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Abstract  
 

Population viability analysis (PVA) is used to assess the probability that a biological population 
will persist for a specified period of time. Such models are typically cast as Markov processes 
that may include age, stage, sex and metapopulation structures, density-dependence and 
ecological interaction processes.  They may also include harvesting, stocking, and thresholds that 
trigger interventions. Here we present Numerus PVA, which is a web app that includes 
extensible user-selected options. Specifically, Numerus PVA allows for the specification of one 
to ten age classes, one or two sexes, single population or metapopulation configurations with 2 or 
3 subpopulations, as well as density-dependent settings for inducing region-specific carrying 
capacities. Movement among subpopulations can be influenced by age, metapopulation 
connectivity, and attractivity of regions based on the relative fitness of the youngest age classes 
in each region. Simulations can be carried out deterministically or stochastically, with a user-
specified combination of demographic and environmental processes. Numerus PVA is freely 
available at http://www.numerusinc.com/webapps/pva	for running directly on any browser and 
device. Numerus PVA is easily modified by users familiar with the NovaModeler Software 
Platform.  
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Introduction 
Highly valued animal and plant populations are declining at a dramatic rate worldwide 

(Barnosky et al. 2011), either as a result of overexploitation (Mullon et al. 2005, Godfray et al. 
2010, Weinbaum et al. 2013), poaching (Chapron et al. 2008, Wittemyer 2011), global climate 
change, or the conversion of human settlement and development of pristine habitat (Ellis 2011, 
Foley et al. 2011, Urban 2015). The value of individuals within these populations comes from 
either ethical considerations (the conservation imperative: (Minteer and Collins 2010) or 
resource utility considerations (the management imperative: (Ostrom et al. 1999)). Since the 
seminal work of Beverton and Holt six decades ago (Beverton and Holt 1957), mathematical 
models have played a central role in both evaluating (Metzger et al. 2010) and devising 
population management programs (Weinbaum et al. 2013), initially for exploitation and, more 
recently, conservation. The latter has been implemented through creating protected areas (Moffitt 
et al. 2011), improving their security (Watson et al. 2014), and stocking or translocating 
individuals (Armstrong and Seddon 2008, Seddon et al. 2014) to bolster or reestablish 
populations in selected areas. At the core of the most comprehensive and successful of these 
models is the Leslie matrix formulation (e.g. see Caswell 2001), which provides a way of 
incorporating population vital rates (mortality and natality) into both harvesting (sustainable 
management) and population viability analysis (conservation management) models.  

Impelled by the work of Beverton and Holt (Beverton and Holt 1957), fisheries science 
has had a cadre of quantitatively trained individuals able to formulate and code sophisticated 
models used to manage fisheries by helping set quotas on harvesting effort and fish stock 
removals (Getz and Haight 1989, Quinn and Deriso 1999). From the 1980’s onwards, 
quantitative population biologists have formulated Leslie matrix type models to help set quotas 
for trophy hunting or other types of exploitation of vertebrate populations (Getz and Haight 
1989), but it is only over the past 20 years that the application of Leslie matrix type models has 
found wide application in conservation biology (Beverton and Holt 1957, Heppell 1998, Menges 
2000, Wisdom et al. 2000, Caswell 2001, Fieberg and Ellner 2001, Crone et al. 2011, Merow et 
al. 2014b). In some cases, when traits, such as age or size are considered as continuous rather 
than discrete variables, these models are more generally formulated as integral projections (e.g. 
see Easterling et al. 2000, Merow et al. 2014a); though they revert to matrix models under 
numerical discretization schemes (Ellner and Rees 2006, Rees et al. 2014). With a rapidly 
growing need to conserve endangered species, scientists and policy markers who have not been 
trained to code their own population models for numerical simulation, face the challenge of 
building best practice simulation models (Kettenring et al. 2006) to aid them in their species 
management or conservation biology work. To support these researchers and managers, software 
applications platforms, such as RAMAS (e.g. see Crone et al. 2011) and VORTEX (Lacy 1993, 
2000, Brito and Da Fonseca 2006, Lacy and Pollak 2012), have been developed, particularly to 
aid population ecologists in using population viability analyses (PVA) (Beissinger and Westphal 
1998, Morris and Doak 2002). VORTEX (Lacy and Pollak 2012) takes an agent-based approach 
to modeling individuals and is able to include the type of information used to track lineages and 
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pedigrees that are stored in studbook files (cf. Marker and Fund 2012). VORTEX is also able to 
track, under the assumption of Mendelian inheritance, the fate of multiple genetic loci and assess 
levels of inbreeding. VORTEX runs in a Windows operating systems environment, as does 
RAMAS. RAMAS, though, is a commercial platform with multicomponent high-end products 
that can incorporate detailed landscape information and geographical information systems 
approaches into its analyses.  

Our NumerusOL app, which we refer to as Numerus PVA, provides a more gentle entry 
into PVA than either VORTEX or RAMAS. Most importantly, Numerus PVA runs directly in a 
web-browser environment with access via the website Numerusinc.com. Further, it has sufficient 
flexibility to include two sexes, a variable sex ratio, three types of density-dependent 
mechanisms, and runs as either a deterministic or stochastic simulation (demographic, 
environmental or both) with one to three subpopulations. Migration of individuals among 
subpopulations incorporates propensity of individuals to move by age and sex, connectivity of 
regions, and attractivity of regions based on some criterion such as the anticipated fitness of 
individuals within those regions. Harvesting and stocking management options are also included. 
All of these components are wrapped in an intuitive web-based Graphical User Interface (GUI) 
that requires no computer programming and only an elementary understanding of discrete time 
population models using life table data.  

