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SNP heritability, the proportion of phenotypic variance explained by SNPs, has been reported for many hundreds of traits.12

Its estimation requires strong prior assumptions about the distribution of heritability across the genome, but the assumptions13

in current use have not been thoroughly tested. By analyzing imputed data for a large number of human traits, we empirically14

derive a model that more accurately describes how heritability varies with minor allele frequency, linkage disequilibrium and15

genotype certainty. Across 19 traits, our improved model leads to estimates of common SNP heritability on average 43% (SD 3)16

higher than those obtained from the widely-used software GCTA, and 25% (SD 2) higher than those from the recently-proposed17

extension GCTA-LDMS. Previously, DNaseI hypersensitivity sites were reported to explain 79% of SNP heritability; using our18

improved heritability model their estimated contribution is only 24%.19

The SNP heritability (h2SNP) of a trait is the fraction of phenotypic variance explained by additive contributions from SNPs.120

Accurate estimates of h2SNP are central to resolving the missing heritability debate, indicate the potential utility of SNP-based prediction21

and help design future genome-wide association studies (GWAS).2, 3 Whereas techniques for estimating (total) heritability have existed22

for decades,4, 5 the first method for estimating h2SNP was proposed only in 2010,1 but has since been applied to many hundreds of traits.23

Extensions of this method are now being used to partition heritability across chromosomes, biological pathways and by SNP function,24

and to calculate the genetic correlation between pairs of traits.6–8
25

As the number of SNPs in a GWAS is usually much larger than the number of individuals, estimation of h2SNP requires steps to26

avoid over-fitting. Most reported estimates of h2SNP are based on assigning the same Gaussian prior distribution to each SNP effect size,27

in a way which implies that all SNPs are expected to contribute equal heritability.1, 9 By examining a large collection of real datasets,28

we derive approximate relationships between the expected heritability of a SNP and minor allele frequency (MAF), levels of linkage29

disequilibrium (LD) with other SNPs and genotype certainty. This provides us with an improved model for heritability estimation and a30

better understanding of the genetic architecture of complex traits.31

Results32

When estimating h2SNP, the “LDAK Model” assumes33

E[h2j ] ∝ [fj(1− fj)]1+α × wj × rj , (1)

where E[h2j ] is the expected heritability contribution of SNP j and fj is its (observed) MAF. The parameter α determines the assumed34

relationship between heritability and MAF. In human genetics it is commonly assumed that heritability does not depend on MAF, which35

is achieved by setting α = −1, however, we consider alternative relationships. The SNP weights w1, . . . , wm are computed based on36

local levels of LD;9 wj tends to be higher for SNPs in regions of low LD, and thus the LDAK Model assumes that these SNPs contribute37
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SNPs            X1   X2   X3    X4   X5      X6   X7   X8   X9  X10

GCTA Model              5                                5    

High CorrelationLow Correlation

LDAK Model             4.6                             1.9    

Region 21

Expected (relative) contribution to h
SNP

 of each region:2

Weights      1.0 0.8 0.8 1.0 1.0    1.0   0   0.9   0    0

Figure 1: Comparison of the GCTA and LDAK Models. Region 1 contains five SNPs in low LD (lighter colors indicate weaker
pairwise correlations). Each SNP contributes unique genetic variation, reflected by SNP weights close to one. Region 2 contains five
SNPs in high LD (strong correlations). The total genetic variation tagged by the region is effectively captured by two of the SNPs, and so
the others receive zero weight. Under the GCTA Model, the regions are expected to contribute heritability proportional to their numbers
of SNPs, here equal. Under the LDAK Model, they are expected to contribute proportional to their sums of SNP weights, here in the
ratio 4.6:1.9. Note that the expected heritability can also depend on the allele frequencies and genotype certainty of the SNPs, but for
simplicity, these factors are ignored here.

more than those in high-LD regions. Finally, rj ∈ [0, 1] is an information score measuring genotype certainty; the LDAK Model expects38

that higher-quality SNPs contribute more than lower-quality ones. rj is defined in Online Methods, where we also explain how (1) arises39

by assuming a genome-wide random regression in which SNP effect sizes are assigned Gaussian distributions.40

