discovery with GROC-SVs: breakpoint detection 
Leveraging the long-fragment information embedded in 10x data to identify breakpoints 
begins by quantifying barcode similarity between all pairs of genomic regions. Barcode 
similarity is highest near the breakpoint, and drops off from either breakpoint at 
distances proportional to the fragment size distribution (Figure 2a; see Supplementary 
Fig 2 for a more detailed explanation). Some independent fragments with the same 
barcode can cause a low level of background similarity, typically <1 (Chromium) or 0–5 
(GemCode) barcodes at any given pair of positions. Corresponding barcode similarity in 
the matched normal sample is within the expected range for background (Figure 2b). 

All supporting read clouds end near the putative breakpoint location (Figure 2c), 
a signal that is used during breakpoint refinement. In size-selected samples (as in the 
sarcoma) the clouds, ordered by their position relative to the first side of the breakpoint, 
tile across the breakpoint such that those starting furthest from the breakpoint tend to 
extend the least into the second region, while those starting closest to the first side 
extend the furthest into the second. Short-fragment sequencing coverage profiles 
support changes in copy number at many structural variant breakpoints (Figure 2d). 

Barcode similarity is lower for a typical translocation from the HCC1143 cell line, 
presumably due to the lower physical coverage or differences in copy-number of the 
event (Figure 2e–h). However, because the Chromium data has more partitions, there 
are fewer independent fragments per barcode and the background is substantially 
lower. Thus, we observe essentially no background in irrelevant regions in the tumor 
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data (Figure 2e) or anywhere in the corresponding regions of the matched normal cell 
line data (Figure 2f). 

A third example, also from the sarcoma, illustrates the nature of the barcode 
similarity when two breakpoints are in close proximity. It shows the expected sudden 
dropoff in signal at the 108.85 mb breakpoint, but along the Y axis the signal ends 
abruptly not only at 93.27 Mb but also, in the other direction, at 93.25 Mb (Figure 2i; the 
control only exhibits background, Figure 2j). When tiling the read clouds, it becomes 
apparent that there are two breakpoints present at the 93 mb locus (Figure 2k), with 
copy number profiles exhibiting consistent levels that change abruptly at the breakpoint 
locations (Figure 2l). A substantial number of fragments appear to span from the first to 
the second breakpoint, suggesting that it is possible to use the 10x long-fragment 
information to directly link breakpoints that are in proximity to one another (see below). 

In addition to providing high physical coverage of structural variant breakpoints, 
the long-fragment information in the 10x data allows for phasing of small variants with 
respect to the germline haplotypes15. Read clouds overlapping a heterozygous short 
variant can be assigned to one of the haplotypes. The low sequence coverage CR of 
each fragment means that some read clouds, especially shorter ones, will not cover a 
short variant informative for haplotype assignment. However, the high physical 
coverage CF results in a high total number of phased fragments for most genomic 
regions. 

Because the structural variant breakpoints are distant from one another in the 
genome, the haplotypes are called independently for each side of the breakpoint, and 
so the standard phasing process does not uncover the phase arrangement for the tumor 
genome. However, nearly all informative fragments near each breakpoint support a 
single haplotype indicating that each side of the breakpoint only contributes a single 
haplotype to the event (Figure 2c,k). Thus we can use the predominant haplotype on 
either side of a breakpoint to locally phase the genomic regions that participate in the 
SV. 
 
Structural variant discovery with GROC-SVs: Sequence assembly of breakpoints 
and reconstruction of complex events 
To better characterize breakpoints, GROC-SVs attempts to perform sequence 
assembly. We use the barcode information to identify relevant short reads that are fed 
into the assembler.  

First, we identify barcodes that are shared among multiple breakpoints, 
suggesting some long fragments spanned across them; breakpoints that do not share 
barcodes are retained as singletons. For each such event or collection of events, we 
identify barcodes supporting each breakpoint and gather all reads marked by those 
barcodes (Figure 1), including those that were unmappable or had low mapping quality 
in the initial genome-wide mapping. 