Numerus PVA itself was constructed using the Numerus platform and the NumerusOL 
file conversion technology, which is based on our earlier Nova Platform (Salter 2013, Getz et al. 
2015). Use of Numerus PVA, however, requires no knowledge of coding nor of the Numerus 
modeling platform. The GUI provides data fields that can be entered online and key parameters 
manipulated using sliders. The app can be run in either deterministic or stochastic modes. The 
deterministic mode is most useful when evaluating various management strategies implemented 
in large population (generally in the context of sustainable fisheries or forestry exploitation rates 
that are optimal in some sense—cf. Getz and Haight 1989). The stochastic mode includes 
demographic stochasticity (e.g. small population size effects) and environmental stochasticity 
(e.g. driving variable fluctuations drawn from climatic variable distributions). The former is 
critical to carrying out species extinction risk analyses, in other words PVA, (Fieberg and Ellner 
2001), while the latter permits possible climate trend information to be accounted for in multi-
decadal simulations (cf. Wilmers and Getz 2004a). 

 
Model Structure and Simulation Modes 
Demography 

The demographic model underlying our app has the flexibility to include one or two 
sexes, single or metapopulation structure, and density-dependent (DD) effects (Fig. 1). These DD 
effects can be implemented separately in each metapopulation region and in the context of 
reducing survival rates in the youngest male and female, oldest male and female, and maturing 
male age-classes. In all but the latter, we assume that survival is affected by the aggregated 
biomass variable B (Fig. 1) that weights individuals by a user-specified age-sex relative value, 
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rather than purely by the more usual population size (i.e. numbers). This allows us to correct for 
the fact the when density dependence arises through resource consumption then total biomass is 
more appropriate then population size for indexing the level of competition (Getz 2011). In 
contrast, maturing male DD effects depend on the total number of males M that are ≥ age r (age 
at which males mature; see figure in Appendix 4, SI online) because we assume these effects 
arise through contest competition or defense of territories. In essence, the model depicted in Fig. 
1 is a nonlinear elaboration of a discrete-time Leslie matrix formulation (Caswell 2001), with 
details of the equations provided in Appendix 1 (SI).  

 

 
Figure 1. A flow diagram of a two-sex, age-structured, population model with density-dependent (DD) 
survival in the youngest and oldest classes that depend on the population biomass B (Eq. 3) (left side), 
and schematic of the metapopulation structure (right side) indicating regionally specific DD processes.. 
 

The data needed to implement a Leslie matrix model of a homogeneous population are 
the age-specific survival rates si (the proportion individuals that survive from age i to age i+1) 
and the age-specific natality values bi (the average number of newborns per unit time produced 
by adults of age i; or females-per-female when two sexes are invoked). If xi(t) is the number of 
individuals at time t in a model that does not differentiate by sex, then the number of newborns at 
time t+1 is (in Fig. 1 we illustrate the more general sex differentiated model with variables xif and 
xim, i=0,…,n) 

   (1) 

Aging is included in the model through the equations 

  (2) 

Density dependence in the model is introduced by multiplying either or both of the density 
independent survival rates s0 and sn by the factor  

  
x0(t) = bi

i=1

n

∑ xi(t)

xi+1(t +1) = sixi (t),      i = 0,...n − 2
xn (t +1) = sn−1xn−1(t) + snxn (t)
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 (3) 

This dependence is then generalized to be included in two sex models; and it can also be applied 
to males that may be motivated to engage in male-male competition on reaching sexual maturity, 
as illustrated in Fig. 1. In this case the density dependent factor is  

 (4) 

In addition, in a two-sex model, if there are no mature males during an iteration period, then 
births are set to zero for that period. 
 
Migration  

To specify how individuals move among meta-population regions, a region-specific 
propensity-to-move vector qi of elements qij is entered (Fig. 2): in particular, qij=0.x, implies that 
individuals of age-sex class i in region j have an x% propensity to move. In addition a 
connectivity matrix with elements prs (Fig. 2) specifies the relative ease that individuals in region 
r are able to move to region s, should they have the propensity to do so. Thus the movement of 
individuals is determined both by this connectivity matrix and by a propensity for individuals of 
different ages to move at different rates (e.g. only maturing males in search of territory may 
move, and so on). 

 
 

Figure 2. Depiction of the stochastic movement (i.e. migration) and management processes used to 
compute exchanges among and changes M ≤ 3 regional subpopulation levels, as generated by 
harvesting and stocking (which can also be interpreted as translocations) and then migration (cf. Fig. 3). 
The latter is computed in terms of i) a propensity of individuals of different age-sex classes to leave their 
current regional location, ii) a matrix that represents the connectivity (ease of movement) among regions; 
and iii) an optional destination attractivity factor determined by the relative fitness of the youngest age 
class in region (DD1 and DD2 in Fig. 1, as influence by f defined in Eq. 3).  
 

The movement (migration) module of Numerus PVA has one additional feature referred 
to as the engage-relative-fitness switch, which can be turned ON or OFF. If it is OFF, the 
probability of individuals moving from one region to another is determined solely by the vectors 
qi and matrix P (Fig. 2). If this switch is on then an additional relative attractiveness factor is 
applied for each region: the value of these factors across regions are in proportion to amount that 

  
φ = c2

c2 + B2 ,     where    B = wixi
i=1

n

∑    and   c > 0   is the competition constant 

φ̂ = ĉ2

ĉ2 +M 2 ,     where    M = xi
i=r

n

∑ ,    r  is the male maturity age and  ĉ > 0 
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survival of the youngest age classes is reduced in each region by density-dependence (see 
Appendix 1, SI, for details). 