The “GCTA Model” is obtained from (1) by setting wj = 1 and rj = 1, and thus assumes that expected heritability does not41

vary with either LD or genotype certainty. To date, most reported estimates of h2SNP have used the GCTA Model with α = −1, which42

corresponds to the assumption that E[h2j ] is constant, and so the expected contribution of a SNP set depends only on the number of43

SNPs it contains.1 To appreciate the major difference between the GCTA and LDAK Models, consider a region containing two SNPs:44

under the GCTA Model, the expected heritability of these two SNPs is the same irrespective of the LD between them, whereas under the45

LDAK Model, two SNPs in perfect LD are expected to contribute only half the heritability of two SNPs showing no LD. See Figure 146

for a more detailed example.47

An alternative method for estimating h2SNP is LDSC (LD Score Regression).10 The LDSC Model expects that each SNP con-48

tributes equal heritability,10, 11 and therefore closely resembles the GCTA Model with α = −1. When applied to the same dataset,49

estimates from LDSC will typically have standard error 25-100% higher than those from GCTA;11 this is partly because the LDSC50

Model includes an extra parameter, designed to capture confounding biases, and partly because LDSC estimates are moment-based,51

whereas GCTA (like LDAK) uses restricted maximum likelihood (REML).12, 13 However, as LDSC requires only summary statistics52

(i.e., p-values from single-SNP analysis), it can be used on much larger datasets than GCTA and LDAK, which need raw genotype data,53

and can be applied to results from large-scale meta-analyses.10
54

SNP partitioning: (1) can be generalized by dividing SNPs into tranches across which the constant of proportionality is allowed to55

vary (so E[h2j ] = ck × [fj(1 − fj)]1+α × wj × rj for SNPs in Tranche k). This is known as SNP partitioning.6 Two examples are56

GCTA-MS14 and GCTA-LDMS:15 when applied to common SNPs (MAF > 0.01), GCTA-MS divides the genome into five tranches57

based on MAF, using the boundaries 0.1, 0.2, 0.3 and 0.4, while GCTA-LDMS first divides SNPs into four tranches based on local58

average LD Score,10 then divides each of these into five based on MAF, resulting in a total of 20 tranches. In general, we prefer to avoid59

SNP partitioning when estimating h2SNP, because it introduces (often arbitrary) discontinuities in the model assumptions and can cause60
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Estimates of h2
SNP (SD)

Collection Trait (Disease Prevalence, %) n m
∑∑∑m

j=1 wj h2
GWAS Previous LDAK

Welcome Trust
Case Control
Consortium 1
(WTCCC 1)

Bipolar Disorder (0.5) 1 840 + 2 913 3 729 K 79 K 0.02 0.24 (0.04)7 0.35 (0.03)

Coronary Artery Disease (6) 1 907 + 2 918 3 738 K 80 K 0.03 0.25 (0.06)7 0.40 (0.06)

Crohn’s Disease (0.5) 1 691 + 2 905 3 723 K 79 K 0.21 0.26 (0.01)16 0.32 (0.03)

Hypertension (5) 1 918 + 2 916 3 739 K 80 K <0.01 0.33 (0.06)7 0.46 (0.06)

Rheumatoid Arthritis (0.5) 1 846 + 2 918 3 735 K 80 K 0.19 0.09 (0.03)7 0.21 (0.03)

Type 1 Diabetes (0.5) 1 941 + 2 907 3 731 K 80 K 0.27 0.13 (0.03)7 0.31 (0.02)

Type 2 Diabetes (8) 1 896 + 2 917 3 735 K 80 K 0.08 0.42 (0.07)7 0.54 (0.07)

Welcome Trust
Case Control
Consortium 2
(WTCCC 2)

Barrett’s Oesophagus (1.6) 1 861 + 5 138 4 830 K 116 K <0.01 0.25 (0.05)17 0.32 (0.04)

Ischaemic Stroke (2) 3 769 + 5 139 4 797 K 115 K <0.01 0.25 (0.03)18 0.34 (0.03)

Parkinson’s Disease (0.2) 1 687 + 5 136 4 819 K 116 K 0.03 0.27 (0.05)19 0.20 (0.03)