We then perform sequence assembly on these reads. As each barcode marks 
multiple fragments, many of the reads do not derive from a breakpoint-supporting 
genomic region. However, because fragments are randomly assigned to a barcode, 
these non-supporting fragments should be distributed randomly throughout the genome. 
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Thus, combined sequence coverage is highest near the breakpoints, which should be 
covered by every barcode, and low elsewhere. Therefore, most assembled contigs 
actually derive from the SV haplotype. The assembled contigs are then aligned against 
the reference genome and those that support an SV are used to identify the exact 
breakpoint location. 

The sarcoma had 12 events with 4 or more breakpoints, and 60 events with 2 or 
3 breakpoints. As a fraction of all somatic breakpoints, 204/503 (41%) were assigned to 
complex events made up of at least 2 breakpoints. The ordering and assembly of 5 
breakpoints comprising a sample complex event that spans 75 kb (Figure 3a-c and 
Supplementary Fig. 3) illustrates how the clouds tile and thereby connect neighboring 
breakpoints. Internal segments that could not be phased due to their short length are 
phased by virtue of being part of longer clouds that span breakpoints (Figure 3a). Copy 
number profiles are consistent with the reconstruction and reveal a subsequent 4-fold 
fold amplification of the variant (Figure 3b). Strikingly, the variant connects sequence 
from all over the long arm of chromosome 12 (Figure 3c). 

In the breast cancer cell line, which did not undergo chromothripsis, we 
reconstructed 11 complex somatic events with a total of 24 breakpoints, including one 
event that illustrates both the potential complexity of structural variation and the power 
of read clouds to resolve it (Figure 3d-e). The sequence assembly, initiated by a 
breakpoint linking chromosomes 7 and 17, identifies a second breakpoint downstream 
on chromosome 17 involving an inversion, skipping approximately 10 kb of sequence 
and then resulting in a duplication of the downstream sequence (Figure 3d). Sequence 
coverage profiles show changes at the breakpoints (Figure 3e) that, upon analysis of 
only those reads that belong to the phased clouds, reveal the duplication. Without the 
long fragment information, it would have been impossible to show that the translocation 
and the inverted repeat were in the same tumor haplotype, nor could we have 
concluded that the inverted repeat continues beyond the translocation breakpoint. 
 
Genome-wide SV discovery, comparison and validation 
The sarcoma genome harbored substantial structural variation, represented by a total of 
503 called somatic breakpoints (Figure 4a). The vast majority fell within or at the edges 
of copy number amplifications, typically of relatively short genomic segments. The 
highest density of events occurred on the long arm of chromosome 12, involving 174 
breakpoints (Figure 4a). Many events were subsequently amplified to high copy 
number, which exhibited high concordance between the two sides of the breakpoint 
(Figure 4b). These results provide further evidence for the recently described 
mechanism, also from a liposarcoma and also involving chromosome 12, by which 
chromothripsis is followed by breakage-fusion-bridge amplifications of 
neochromosomes, resulting in very high-copy number, rearranged genomic segments16. 

One expectation regarding the detection of SVs using 10x data is that its high 
physical coverage improves the signal-to-noise ratio compared to standard short-read 
SV detection approaches. The number of SV-supporting 10x fragments correlated 
highly (rho=0.89; Supplementary Fig. 4) with the number of supporting mate-pairs, 
although the signal for mate-pair data was generally higher due to higher physical 
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coverage. We also found a good correlation (rho=0.71; Supplementary Fig. 4b) between 
10x and short-fragment support. Strikingly, there was a median 3.2 times as many 10x 
barcodes as short fragments supporting an event. The overall rate of validation of our 
breakpoints by mate-pairs was 94.6% (424/448), and this increased to 98.6% (351/356) 
when examining only those events that we were able to assemble. To compare the read 
cloud approach to previous methods, we applied commonly used tools to our standard 
Illumina libraries to identify large-scale SVs. We found that only 65.1% (375/576) of the 
short fragment-called somatic events were validated by mate-pair data (Supplementary 
Fig. 5). 