 
Stochasticity  

The model can run either deterministically or stochastically, where the latter may include 
either demographic or environmental sources (Engen et al. 2005). Demographic stochasticity 
arises from sampling theory (underlying vital parameters are treated probabilistically) and hence 
should be included when populations are small, because its effects are proportional to the inverse 
of the square root of population size (Desharnais et al. 2006). Environmental stochasticity is 
likely to affect various age classes differently, depending on the source of the stochasticity (e.g. 
climatic drivers versus disease). Here we make provision for environmental stochasticity to 
impact only the youngest age class, which is often the most vulnerable age class, as has been 
documented for large mammalian herbivores (Gaillard et al. 1998). Environmental stochasticity 
may also be important in senescing age classes (Wilmers and Getz 2004b). Such considerations 
can be included in customized versions of the model, as discussed in the Conclusion Section. A 
deterministic simulation requires the demographic stochasticity switch to be OFF, and the 
environmental stochasticity slider to be set to 0. If demographic stochasticity is ON, then all 
survival computations of the form sixi are replaced with BINOMIAL(xi,si) computations and birth 
number computations bixi are replaced with BINOMIAL(bixi,bmax/bi) computations, where bi 
(birth rate) has the interpretation of expected litter size and bmax (birth max) is the maximum 
litter size. If the environmental stochasticity slider is > 0 then environmental stochasticity in the 
survival s0 of the youngest age class is included up to a maximum level that is implement when 
the slider is set to 1 (see Appendix 1, SI, for more details). The slider value can be tuned over 
multiple simulations with different slider values until the simulated variance matches the desired 
or observed variance.  
 
Constraints  

The current version of the software is limited to 1-10 age-classes for each of 1-2 sexes in 
each of 1-3 metapopulation regions and running the model for a maximum of 1000 steps. Future 
versions of the software will relax these constraints. The NovaScript file, underlying this 
NumerusOL implementation, was constructed using the Numerus modeling platform (Salter	
2013,	Getz	et	al.	2015) and it (see SI) can always be rapidly modified to supply the user with a 
version of the model that meets the user’s needs. 
 
Event Sequence  

Since the order of events matters in a discrete time simulation—e.g. an individual that 
dies first cannot then be harvested, and vice-versa—it is necessary to pay attention to this order 
when formulating transition equations from one time step to the next. The order that we use to 
calculate the number of individuals in age class i at time t, i.e. xi(t), that make it into age class 
i+1 at time t+1, depends first on the number that die from natural causes (as determined by the 
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survival parameter si), then on those removed by harvesting, then on those added by stocking, 
and finally the numbers lost and gained through migration (Fig. 3). The implication of this is that 
individuals that move do not include those that are harvested, but may include those that are 
stocked. Also, the density-dependent mortality depends on the population state at the beginning 
of the discrete interval of time and hence does not account for population changes from 
harvesting, stocking, or movement.  

 
Figure 3. Sequence of events used to compute the transition of the age class vector x from times t to t+1. 
From this we see that density-dependent (DD#, cf. Fig. 1) survivorship, when applied, takes effect prior to 
harvesting, stocking and migration. 
 
Setting up a Model Run 

At the simplest level, one can choose to run the model in deterministic mode for a single-
sex homogeneous population with no density dependence. At its most complex, the Numerus 
PVA can be run in two-sex, density-dependent, metapopulation mode, with both demographic 
and environmental stochasticity switched on, where all parameters are metapopulation region 
specific. The values of parameters can either be entered manually or by importing an 
appropriately configured csv file (Fig. S1, SI online). Using the manual entry approach (with or 
without the self-guided tutorial) the data that are entered on the following pages, which appear 
sequentially: 

i) Population data: number of regions; number of age classes, one or two sex, and male-
maturity-age by region in the two-sex case, density dependence options by region (young, 
old, or mature males in the case of two-sex case) (Fig. S2, SI online). These data are used to 
set up the forms for the pages that follow, since the much of the remaining data is age-class 
and region specific. 

ii) Core population parameters: initial numbers by age for each region, survival and birth rates 
by age for each region, “birth max” by age (will only be used for models with demographic 
stochasticity) for each region, and finally both female sex ratio and male maturity age by 
region. These data pertain to the entries needed to implement a Leslie Matrix population 
projection model.  

iii)  Biomass and movement parameters: relative biomass of each of the age/sex classes in each 
region; density-dependence parameters (youngest age class, oldest age class, males 
transitioning to sexual maturity) in each region; propensity to move by age/sex class for 
each region; region connectivity matrix. These data are used to implement the density 
dependent functions that modify survival rates of the youngest, oldest, and maturing male 
age classes in each region, as well as determine stochastic movement rates among regions. 
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iv)  Stocking and harvesting values: age-class specific stocking and harvesting rates (numbers 
to be added or removed) each time interval or on a regular schedule with adjustable 
frequencies; and additional harvesting pressure that removes specified numbers of 
individuals, but randomly from cohort ranges set by sliders. 

v) Interactive model implementation: a page from which runs are executed once with the option 
to control the following settings or switches (Fig S3, SI online): simulation length setting, 
save model output switch; pseudoextinction threshold setting, density dependent 
engagement switches; demographic stochasticity switch, environmental stochastic switches 
and levels by region, as well as random harvesting values (number specified, by individuals 
chosen from random classes within specified cohort ranges). On running the model visual 
output will be generated (Fig. S4, SI online) and an optional csv file generated. 

 
Illustrative Example 

We illustrate implementation of our PVA web app, using an exemplar data set that is 
inspired by the life-history and conservation predicament of the black rhino, Diceros bicornis, in 
southern Africa; but has not been fitted to any particular population because parameters vary 
quite considerable among populations. This species, like other rhino species, is close to 
extinction (it is on the IUCN’s critically endangered list—next step, extinct in the wild), with 
fewer than a few thousand individuals alive at this time. Because this species is subject to the 
devastating effects of intense poaching for rhino horn, actual locations and numbers are kept 
confidential by managers of national parks and conservation areas. Further, while some life 
history data on birth and survival rates are available, these rates vary from one area to another, 
and often life table construction (natality and mortality rates at each age) relies on misleading 
values obtained from individuals kept in zoos (e.g. longevity in zoos can be greatly different 
from longevity in the wild; while calf survival depends on predation pressure). Thus we stress 
that our dataset exemplar should not be regarded as applicable to any specific rhino population 
and the model itself is essentially generic. The analysis that follows here is not meant to apply to 
any real population, but is provided for the purpose of illustrating how conservation decisions for 
the species can be evaluated using our Numerus PVA app. 