Psoriasis (0.5) 2 267 + 5 143 4 814 K 116 K 0.21 0.35 (0.06)20 0.34 (0.02)

Schizophrenia (1) 2 068 + 2 615 3 481 K 111 K 0.07 0.23 (0.01)21 0.30 (0.04)

Ulcerative Colitis (0.2) 2 614 + 5 327 4 061 K 115 K 0.12 0.19 (0.01)16 0.28 (0.02)

Celiac Disease (1) 2 492 + 7 376 3 681 K 88 K 0.29 0.33 (0.04)22 0.35 (0.02)

WTCCC 2 + Multiple Sclerosis (0.1) 8 553 + 5 667 4 702 K 113 K 0.17 0.17 (0.01)7 0.24 (0.01)

Partial Epilepsy (0.3) 1 217 + 5 152 3 399 K 108 K <0.01 0.33 (0.05)3 0.27 (0.04)

RPTB Pulmonary Tuberculosis (4) 5 142 + 5 283 3 987 K 102 K <0.01 None Found 0.26 (0.03)

Blue Mountain Intraocular Pressure 2 235 4 149 K 125 K 0.02 None Found 0.38 (0.17)

CHOP Wide-Range Achievement Test 3 747 3 593 K 88 K <0.01 0.43 (0.10)23 0.21 (0.09)

Table 1: Properties of datasets and estimates of h2
SNP. n = sample size (cases + controls), m = number of SNPs,

∑m
j=1 wj = sum of

SNP weights which can be interpreted as an effective number of independent SNPs. All values are post quality control; values form and∑
wj are rounded to the nearest K (thousand). For UCLEB, m and

∑
wj refer to our main analysis, which considers only high-quality,

common SNPs. The final column provides our best estimates of h2SNP from common SNPs, computed using LDAK with α = −0.25

(see main text for explanation of α). For comparison, we include previously published estimates of h2SNP (note that the previous analyses
for rheumatoid arthritis, type 1 diabetes and multiple sclerosis excluded major histocompatibility SNPs, which we estimate contribute
0.07, 0.20 and 0.05, respectively), as well as h2GWAS, the proportion of phenotypic variance explained by SNPs reported as GWAS
significant (P < 5 × 10−8). For disease traits, estimates of h2SNP and h2GWAS have been converted to the liability scale assuming the
stated prevalence.

convergence problems. However, we show below that partitioning based on MAF enables reliable estimation of h2SNP when rare SNPs61

(MAF < 0.01) are included. Additionally, SNP partitioning provides a way to visually assess the fit of different heritability models;62

it allows us to estimate average h2j for different SNP tranches, which can then be compared to the values predicted under different63

assumptions.64

Datasets: In total, we analyze data for 42 traits. Table 1 describes the 19 “GWAS traits” (17 case-control, 2 quantitative). For these, in-65

dividuals were genotyped using either genome-wide Illumina or Affymetrix arrays (typically 500 K to 1.2 M SNPs). We additionally ex-66

amine data from eight cohorts of the UCLEB consortium,24 which comprise about 14 000 individuals genotyped using the Metabochip;25
67

(a relatively sparse array of 200 K SNPs selected based on previous GWAS) and recorded for a wide range of clinical phenotypes. From68

these, we consider 23 quantitative phenotypes (average sample size 8 200), which can loosely be divided into anthropomorphic (height,69

weight, BMI and waist circumference), physiological (lung capacity and blood pressure), cardiac (e.g., PR and QT intervals), metabolic70