We identified 239 somatic breakpoints in the sarcoma with at least 20 phased 
clouds supporting each side of the breakpoint. Of these events, the vast majority (229  
or 96%) were supported by only a single haplotype combination, which is expected 
because the probability of the same exact SV occurring at the same position on both 
haplotypes is vanishingly small. In contrast, systematic errors resulting from, for 
example, genome repetitiveness, should affect all haplotypes equally. Therefore, the 
high percentage of events supported by only a single haplotype combination not only 
supports the validity of our phasing across breakpoints but also provides evidence that 
the breakpoint calls themselves do not result from substantial systematic biases. 
 
Genome evolution within the sarcoma 
The 414 breakpoints present in all sarcoma samples but not in the control arose before 
the last common ancestor of the samples' cells. These shared, ancestral events include 
the chromothripsis on chromosome 12, with the vast majority of the other events 
involving chromosomes 1, 5, 7 and 20. In addition, we found an ancestral 
rearrangement followed by high-level amplification harboring the characteristic 
liposarcoma driver gene, MDM2 (ref. 17). 

We also identified 89 SVs that were present in certain subsets of the samples 
(but not in the control). The majority of these involved chromosomes 5, 7, and 12, and 
were private to one of the samples, marking subclone expansions that did not extend to 
the other samples: 59 in sample 10, 12 in sample 0 and 3 in sample 3. 3 had 
confounding copy number expansions in one or more samples, and 11 were clearly 
positive in sample 10 but exhibited very weak signal in a range of other samples, 
possibly also due to confounding copy number variation. Only 2 non-ancestral 
breakpoints were definitively shared by several samples and absent from the others. 

The non-ancestral SVs and the inferred presence of subclones suggests that 
there was some evolutionary differentiation within the sarcoma that was captured by our 
sampling. We therefore set out to determine the evolutionary relationships amongst the 
samples and then analyze the dynamics of SV accumulation, based on the inferred 
phylogenetic tree. Because, as a class, single nucleotide variants (SNVs) are much 
more common than SVs, we turned to the short-fragment data to identify somatic SNVs 
and then build the samples' evolutionary tree based on the subset of phylogenetically 
informative SNVs18. In agreement with the SVs and copy number profiles, the majority 
(6393/7171) of high-confidence somatic SNVs were ancestral, originating before the last 
common ancestor of the samples' cells. Four additional classes of SNVs were present 
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in subsets of samples: one each that was private to samples 0 and 1, and two 
phylogenetically informative classes; these match the abovementioned sample 
combinations that harbored a single SV each. 

The alternate allele frequencies of the SNVs of the two phylogenetically 
informative classes are highly consistent with the allele frequencies of the ancestral 
SNVs. The frequencies of SNVs present in the mixed lineage samples (3 and 10) are 
consistent with one another, with their sums matching the ancestral frequencies. The 
mutation spectrum of the somatic SNVs (data not shown) closely matches that of 
germline events, suggesting that they were caused by replication errors without special 
mutational mechanisms, and that they accumulated at a rate proportional to the number 
of cell divisions. Finally, as expected, the most phylogenetically similar samples were in 
close spatial proximity to one another within the tumor (Figure 4c). These lines of 
evidence support the idea that we were able to construct a robust evolutionary tree of 
our samples that could form the basis for interpreting the accumulation of SVs in this 
tumor (Figure 4d). 

Analysis of the SVs on the basis of the tree suggests that SVs do not accumulate 
proportionally to the number of cell divisions and that they instead tend to occur in 
bursts, clustering in evolutionary time. Four branches in the tree are specifically 
informative in this regard: The two lineages that define the subclones of samples (1, 2, 
3, 10) and (3, 6, 9) each only have one SV (2 out of 503) but a much larger proportion of 
SNVs (312 out of 7171). The private lineage of sample 10 has no SNVs (i.e., 0 out of 
7171) but 59 breakpoints (out of 503). The private lineage of sample 0 has 412 out of 
7171 SNVs, but only 11 out of 503 breakpoints; by contrast, the private lineage of 
sample 1 has 54 SNVs and 0 SVs. This utter lack of agreement between SNV and SV 
rates suggests that SV accumulation is episodic. 