 
Basic population parameters 

The inter-calf interval of mature female rhinos is approximately 3+ years (includes 1.3 
years for gestation). For this reason, it is convenient to organize the population into age classes 
that each span three years: i.e., the basic iteration units for t in the model will be 3-year intervals. 
Hence if the model is used to project population change over T units of time, the corresponding 
number of years for the projection is 3T (Note: in Figs. 4 and 5 the x-axis denotes units of t, 
while in the Fig. 6 the units are years rather then t). Recent estimates of calf, adult female, and 
adult male survival of rhino in an area of Namibia regarded as relatively unproductive for rhino 
growth was respectively 0.793, 0.944 and 0.910 (Brodie et al. 2011). These data, rounded to the 
nearest 0.05, are listed in Table 1, along with the estimate that females in this region produce 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 14, 2016. ; https://doi.org/10.1101/074492doi: bioRxiv preprint 

https://doi.org/10.1101/074492


Getz	et	al.		Numerus	PVA,	9/5/2016.	
	

	

10 

10	

0.315 calves per female per year. The female sex ratio used is 0.6, based on estimates reported in 
Law et al. 2014, and the male maturity age is taken to be 2 (age 6+-9). These data, when used in a 
9-age class, female only Leslie matrix model yield a density-independent growth rate of 6.4% 
per annum (see SI Appendix 3). 

 
Table 1: Life Table of a Large Mammalian Herbivore 

Age (class; i) Male 
survival 

Female 
survival 

Young / 
female 

Female 
weights* 

Male 
weights* 

0-3 (calf: 1) 0.80 0.80 0 0.5 0.5 
3+-6 (subadult: 2) 0.90 0.95 0.3 0.75 1 
6+-9 (young adult: 3) 0.90 0.95 0.95 0.75 1 

9+-12 (mature adult: 4) 0.90 0.95 0.95 0.75 1 
12+-15 (mature adult: 5) 0.90 0.95 0.95 0.75 1 
15+-18 (mature adult: 6) 0.90 0.95 0.95 0.75 1 
18+-21 (mature adult: 7) 0.90 0.95 0.95 0.75 1 
21+-24 (mature adult: 8) 0.90 0.95 0.95 0.75 1 

>24 (aging adult: 9) 0.60 0.60 0.5 0.75 1 
*relative units in terms of resource consumption 

 
Density dependence 

The carrying capacity for rhino in two Zululand parks in South Africa, has been 
estimated at 0.4 and 1.6 rhino km-2 (Conway and Goodman 1989), while values for this species 
in drier regions of southern Africa have been estimated to be as low as < 0.1 rhino km-2 
(Linklater et al. 2011). In this illustrative example, we include the effects of density-dependence 
only on the survival of the young: that is DD1 and DD2 in Fig. 1, which is tantamount to 
multiplying the density independent survival constants for males and females in Table 1 by the 
function given in Eqn. 1. We note that setting c=50, 100, and 150 producing carrying capacities 
(i.e. equilibrium values) of around 69, 138 and 208 individuals (Fig. S6; implying reserves of 
corresponding sizes in square kilometers). 
 
Stochasticity.  

For purposes of comparison, we run the model with the parameter values specified in 
Table 1, the sex ratio at 0.6 (female biased), and c=100 in deterministic, and environmental 
stochasticitiy at half max and at full max settings (the environmental stochasticity sliders are set 
at 0, 0.5 and 1 respectively) (Fig 4A). We repeated this simulation with demographic 
stochasticity switched ON (Fig. 4B). First we note from visual inspection of Fig. 4 that variance 
increases with increasing levels of environmental stochasticity and that the model predicts whole 
numbers when demographic stochasiticity is ON, but fractional numbers when demographic 
stochasticity is OFF. This is consistent with the requirement that demographic stochasticity be 
ON when population size is relatively small (tens or hundreds) and can only be safely ignored 
when population sizes are close to a thousand or more, in which case the interpretation of the 
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state variables is density (i.e. fractional numbers are meanful) rather than size (fractional 
numbers are nonsensical). 

 
Figure 4. Simulations of model using parameters in Table 1, female sex-ratio=0.6 and male maturity age 
is 3 in all three regions, and density-dependent survival is only in the youngest group (parameter c100), 
with no (blue), half (red) and maximum (purple) levels of environmental stochasticity with demographic 
stochasticity OFF (A.) and ON (B.). The size of the population is read out t=200 (A.) and t=100 (B.) where 
we note that when demographic stochasticity is OFF (A.), the model predicts fractional numbers, while 
when demographic stochasiticity is ON, the model predicts whole numbers. Initial values for male and 
female cohorts in all cases were: male=(10,9,8,7,6,5,4,3,4)´ (´ denotes the vector is transposed from a 
column to a row) and female=(10,9,8,7,6,5,4,3,4)´) 
 
Movement 

For the three components of migration—propensity to move, connectivity, and region 
attractivity (Fig. 2)—we allowed individuals only in the third age class to move (i.e. those aged 
7-9 years, through the propensity to move vectors: male=(0,0,1,0,0,0,0,0,0)´; 
female=(0,0,1,0,0,0,0,0,0)´), we assumed all regions where equally accessible for another (i.e. 
the connectivity matrix was filled with 1’s); and we assumed all regions were equally attractive 
(i.e. the “Migration with Relative Fitness” switch was OFF). Notice that extinction occurs in 
region 3 without migration (Fig. 5A.), but the populations in the three regions are somewhat 
equalized when migration occurs (Fig. 5B.).  
 

 
Figure 5. Screen captured simulation output from Numerus PVA using parameters in Table 1, sex ratio = 
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0.6, and density-dependent survival in the youngest age group in each of three regions, where the 
parameter c has values c=5 (blue), c=10 (red) and c=15 (purple), respectively. The cases of no migration 
among regions (A.) and movement of males and females in age class 3 (i.e. 7-9 year olds) only among 
regions (B.) are illustrated. Initial values for male and female cohorts in all cases were: 
male=(3,3,3,3,2,2,1,1,1)´ and female=(3,3,3,3,2,2,1,1,1)´.  
 