(glucose, insulin and lipid levels) and blood chemistry (e.g., fibrinogen, Interleukin 6 and haemoglobin levels). In general, our quality71

control is extremely strict; after imputing using IMPUTE226 and the 1000 Genome Phase 3 (2014) reference panel,27 we retain only72

autosomal SNPs with MAF> 0.01 and information score rj > 0.99. We only relax quality control when, using the UCLEB data, we73

explicitly examine the consequences of including lower-quality and rare SNPs.74
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Figure 2: (a) Relationship between heritability and MAF. The parameter α specifies the assumed relationship between heritability
and MAF: in human genetics, α = −1 is typically used (solid blue line), while in animal and plant genetics, α = 0 is more common
(green); we instead found α = −0.25 (red) provides a better fit to real data. The gray bars report (relative) estimates of the per-SNP
heritability for MAF<0.1 and MAF>0.1 SNPs, averaged across the 19 GWAS traits (vertical lines provide 95% confidence intervals);
the dashed lines indicate the per-SNP heritability predicted by each α. (b) Determining best-fitting α for the GWAS traits. We
compare α based on likelihood; higher likelihood indicates better-fitting α. Lines report log likelihoods from LDAK for seven values of
α, relative to the highest observed. Line colors indicate the seven trait categories, while the black line reports averages.

Further details of our methods and datasets are provided in Online Methods. In particular, we explain how when estimating h2SNP75

we give special consideration to highly-associated SNPs, which we define as those with P <10−20 from single-SNP analysis, and how76

for the UCLEB data, we confirm that genotyping errors do not correlate with phenotype (which is important for the analyses where we77

include lower-quality SNPs).78

Relationship between heritability and MAF: Varying the value of α in (1) changes the assumed relationship between heritability79

and MAF; three example relationships are shown in Figure 2a. To determine suitable α, we analyze each of the 42 traits using seven80

values: −1.25,−1,−0.75,−0.5,−0.25, 0 and 0.25, seeing which lead to best model fit (highest likelihood). Full results are provided in81

Supplementary Figure 1 and Supplementary Table 2. First, to remove any confounding due to LD, we use only a pruned subset of SNPs82

(with wj = 1); next, we repeat without LD pruning (the results for the GWAS traits are shown in Figure 2b); finally, for the UCLEB83

traits, we repeat including lower-quality and rare SNPs. We find that model fit is typically highest for −0.5 ≤ α ≤ 0, whereas the most84

widely-used value, α = −1, reuslts in sub-optimal fit. On the basis that it performs consistently well across different traits and SNP85

filterings, we recommend that α = −0.25 becomes the default. This value implies that expected heritability declines with MAF; this is86

seen in Figure 2a which reports, averaged across the 19 GWAS traits, the (weight-adjusted) per-SNP heritability for low- and high-MAF87

SNPs (see Supplementary Figure 2 for further details).88

While α = −0.25 provides the best fit overall, for individual traits, optimal α may differ, and therefore we investigate sensitivity89

of h2SNP estimates to the value of α. Full results are provided in Supplementary Figures 3, 4 & 5, while Figure 6a provides a summary for90

the UCLEB traits. When analyzing only common SNPs, we find that changes in α have little impact on h2SNP. For example, across the91

23 UCLEB traits, estimates from high-quality common SNPs using α = −0.25 are on average only 5% (SD 4) lower than those using92

α = −1, and 4% (SD 4) higher than those using α = 0. However, this is no longer the case when rare SNPs are included in the analysis:93

for example, when the MAF threshold is reduced to 0.0005, estimates using α = −0.25 are on average 18% (SD 4) lower than those94

using α = −1 and 30% (SD 6) higher than those from α = 0. Therefore, when including rare SNPs, we guard against misspecification95

of α by partitioning based on MAF (with boundaries at 0.001, 0.0025, 0.01 and 0.1); we find that this provides stable estimates of h2SNP96

and also allows estimation of the relative contributions of rare and common variants (Figure 6a and Supplementary Figure 6).97
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Figure 3: (a) Relative estimates of h2SNP for the GWAS traits. h2SNP estimates from LDSC, GCTA-MS (SNPs partitioned by MAF),
GCTA-LDMS (SNPs partitioned by LD and MAF) and LDAK are reported relative to those from GCTA. For versions of GCTA and
LDAK, we use α = −0.25 (see main text for explanation of α). Line colors indicate the seven trait categories; the black line reports
the (inverse variance weighted) averages, with gray boxes providing 95% confidence intervals for these averages. Numerical values are
provided in Supplementary Table 3. (b) Simulation studies can be misleading. Phenotypes are simulated with 1000 causal SNPs and
h2SNP = 0.8 (black horizontal line), then analyzed using GCTA, GCTA-MS, GCTA-LDMS, LDAK and LDAK-MS (LDAK with SNPs
partitioned by MAF). Bars report average h2SNP across 200 simulated phenotypes (vertical lines provide 95% confidence intervals). Left:
copying the study of Yang et al.,1 causal SNP effect sizes are sampled from N(0, 1), similar to the GCTA Model. Right: causal SNP
effect sizes are sampled from N(0, wj), similar to the LDAK Model.