Further evidence for the episodic nature of SV accumulation is found in the 
differential localization of the breakpoints depending on exactly when they occurred 
during the evolution of the sarcoma. The 414 trunkal events are highly enriched for 
involvement of chromosome 12, mostly intrachromosomally, with some involvement of 
chromosomes 1, 5, 7 and 20 (Figure 4e). The private events in sample 1 mostly fell 
near regions of chromosomes 7 and 12 that harbor trunkal structural variation (Figure 
4f). Strikingly, a large majority (43/59, 73%) of breakpoints present in the subclone 
private to sample 10 occurred within or between chromosomes 5 and 7 (Figure 4g). In 
contrast, only 30% of ancestral mutations occurred within or between those 
chromosomes. This enrichment was highly significant (p < 10–9, Fisher exact test), 
supporting the occurrence of a sudden series of events affecting a small portion of the 
tumor genome. These structural events thus likely occurred in a short enough time span 
that SNVs could not accumulate to substantial enough levels to directly observe the 
subclone.  
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Discussion 
One of the last frontiers in whole-genome sequencing, and in particular cancer 
genomics, is the accurate identification and reconstruction of complex structural 
variation8. Here we present a novel approach, GROC-SVs, that leverages read cloud 
information as implemented by 10x to discover structural variation. Applying it to 
multiple samples from a sarcoma and a breast cancer cell line we demonstrate the 
power of read clouds to not only dramatically reduce false discovery rates compared to 
standard short-fragment sequencing, but also enable the reconstruction of complex 
SVs.  

To perform validation of the GROC-SVs breakpoint calls in the sarcoma, we used 
long-insert mate-pair libraries, the currently favored approach for detection of long 
distance genomic rearrangements and translocations5,9,10. 95% of somatic events were 
corroborated by the mate-pair data. In addition to enabling breakpoint detection, the 
read clouds allowed us to perform sequence assembly across breakpoints. Sequence-
assembled SV calls had a 99% validation rate by the mate-pair data. In HCC1143, for 
which mate pair libraries were not available, we used sequence assembly of the linked 
reads involved in the breakpoint as a surrogate for validation of the breakpoint; 114/140 
(81%) of somatic events could be successfully assembled. 

Compared to read cloud data, standard short-fragment libraries provide lower 
physical coverage and lack long-distance information. In our data, SVs were typically 
supported by 3-fold more read clouds than fragments in the standard Illumina libraries. 
Thus, because of this lower breakpoint coverage, only 65% of somatic SVs identified 
from short-fragment libraries were validated by the mate pair data. Direct assembly of 
complex events was altogether impossible due to the lack of long-distance information. 

To-date, genome-scale reconstruction of complex SVs has been limited to cases 
where the breakpoints are spaced no longer than the fragment insert size (typically 
~500bp), or has involved indirect inference that events are related, based on their 
proximity and orientation in the reference genome2,19. Previous work has attempted to 
“walk” along chromothripsis events, finding pairs of breakpoints opposite one another 
and separated by a region of a single copy number20,21. One such analysis was 
conducted in a tour-de-force study of liposarcomas16, where neochromosomes were 
flow-sorted to improve sequencing coverage of these chromothripsis regions in 
standard Illumina libraries. In general, the accuracy of this painstaking walking process 
depends on the evenness of coverage in order to identify regions with similar copy 
number, and the sensitivity and accuracy of the method of detecting SVs.  