Poaching 

We carried out an assessment of the effects of poaching by running the model with 
parameters used to generate Fig. 4, but with youngest age group density-dependent survival 
parameter set at c=10 (i.e. the red trajectory in Fig. 5A applies) under both no poaching 
(harvesting) and poaching scenarios. We obtained 36 replicate runs for the no poaching scenario 
by running the model in 3-region mode 12 times under the assumption of no migration, where 
the red trajectory in Fig. 5A is but one example. We then reran with harvesting set to removing 1 
male and 1 female in each time period drawing the individual at random from cohorts 4-9 for the 
males and 5-9 for the females. This level of poaching considerably increases the population’s 
risk of extinction from comfortably less than 10% over a 99-year interval (simulation interval is 
33 time units) (blue curve, Fig. 6) to almost 90% (red curve, Fig. 6) 

 
 

 
Figure 6. Extinction curves obtained for data generated by Numerus PVA for no harvesting (blue) and 
random harvesting (red; see text for details) of 1 male and 1 female in each time period. Data obtained 
from 36 simulations (i.e. 12 repeated simulations in 3-region mode with no migration) in each case. 
 
Conclusion 
The Numerus PVA app presented here when in its one region, one sex, no density dependence, 
deterministic mode can be used as a class room tool to introduce students to the behavior of 
Leslie matrix (discrete time, linear, age-structured) models. The app can also be used to 
introduce students to discrete stochastic process models and their application to PVA risk 
analysis by enabling demographic stochasticity (i.e. flipping its switch on the app) and 
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incorporating density-dependence into the youngest or oldest age class. Additionally, the app can 
also be used in the classroom to introduce notions of population management through both 
harvesting and stocking actions, as well as for exploring migration processes in metapopulation 
settings. Beyond this the Numerus PVA app can be use in research, though the current 
constraints limit its application to 20 age-sex classes and 3 regions. These constraints are easily 
relaxed and users can contact Numerus (at Numerusinc.com) to obtain more powerful versions 
and make extensive runs on high performance computing clusters. 
 
 
Glossary 
 
Biomass: The total mass of a population is commonly used in ecology and resource management 
in lieu of population size as an alternative to the number of individuals. In Numerus PVA, 
biomass is used to implement density-dependence (DD) effects.  
 
DD effects: Demographic or environmental limits that reduce population growth as populations 
get larger. Numerus PVA provides density-dependence options that affect survivorship of the 
youngest age classes youngest female (DD1) and male (DD2), oldest female (DD3) and male 
(DD4), and mature male (DD5) age-classes, as illustrated in Fig. 1. 
 
Demographic stochasticity: Random fluctuations arising from the probabilistic nature of 
applying vital rates to individuals at every life stage in both sexes. 
  
Environmental stochasticity: Random, environmentally-induced fluctuations in survivorship. In 
Numerus PVA, environmental stochasticity is an option for survivorship of the first life stage 
only (i.e. environmentally-induced juvenile mortality). 
 
Leslie matrix: A transition matrix underlying a discrete-time, linear, age-structured population 
dynamic model. 
  
Metapopulation: A set of connected subpopulations. In Numerus PVA, metapopulations are 
modeled as a weighted node network with implicit movement of individuals along vertices. 
 
Metapopulation connectivity: An underlying matrix with entries, scaled to take values on the 
interval [0,1], that represent the relative ease-of-transition among different nodes in the 
metapopulation. 
 
Perron root: The dominant eigenvalue of a square non-negative matrix; the Perron root of a 
Leslie matrix is the rate of population growth. 
  
Propensity to move: In Numerus PVA, movement propensity is an age- and sex-based 
demographic state specifying the likelihood of emigration to another area (independent of 
destination).  
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Pseudoextinction: The event horizon of population size, below which extinction is certain. In 
Numerus PVA, pseudoextinction levels can also be treated as thresholds for interventions such as 
ex situ captive breeding programs. 
 
Regional attractivity: In Numerus PVA, once the decision to move has been made, and the 
connectivity of nodes accounted for, an intrinsic variability in quality of possible destination 
regions remains. We use the comparative intensity of density-dependent (DD) effects on 
survivorship of the youngest age class (quantity φ in Eq. 3, with c pertaining the youngest female 
age class) to scale this quality so that individuals are more likely to go to regions with smaller 
rather than bigger DD1 effects. 
  
Funding Statement. The modeling material and analyses were supported by the National 
Science Foundation under Grant CNS-0939153. Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the author(s) and do not necessarily 
reflect the views of the National Science Foundation. 
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Access Numerus PVA App.  
This web app can be accessed at www.numerusinc.com/webapps/pva/ 
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Supplementary Information (SI) online  
 
Appendix 1. App Data Entry 

 
 
Fig. S1. Data can be entered either online or by importing a local csv (comma separated values) 
file. 
 

 
Fig. S2. Population “core structure” data entry page. 
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Fig. S3. Model simulation control window. 
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Fig. S4. Output window. 
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Appendix 2. Generic Rhino Example  
The csv file used is available at the web app site www.numerusinc.com/webapps/pva/ 
Equivalent Leslie Matrix model 
Leslie matrix model constructed from Table 1 (terms in first row are births by age class 
multiplied by first period survival value 0.8 and sex ratio 0.6). 

 

The dominant eigenvalue (Perron root) of this matrix is 1.20451. Since each time step is 
equivalent to three years, this represents a 20.5% increases per time period; i.e., a 6.4% per 
annum growth rate. 