Relationship between heritability and LD: The LDAK Model assumes that heritability varies according to local levels of LD, whereas98

the GCTA Model assumes that heritability is independent of LD. First we demonstrate that choice of model matters when estimating99

h2SNP. For the GWAS traits, Figure 3a reports relative estimates of h2SNP from GCTA, GCTA-MS, GCTA-LDMS and LDAK (all using100

α = −0.25); see Supplementary Figure 7 for an extended version. We find that estimates based on the LDAK Model are on average 48%101

(SD 3) higher than estimates based on the GCTA Model. For the UCLEB traits, estimates from LDAK are on average 88% (SD 7) higher102

than those from GCTA (Supplementary Fig. 8). Figure 3a also includes results from LDSC, run as described in the original publication10
103

(see Supplementary Table 3 for numerical values). Estimates from LDSC are not significantly different to those from GCTA, which is to104

be expected considering that GCTA and LDSC assume the same relationship between heritability and LD. In Supplementary Figure 9 we105

consider alternative versions of LDSC (e.g., varying how LD Scores are computed, forcing the intercept term to be zero and excluding106

highly-associated SNPs). While changing settings can have a large impact, in all cases the average estimate of h2SNP from LDSC remains107

substantially below that from LDAK.108

A recent article which asserted that GCTA estimates h2SNP more accurately than LDAK, based this claim on a simulation study in109

which causal SNPs were assigned effect sizes from the same Gaussian distribution, irrespective of LD.6 This resembles the GCTA Model110

but not the LDAK Model, and so it is no surprise that GCTA performed better. Figure 3b shows that if instead effect size variances had111

been scaled by SNP weights, and so vary with LD similar to the LDAK Model, then the study would have found LDAK to be superior112

to GCTA. Thus using simulations to compare different heritability models is problematic, because the conclusions will depend on the113

assumptions used when generating phenotypes. See Supplementary Figure 10 for a full reanalysis of the reported simulation study and114

Supplementary Figure 11 for further simulations.115

Rather than using simulations, we compare LDAK and GCTA empirically. Supplementary Table 4 shows that when α = −0.25,116

assuming the LDAK Model leads to higher likelihood than assuming the GCTA Model for all 19 GWAS traits and for 17 of the 23117

UCLEB traits (if we instead use α = −1, likelihood is higher under the LDAK Model for 31 of the 42 traits). To visually demonstrate118

the superior fit of the LDAK Model, we partition SNPs into low- and high-LD (for this, we rank SNPs according to the average LD119

Score10 of non-overlapping 100 kb segments, the metric used by GCTA-LDMS15). First, we partition so that the two tranches contain an120
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Figure 4: Comparing the GCTA and LDAK Models for the GWAS traits: We partition SNPs into low- or high-LD, with the low-LD
tranche containing either 50% (left) or 25% (right) of SNPs. For each partition, the horizontal red and black lines indicate the predicted
contribution of the low-LD tranche to h2SNP under the GCTA and LDAK Models, respectively. Vertical lines provide point estimates and
95% confidence intervals for the contribution of the low-LD tranche to h2SNP, estimated assuming the GCTA Model. Line colors indicate
the seven trait categories, while the black lines provide the (inverse variance weighted) averages.

equal number of SNPs. The left half of Figure 4b reports, for each of the GWAS traits, the contribution of the low-LD tranche, estimated121

using the GCTA Model (with α = −0.25). Under the GCTA Model, the low-LD tranche is expected to contribute 50% of h2SNP; under122

the LDAK Model, it is expected to contribute 72% of h2SNP. We see that the estimated contribution of the low-LD tranche is consistent123

with the GCTA Model (95% confidence interval includes 50%) for only 5 of the 19 traits, whereas it is consistent with the LDAK Model124