Using the 10x data, we were able to directly reconstruct the order of large scale 
genomic rearrangements involving many breakpoints without the need for any 
assumptions about pairs of breakpoints. In the sarcoma genome, where chromothripsis 
produced dramatic genomic change, we found that 40% of our breakpoints fell within 
complex SVs, with adjacent breakpoints frequently separated by tens of kb. Notably, 
compared to prior approaches we accomplished this work without any difficult molecular 
biology in isolating material or building libraries, highlighting the practical potential of the 
10x technology for characterizing large numbers of complex tumor genomes at a 
reasonable cost. 
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Most SVs in the sarcoma were shared across all 7 spatially distinct locations, and 
therefore must have occurred early in the evolution of the tumor. These ancestral 
events include the 174 chromosome-12 chromothripsis breakpoints and subsequent 
copy number amplifications as well an additional 240 breakpoints. In contrast, while 778 
subclonal SNVs were detected, corresponding to 5 distinct subclone lineages, very few 
SVs other than the ancestral ones were shared across subclones. Thus, the sarcoma 
must have undergone an initial period of substantial structural instability, accumulating 
hundreds of rearrangements and copy number changes, before converging to a stable 
genomic configuration. This process appears to be similar to the liposarcoma 
chromothripsis followed by breakage-fusion-bridge cycles and subsequent chromosome 
linearization described by16. 

Based on in vitro data, it has been hypothesized that copy number amplifications 
create a more permissive environment for chromothripsis since loss of the intervening 
segments would then result in the normal diploid, rather than haploid, copy number22. 
Consistent with a triploidy event preceding chromothripsis, but in contrast to most 
previous observations of chromothripsis, we found genomic segments falling between 
chromothriptic regions to be diploid, present at normal copy number, and to display both 
germline alleles of heterozygous single nucleotide polymorphisms. 

In addition to the ancestral SVs, we found a small subclone private to sample 10 
with 59 breakpoints that likely occurred in an additional, recent period of genome 
instability. These mutations largely occurred within and between chromosomes 5 and 7. 
We speculate that the ancestral SVs affecting chromosomes 5 and 7, including copy 
number amplifications, provided a more permissive environment for these private SVs 
to occur in, similar to the inferred ancestral triploidy event preceding chromothripsis of 
chromosome 12. Identification of this subclone despite a lack of detected SNVs within 
the clone highlights the substantial benefit of using SVs in addition to SNVs in 
understanding the evolutionary processes within a tumor. 

In summary, using GROC-SVs, which we specifically developed for leveraging 
read cloud information, we show that 10x data allows for direct, data-driven 
reconstruction of complex structural variation. This is accomplished at high sensitivity 
and excellent specificity compared to short-fragment data, and at much lower laboratory 
effort and sample requirements than specialized libraries or mate pair approaches. Two 
distinct substrates, a chromothriptic sarcoma and a less highly rearranged breast 
cancer cell line, demonstrate wide applicability of the approach. Our evolutionary 
analysis of the sarcoma foreshadows substantial future advances in the related pursuits 
of reconstructing the full cancer genome and understanding each tumor's structural 
evolution. 
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Methods 
 
Sample Preparation and Library Construction 
Sections (0.5cm thick, 14cm diameter) of a well-differentiated liposarcoma tumor, 
obtained under informed consent from the Stanford Tissue Bank, were cut into multiple 
pieces, snap frozen with liquid nitrogen, and stored at –80°C. Genomic DNA was 
extracted from 7 spatially distinct sites of this sarcoma as well as from matched control 
kidney tissue of the same patient. We extracted genomic DNA from about 20 mg tissue 
using Gentra Puregene Tissue Kit (Qiagen, Cat 158667). Tissue was ground in liquid 
nitrogen, lysed in Cell Lysis Solution and Proteinase K, and digested with RNase A. 
Protein was pelleted and removed by adding Protein Precipitation Solution followed by 
centrifugation. Genomic DNA was precipitated with isopropanol and resuspended in 
buffer EB). Purified genomic DNA was aliquoted and stored at –20°C. 
 Genomic DNA was separated by running about 1µg DNA on a 1% low-melting-
point agarose gel using Pulsed Field Gel Electrophoresis (PFGE). DNA of size 50–100 
kb was then recovered by β-agarase I digestion and filter concentration (NEB, Cat 
M0392S). The size-selected DNA molecules of 1.2 ng were partitioned and barcoded 
using the 10x Genomics GemCode platform 15. Libraries were then sequenced with a 
HiSeq2500 to ~25-fold sequence coverage. 
 For short-fragment DNA libraries, 1 µg of total genomic DNA was sheared to 350 
bp. PCR-free libraries were then constructed using Illumina’s TruSeq DNA PCR-Free 
library preparation kit and sequenced with the Illumina HiSeqX system to ~35-fold 
sequence coverage.  
 For large-insert mate-pair libraries, 4 µg of total genomic DNA was fragmented 
with Tagment Enzyme and gel size-selected to build 7kb-insert mate-pair libraries using 
Illumina’s Nextera Mate Pair Sample Preparation Kit (FC-132-1001) (Tagmentation, 
Strand Displacement, Gel Size Selection, Circularization, Linear DNA Digestion, 
Circulated DNA Shearing, Streptavidin Bead Binding, End Repairing, A-Tailing, Adaptor 
Ligation, and PCR Amplification). Libraries were sequenced with HiSeq2500 to ~20-fold 
sequence coverage. 
 