If we assumed the under sustained poor environmental conditions that s0l, l=m, f, drops 
precipitously from 0.8 to 0.2, then, if this were sustained in perpetuity, and eigenvalue analysis 
indicates that the population would decline at an annual rate of just over 2% per annum. If, 
however, the value of s0l, l=m, f, average out to be (0.8+0.2)/2=0.5 then eigenvalue of this 
average matrix yields a growth rate of 3.3% per annum. 
 
Density dependence of youngest age class 
 

 
Fig. S5. Carrying capacity parameters c=50, 100, and 150 produce equilibrium densities of 69, 
138 and 208 individuals in Regions 1, 2, and 3 respectively. Initial values for male and female 
cohorts in all cases were: male=(10,9,8,7,6,5,4,3,4)´ (´ denotes the vector is transposed from a 
column to a row) and female==(10,9,8,7,6,5,4,3,4)´ 

   

L =

0 0.144 0.456 ! 0.456 0.456 0.285
0.95 0 0 ! 0 0 0

0 0.95 0 ! 0 0 0
0 0 0.95 " # # #
# # # " 0 0 0
0 0 0 ! 0.95 0 0
0 0 0 ! 0 0.95 0.6

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 14, 2016. ; https://doi.org/10.1101/074492doi: bioRxiv preprint 

https://doi.org/10.1101/074492


Getz et al. Numerus PVA, Supplementary Information, September 9, 2016 1

Appendix 3: Model Formulation and Equations

Two-sex deterministic age-structured framework

The following is a two-sex Leslie Matrix model expressed in terms of age-sex variables (age i,
except n is age n and older; and f and m denote female and male respectively) xif (t) and xim(t),
i = 1, . . . , n, time t, and life history survival (sif , sim) and natality (bif , bI′m) parameters, where
the female component of the model can be expressed as a matrix equation

x1f (t+ 1)
x2f (t+ 1)

...
xn−2 f (t+ 1)
xn−1 f (t+ 1)
xnf (t+ 1)


=



s0fb1f s0fb2f · · · s0fbn−2 f s0fbn−1 f s0fbnf
s1f 0 · · · 0 0 0
...

. . .
...

...
...

0 0
. . . 0 0 0

0 0 · · · sn−2 f 0 0
0 0 · · · 0 sn−1 f snf





x1f (t)
x2f (t)

...
xn−2 f (t)
xn−1 f (t)
xnf (t)


(1)

and the male component either requires doubling the dimension of the above matrix equation or
augmenting the above equations with equations

x1m(t+ 1) = s0m

n∑
i=1

bimxif (t)

xi+1m(t+ 1) = simxim(t) i = 1, . . . , n− 2 (2)

xnm(t+ 1) = sn−1mxn−1m(t) + snmxnm(t)

Under the assumption that males have no effect on the female component of the model, as long
as there are sufficient males to fertilize sexually mature females, the growth or decline rate of the
female component is determined by the eigenvalues of the matrix depicted in Equation 1. If this
matrix is primitive (nonnegative and irreducible with at least one positive element) then it is known
from the Perron-Frobenius Theorem that this matrix has a positive dominant eigenvalue, say λ1,
and corresponding eigenvector, say x1, such the population ultimately grows (λ1 > 1) or declines
(λ1 < 1) at rate λ1 and the solution vector xf (t)′ = (x1f (t), . . . , xnf (t)) (′ denotes vector transpose)
directionally aligns with x1 as t→∞.

Growing populations will ultimately be regulated through density-dependent mechanisms linked
to resources available to each individual over each period of time. Typically, age classes likely to be
most vulnerable to the effects of competition for resources are the youngest and oldest age classes,
although the effects of competition on all age classes ca can be considered. A simple approach is to
express the effects of density on age class i in terms of the ratio of an aggregated population index
Bi`(t) and age-sex-specific available resources Ri`(t). Specifically, for a set of weights wij` ≥ 0, we
define

Bi`(t) =

n∑
j=1

∑
`=f,m

wij`xj`(t), (3)

If the weights wijf and wijm are the actual or relative weights of individuals aged j then Bi(t) is a
population biomass index. The resources Ri(t) can either be external inputs or systems variables
that depend on the population via consumer-interaction processes. The density-dependent effects
on age class i can be included using functions Fi` to multiplicatively modify the values of si`; where,
for scaling constants ci` > 0,

Fi`

(
Bil
Ri`

)
=

1

1 +
(
ci`Bil
Ri`

)gi` ` = f, m, i = 0, 1, . . . , n. (4)
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We note that Fi`

(
Bil
Ri`

)
∈ (0, 1] with Fi`(0) = 0 and Fi`

(
Bil
Ri`

)
→∞ as Bil

Ri`
→∞.

In the simplest two-sex, density-dependent case, we assume that an age-independent birth sex-
ratio variable ρ ∈ (0, 1] (right-hand of the interval is closed since female only populations—i.e.clonal
populations—are possible) applies to total birth parameters bi, i = 1, . . . , n, in which case we have

bif = ρbi and bim = (1− ρ)bi i = 1, . . . , n (5)

Further, if density-dependence applies only to the survival of newborns to age 1, then we have
Fi` = 0, for all ` = f, m and i = 1, . . . , n. In this case, we have one density-dependent function,,
which we denote by

F (B/K(t)) =
1

1 +
(

B
K(t)

)g where B(t) =

n∑
j=1

wjfxjf (t) + wjmxjm(t) and K = R(t)/c (6)

This function premultiplies only the parameters s0f in Equation 1 and s0m in Equation 2. (Note,
in our main text, we refer to K as the “carrying capacity” and select the units of c so that the
carrying capacity is scaled to adult male biomass equivalents per unit area).

Figure. A flow diagram of a two-sex, age-structured, population model with 5 sources of density-dependent

survival in the youngest (DD1, DD2) and oldest (DD3, DD4) classes that depend on the population biomass

B (Eq. 3), as well as in the maturing males that depending on the number of mature males M (DD5; Eq.

4). The latter DD-survival rate depends on the number of mature males in the population, while the other

DD-survival rates depend on the total biomass of the population.

Demographic stochasticity

Demographic stochasticity arises in the context of survival of individuals when we regard survival
parameters sif and sim as denoting probabilities that each individual survives rather than the
proportion of individuals in the ith age class that survive. In this case, the variables xif and xim
are regarded as random variables Xif and Xim that are determined from binomial distributions
arising from repeated Bernoulli trials of whether or not each individual survives or does not survive
with probabilities sif and sim, etc. For example, if x(t) individuals each survives the interval
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[t, t+ 1) with probability s, then the computation of the value x(t+ 1) arises from a drawing of a
variable X(t) ∼ BINOMIAL[x(t), s]. Notationally, we use the equation

x(t+ 1) = BINOMIAL[x(t), s]

to mean that we have drawn a value from the distribution BINOMIAL[x(t), s] and called this
value x(t+ 1). Using this convention, our survival equations, incorporating the density-dependent
functions given in Eqns 4, but omitting the arguments of this functions for clarity: take the form

xi+1 `(t+ 1) = BINOMIAL[xi`(t), si`Fi`] i = 1, . . . , n− 2, ` = f, m

xn `(t+ 1) = BINOMIAL[xn−1 `(t), sn−1 `Fn−1 `] + BINOMIAL[xn `(t), sn `Fn`]

(7)

It only remains now to generate equations for x1`(t + 1), ` = f, m. This requires that we first
generate the number of newborn individuals x0,i(t) to females of age i, calculate the proportion of
these that are female and male, using a sex-ratio probability-of-being-female parameter ρi ∈ (0, 1),
and then the probability that these young survive the year, where this survival may also depend on
the age i of the mothers. To allow for this level of generality, we first calculate x0,i(t), as described
below. We then calculate the total of these that may be female x0,if (t) = BINOMIAL[x0,i(t), ρi],
with the remaining x0,im(t) = x0,i(t)− x0,if (t) being males. Then, if s0,i` and F0,i` are the density
independent and dependent components respectively of the survival rates of female (` = f) and
male (` = m) young in their first year to mothers of age i, we finally obtain the equations:

x0,if (t) = BINOMIAL[x0,i(t), ρi]

x0,im(t) = x0,i(t)− x0,if (t) (8)

x1,i`(t+ 1) =
n∑
i=1

F0,i`s0,i`x0,i`(t) ` = f,m

So it remains now to discuss how to generate the equation for x0(t). We consider the simple
case where each female can have at most on young: this is the case for many large mammals,
particularly herbivores (e.g. elephants, rhino, hippo, large antelope).

Case 1: single births. Each individual female in age class i will give birth to 1 or 0 individuals with
probabilities bi ∈ (0, 1) and (1− bi). In this case, if there are xi,f (t) females at time t then

x0,i(t) = BINOMIAL[xi,f (t), bi]

Case 2: binomial with maximum number of multiple births. Each individual can have at most
bmax
i (which must be an integer), with the expected number of young being bi/b

max
i , with the

actual litter size being binomial. In this case we have xi,f (t) drawings from the distribution
BINOMIAL[bmax

i , bi/b
max
i ] to obtain

x0,i(t) = BINOMIAL[xi,f (t)bmax
i , bi/b

max
i ]

which generalizes the case above where we have bmax
i = 1.
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Environmental stochasticity

Environmental stochasticity is easy to incorporate into the model in two different ways. First, in
the functions in Eqns. 4, the resources Ri`(t) available to individuals in demographic class i` can
vary stochastically from one time period to the next. This is particularly easy to characterize if
Ri`(t) is treated purely as an input rather than a systems variable interacting with its consumers.
Second, survival probabilities themselves can be treated as stochastic variables rather than con-
stants. This can be done both in terms of large infrequent perturbations due to epidemics or other
types of environmental catastrophes. Extractions due to predation or human activities, however,
are considered elsewhere.

A particularly simple environmental variable approach to including stochasticity, which is the
one we took in developing our Nova web app, is to select a parameter γ ∈ [0, 1] such that γ =
0 corresponds to the absence of environmental stochasticity and γ = 1 maximum stochasticity.
We then flip a coin and decide if it is heads we select a female survival value at random on

[s0f , s0f +γ(1− s0f )] to obtain ŝ0f . We now compute δ =
ŝ0f−s0f
1−s0f and apply the same proportional

increase to male survival value to obtain ŝ0m = s0m+δ(1−s0m). On the other hand, if the coin is tails

we then select a female survival value at random on [s0f − γs0f , s0f ]. We now compute δ =
s0f−ŝ0f
s0f

and apply the same proportional decrease to male survival value to obtain ŝ0m = s0m− δs0m. Note
that this approach implies that expected survival is not equal to the nominal survival s0 as the
stochasticity increases, unless s0 = 0.5: if s0 > 0.5 then the expected survival will be less than the
nominal survival (since s0 < 1− s0) and vice versa if s0 < 0.5.

Environmental variation through dependency of resources Ri`(t) can be incorporated using a
time-series model. In particular, a relatively simple model (Murdoch et al Nature 2002) that
applies to a collection of age-sex-classes denote by I (e.g. all adults), with BI(t) defined in terms
of a weighted sum of individuals over the index set I, FI (BI`, RI`) a function of the form defined
in Eqn 4, and parameters cI > 0, 0 < dI < 1 and λI :

RI(t+ 1) =
λIRI(t)e

−dIBIFI(BI`(t),RI`(t))

1 + cIRI(t)
(9)

where the parameter cI can be treated as a random variable (i.e. this essentially treats the carrying
capacity of RI as a random variable) belonging to an appropriate distribution defined on (0,∞);
for example, a lognormal distribution:

cI ∼ LOGNORMAL[µI , σI ]

Whatever distribution is used, if cI and BI are small then the resource grows at a per capita rate
λI , while large cI or intermediate BI reduce this growth rate (note: if gI > 1, which it invariably
is as discussed in Getz 1996, then very large BI leads to very low survival and a collapse in the
population, which to some extent mitigates against resource devastation).