Breakpoint Detection 
GROC-SVs is implemented as a multi-sample analysis pipeline, allowing the 
simultaneous analysis of multiple tumor and matched normal samples, or multiple 
related individuals.  

GROC-SVs uses read alignments and (optionally) phasing information produced 
by the “Long Ranger” software from 10x Genomics. GROC-SVs begins by identifying all 
barcodes overlapping each 10 kb genomic window and then performing an all-by-all 
comparison. A pair of loci (x,y) is considered a structural variant candidate if the number 
of shared barcodes exceeds that expected based on the number of barcodes in each 
locus. For computational efficiency, this initial test is performed as a binomial test (a 
more rigorous test is applied later for each structural variant). 

Next, candidate SV loci are clustered, and candidate breakpoints are extracted 
based on peaks in the distribution of read cloud ends. This takes advantage of the fact 
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that read clouds are expected to end suddenly near each of the breakpoints; performing 
this operation only on those barcodes that are shared between the two loci dramatically 
improves both the signal and reduces the background. Candidate breakpoints are 
identified in each sample separately. 

At this point, the breakpoints have been identified typically to within several kb of 
the correct location. The next step is to perform refinement on the breakpoint 
coordinates to obtain approximately nucleotide-level accuracy. This step takes all read 
clouds within 20 kb of the candidate site and selects only those clouds with barcodes 
shared on both sides of the breakpoint. Then, for each breakend (the two half-open 
intervals that make up each breakpoint) separately, the maximum point of read cloud 
density is found, and then walked toward the putative breakpoint location until the read 
cloud density drops off suddenly to background levels, indicating the presence of the 
breakpoint location. We found that this procedure typically identifies the correct 
breakpoint location to within several nucleotides if the breakpoint is uniquely mappable 
with short reads. In the case that the breakpoint region is not uniquely mappable, the 
inferred breakpoint location will be the last well-mappable (mapq ≥ 30) position before 
the breakpoint. Breakpoint refinement occurs across samples together so all fragments 
spanning a breakpoint are used for refinement, even if the event is only present in a 
small subclone within a sample. 

 
Sequence assembly of breakpoints 
Next, a permissive clustering step groups breakpoints together if they share a 
substantial proportion of their barcodes. This is formulated as a simple threshold using 
the Jaccard Index, defined as the number of barcodes shared between the loci divided 
by the total number of barcodes. This Jaccard Index can be viewed as a sort of “allele 
frequency,” where the numerator counts the number of fragments supporting the event, 
and the denominator counts the number of fragments in the reference and alternate 
alleles. This is however an approximation because it is difficult to confidently assign any 
individual fragment to one allele since both reference- and alternate-allele-supporting 
fragments can end near either breakpoint location. Theoretically, another confounder is 
the non-zero rate of “barcode collisions”, where one fragment occurs near breakpoint x 
and an independent fragment occurs near breakpoint y, both in the same barcode. 
However, barcode collisions typically contribute a negligible amount to the numerator 
since the average number of barcode collisions is very small for most genomic regions 
(< 1 for GemCode and <<1 for Chromium in normal copy number regions, and only 
appreciably higher for extreme copy number outliers). 

Within each cluster, the barcodes supporting each event are pooled together, 
and all reads originating from these supporting barcodes are collected. Sequence 
assembly is then performed on the collected reads using idba_ud23. As with breakpoint 
refinement, sequence assembly is performed multi-sample, so spanning fragments can 
be used for assembly even if they occur in samples with very low allele frequency. 
idba_ud was selected because its good performance across a wide range of sequence 
coverage, which is highest near the breakpoints and then low farther away. Contigs are 
then aligned against the reference genome and breakpoint locations are called where 
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appropriate. Note that this assembly process may discover additional breakpoints that 
were not significant in the genome-wide breakpoint detection step for various reasons. 
 
Genome-wide reconstruction of complex events 
Following sequence assembly, a more rigorous complex event reconstruction is 
performed. First, breakends sharing a substantial proportion of barcodes are again 
clustered together. The resulting clusters are represented as graphs with breakends 
represented as nodes, and connections between nearby (contiguous genomic 
segments) and distant (non-contiguous structural variants) breakends represented as 
edges. Because fragments may span many breakpoints at once, there may be barcode 
similarity between breakends that are separated by one or more breakpoints. Thus, for 
each breakend, we first select the assembly-supported breakpoint if one exists. The 
remaining breakpoints are selected based on the highest barcode support (nearby 
breakends should share more barcodes than distant ones). This process uses the high-
quality information present in the sequence assemblies but can still perform complex 
event reconstruction even for breakpoints that cannot be sequence-assembled. 
 
Post-processing 
During post-processing, a more rigorous p-value is assigned to each breakpoint. This p-
value is calculated by randomly sampling the correct number of barcodes for each 
breakend from the background distribution of fragments per barcode, then calculating 
the number of shared barcodes. Resampling is performed 100 times, then the 
significance of the observed vs resampled number of shared barcodes is calculated 
using a ranksum test. This resampling procedure takes into account the effect of 
differences in genome coverage as well as the non-uniform partitioning of fragments 
across barcodes. 

Additional filters are applied, primarily for use when analyzing germline events to 
identify candidate segmental duplications (segmental duplications should be present in 
both tumor and matched normal samples and are thus removed when analyzing 
somatic events). One filter of note compares the observed fragment lengths across 
breakpoints to those expected based on the background distribution. Structural variants 
should show long fragment support at 10s of kb away from each breakend. In contrast, 
segmental duplications and other repetitive genomic sequences often result in short 
supporting read clouds. 

A final post-processing step assigns a present/absent call to each event for each 
sample. This genotype combines the resampling p-value calculated above as well as 
requiring a minimum allele frequency (again calculated using the Jaccard Index). Note 
that heterozygous and homozygous calls are not calculated because these are difficult 
to accurately define for the different types of structural variant and especially when copy 
numbers are variable. 

 
Validation 
Mate-pair validation was performed by counting the number of mate-pairs in the 
expected orientation and distance relative to the two breakends. We used only reads 
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with a very conservative mapping quality filter of mapq ≥ 55. The rationale for this high 
mapq filter was that true events should typically have mates mapping several kb away 
from the breakend, escaping any local repetitiveness around a breakend. We analyzed 
the background distribution of random genomic regions, and found that the vast majority 
of regions shared zero mate-pairs, and thus we used a conservative cutoff of 50 mate-
pairs to consider an event to be validated. We also tried a more lenient cutoff of 10 
mate-pairs with similar results. 
 
Evolutionary analysis 
Evolutionary trees relating samples within the sarcoma were built as in refs 18 and 24. 