In the case of simply treating the parameter KI in Equation 6 as a random variable

KI ∼ LOGNORMAL[µI , σI ]

if the mean and standard deviation of the carry-capacity of input values K̄I and SI respectively,
then it is known that the values of µI and σI in the LOGNORMAL distribution used to generate
values KI(t) for each interval t are

µI = 2 ln K̄I −
1

2
ln
(
K̄2
I + S2

I

)
σ2I = −2 ln K̄I + ln

(
K̄2
I + S2

I

)
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Metapopulations and migration

If the population has a metapopulation structure, then the simplest approach to capturing this
structure is to treat the subpopulations in each of h areas as homogeneous entities linked by
movements of individuals among subpopulations. Let the jth of these subpopulations be represented
by a vector (note we are using ′ to denote transpose that allows as to list vectors in row form rather
then column form)(

xf,j
′,x′m,j

)
= (x1f,j , . . . , xnf,j , x1m,j , . . . , xnm,j)

′, j = 1, . . . , h (10)

Movement of individuals among areas can then be scheduled after demographic (births, survival
and aging), harvesting and stocking rates have been accounted for in each subpopulation. This will
be handled using a Markov transition matrix approach in which each individual of age-sex class (i`)
has a current integer state value η and a next integer state value ζ, where η, ζ = 1, . . . , h designate
the subpopulations of origination (η) and destination (ζ).

For each age-sex class (i`), we create a stochastic movement transition matrix M (i`) with el-

ements m
(i`)
ηζ by definition satisfying

∑h
ζ=1m

(i`)
ηζ = 1. Thus, if there are xi`,η(t) = X individuals

of age-sex class (i`) in subpopulation η then the distribution of these individuals in the different

subpopulations at time t+ 1 is given by MULTINOMIAL[X;m
(i`)
η1 , . . . ,m

(i`)
ηh ]. All the remains now

is to compute the values in the matrix M (i`) over the range i = 1, ..., n and ` = m, f. In many
case the matrices may not vary across various subranges, such as all adult females, and so on.
Additionally, in many case, only certain age-sex classes may move, such as males at first age for
maturity; in which case all the elements of the remaining matrices are 0.

Consider an overall movement processes that is a concatenation of the following three compo-
nents:

1. an age-sex class movement propensity qi` that is independent of location state η

2. a connectivity matrix C of elements 0 ≤ cηζ ≤ 1 that determines how relatively easy it is
for individuals to move between any two locations η and ζ. Thus for example, if c32 = 0
then individuals cannot move between locations 3 and 2, though c23 > 0 would imply that
they can still move between locations 2 and 3. In the most general case, C could depend on
age-sex class, since individuals in different classes may have different movement capabilities.
But we will not consider this level of generality here.

3. a subpopulation attractivity vector α, with elements αζ , that is dependent only on the relative
attractivity of the different subpopulations (such as the values of the youngest age-class
density-dependent factors F0,ζ(t) for the subpopulations, should they exist).

Once all these values have been entered or determined for each class (i`) of individuals that will
move, then we can calculate the movement matrix entries as

m
(i`)
ηζ =

qi`
n−1cηζαζ

(1− qi`)cηηαη + qi`
n−1

∑h
ζ=1, ζ 6=η cηζαζ

ζ = 1, . . . , h, ζ 6= η

m(i`)
ηη =

(1− qi`)cηηαη
(1− qi`)cηηαη + qi`

n−1
∑h

ζ=1, ζ 6=η cηζαζ
(11)

noting that, in effect, the ηth entry of the computation MULTINOMIAL[X;m
(i`)
η1 , . . . ,m

(i`)
ηh ] rep-

resents those individuals who either did not leave subpopulation η in the first place, or went on a
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walk-about and then returned back to their originating population after sampling the attractivity
of the other populations: either interpretation holds.

Notes on Code Implementation. The vectors
(
xf,j

′,x′m,j

)
, j = 1, . . . , h, (each of dimension 2n that

are used in the movement algorithm (cf. Equation 10 above) represent the numbers in each of the
2n (i`)-age-sex classes for each of the j = 1, ..., h subpopulations after computations at the lower
level have been carried out with respect to survival, extraction (harvesting), and stocking. Before
these vectors are then passed back for demographic updating (calculation of the age transitions

xi+1 `(t+1) in each of the h subpopulations), we calculate movement using the valuesm
(i`)
ηζ computed

in equations above in the 2n× h computations

MULTINOMIAL[xi `,j(t);m
(i`)
η1 , . . . ,m

(i`)
ηh ] i = 1, ..., n, ` = m, f, j = 1, ..., h

Extraction and exploitation

Unless predators are explicitly identified, survival estimates from life tables usually implicitly in-
clude losses to predation at static background rates. If predators need to be explicitly included
as interacting dynamical with the population of interest, which will be the case if the population
is the primary food source for a population of predators, then such descriptions can be included.
The details, however, will differ depending on the type of prey-predator interaction considered. In
a number of conservation biology problems, interest exists in the fate of populations subject to ex-
traction by humans, either because of legal harvesting or because of illegal pouching (e.g. rhinos).
In each case, the state of the population after demography has been accounted for over each time
interval, additional individuals can be removed using appropriate deterministic or stochastic rules
to simulated the effects of exploitation by humans (as discussed in the main text).

Pseudo-extinction statistics

Populations are typically considered to be extinct in the wild, once the last remaining individuals
in a natural area have been removed to sanctuaries for protection and breeding programs, where
the latter may later be used to restock natural areas under so-called ‘reintroduction programs’.
Population levels at which such interventions occur are called pseudo-extinction levels. A pseudo
extinction criterion is thus a combination of adult female and male levels (treated separately or
combined) at which the breeding population drops below a critical level (for combined: < Xcc) or
the number of mature females or males drops below critical levels on a specified interval of time,
say [0, T ].
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