Copy numbers were not used in the detection of SVs and were only calculated to 
gain a better understanding of the context for SVs. Because the coverage profiles for 
the 1st generation 10x GemCode libraries showed substantial GC bias, we used 
standard PCR-free Illumina libraries to calculate copy number, normalized to the 
matched normal and normalized for DNA content within a sample. Coverage was 
typically higher for the tumor samples because of the many, large single-copy genomic 
regions. 
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Figure Legends 
 
Figure 1. Overview of GROC-SVs. (a), explanation of the origin of the barcode similarity 
signal. 10x compartments are barcoded, signified by color; reads (short colored lines) 
linked by same barcodes form clouds upon alignment to the reference genome. Black, 
orange, and blue clouds span a translocation breakpoint that produces a characteristic 
signal off the diagonal; green and light brown originate from the other allele. Cyan, dark 
brown, and beige are not involved and are shown to illustrate the signal emanating from 
the pairwise comparison of nearby coordinates. (b), breakpoint graph construction and 
sequence assembly of complex events. Letters (a, b, c, for chromosome 1; x, y for 
chromosome 2) indicate genomic segments, numbers are the breakpoint connections, 
in order. Breakpoint 3 illustrates that not all high-confidence breakpoints yield an 
interpretable sequence assembly, but that they are still part of the reconstruction. 
 
Figure 2. Examples of breakpoint signals in 10x data. (a - d), a simple breakpoint in 
sarcoma sample 0, Gemcode data. (e - h), a simple breakpoint in breast tumor cell line 
HCC1143, Chromium data. (i - l), two breakpoints in close proximity in sarcoma sample 
0. (a, e, i), barcode similarity histograms in tumor. For each pair of genomic locations, 
the number of shared barcodes is color-coded according to the scale on the right, with 
the greatest signal forming a corner shape whose point is at the breakpoint coordinates. 
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(b, f, j), same locations in the control samples. (c, g, k), inferred extent of breakpoint-
supporting read clouds (corresponding to input fragments). Each row is one cloud, 
colored according to its assignment to a haplotype: supporting haplotype, orange; 
unassigned, black; non-supporting cloud in the same barcode as a supporting cloud, 
grey. Ordering is the same in left and right panels, revealing the difference between 
size-selected input DNA fragments from the sarcoma (c) and the broader distribution of 
unselected fragments from the cell line (g). (d, h, l), copy number profiles based on the 
short fragment data in the sarcoma (d, l), where a doubling of copy number is 
associated with the SV, or on the 10x data of the cell line (h), where no copy number 
change is evident. Decreasing coordinates indicate depiction of minus strand. 
 
Figure 3. Reconstruction of complex events. Read clouds that support a complex event 
in the sarcoma. Clouds, colored as in Figure 2, tile across 5 consecutive breakpoints (a) 
with consistent copy number profiles (b). Circos plot with arcs depicting breakpoint 
connections illustrates that the event connects distant segments from the long arm of 
chromosome 12 (c). From outside to inside, chromosome ideogram (orange indicates 
the location of the centromere), then copy number profiles, then copy number aberration 
calls (blue for amplifications, red for deletions) are shown. A complex event in cell line 
HCC1143 (d) and its corresponding sequence read coverage (e, f). 
 
Figure 4. Somatic genome evolution of the sarcoma. (a), circos plot of all high-
confidence breakpoint connections, indicated by arcs. Magenta, interchromosomal 
events; green, intrachromosomal. Otherwise, as in 3c. (b), scatterplot of copy number in 
the immediate vicinity of breakpoints. Each point is a breakpoint consisting of two 
breakends (X and Y, arbitrarily assigned) whose copy number estimates are plotted 
against each other. (c), location of the sampling sites from the sarcoma; 0 to 9 are from 
one cross-section, 10 is from a cross section parallel to it and separated by 3 cm. (d) 
Lineage tree of the samples reconstructed from high-confidence somatic SNVs. Number 
of SNVs supporting each branch are in small font, number of breakpoints are in bold 
italic with circos plot panel letters indicated for plots e-g. Samples are subdivided 
proportionally to somatic allele frequencies to indicate subclone size. Portion 
corresponding to normal contribution (e.g., infiltrating lymphocytes) is in dark grey. (e) 
Circos plots of the 414 ancestral (trunkal) events (f), events private to sample 0 (g), 
events private to sample 10. 
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