(confidence interval includes 72%) for 18. Next we partition so that the low-LD tranche contains a quarter of the SNPs; now the low-LD125

tranche is predicted to contribute 26% of h2SNP under the GCTA Model, but 47% of h2SNP under the LDAK Model. The right half of126

Figure 4b shows that its estimated contribution is consistent with the GCTA Model for only 7 of the 19 traits, but again consistent with127

the LDAK Model for 18. Additional results are provided in Supplementary Figure 12; these show that regardless of whether we estimate128

heritabilities using LDAK (rather than GCTA), whether we use α = −1 (instead of α = −0.25) or whether we analyze the UCLEB129

traits, it remains the case that the LDAK Model better predicts the heritability contribution of each tranche than the GCTA Model.130

Relationship between heritability and genotype certainty: The LDAK Model assumes that SNP heritability contributions vary with131

genotype certainty (measured by the information score rj). So far, our analyses have used only very high-quality SNPs (rj > 0.99), so132

this assumption has been redundant. Now we also include lower-quality common SNPs; we focus on the UCLEB traits, as for these we133

were able to test for correlation between genotyping errors and phenotype (Supplementary Fig. 13). Supplementary Table 5 compares134

model fit with and without allowance for genotype certainty; it shows that including rj in the heritability model tends to provide a modest135

improvement in model fit, resulting in a higher likelihood for 18 out of 23 traits.136

Estimates of h2
SNP for the GWAS traits: Table 1 presents our final estimates of h2SNP for the 19 GWAS traits, obtained using the LDAK137

Model (with α = −0.25). For comparison, we include previously-reported estimates of h2SNP, as well as the proportion of phenotypic138

variance explained by SNPs reported as genome-wide significant (see Supplementary Table 6). For the disease traits, estimates are on139

the liability scale, obtained by scaling according to the observed case-control ratio and (assumed) trait prevalence.28, 29 We are unable to140

find previous estimates of h2SNP for tuberculosis or intraocular pressure, indicating that for these two traits, we are the first to establish141

that common SNPs contribute sizable heritability. Extended results are provided in Supplementary Table 7. These show that our final142

estimates of h2SNP are on average 43% (SD 3) and 25% (SD 2) higher than, respectively, those obtained using the original versions (i.e.,143

with α = −1) of GCTA30 and GCTA-LDMS.15
144
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Figure 5: Enrichment of SNP Classes. Block 1 reports the contributions to h2SNP of DNaseI hypersensitivity sites (DHS), estimated
under the GCTA Model with α = −1 (see main text for explanation of α). The vertical lines provide point estimates and 95% confidence
intervals for each trait, and for the (inverse variance weighted) average; for 3 of the traits, the point estimate is above 100%, as was also
the case for Gusev et al.7 Block 2 repeats this analysis, but now assuming the LDAK Model with α = −0.25. Blocks 3 & 4 estimate the
contribution of “genic SNPs” (those inside or within 2 kb of an exon) and “inter-genic SNPs” (further than 125 kb from an exon), again
assuming the LDAK Model with α = −0.25. To assess enrichment, estimated contributions are compared to those expected under the
GCTA or LDAK Model, as appropriate (horizontal lines).

Role of DNaseI hypersensitivity sites (DHS): Gusev et al.7 used SNP partitioning to assess the contributions of SNP classes defined by145

functional annotations. Across 11 diseases they concluded that the majority of h2SNP was explained by DHS, despite these containing less146

than 20% of all SNPs. For Figure 5, we perform a similar analysis using the 10 traits we have in common with their study (for 9 of these,147

we are using the same data). When we copy Gusev et al. and assume the GCTA Model with α = −1, we estimate that on average DHS148

contribute 86% (SD 4) of h2SNP, close to the value they reported (79%). When instead we assume the LDAK Model (with α = −0.25),149

the estimated contribution of DHS reduces to 25% (SD 2). Under the LDAK Model, DHS are predicted to contribute 18% of h2SNP so150

25% represents 1.4-fold enrichment. To add context, we also consider “genic” SNPs, which we define as SNPs inside or within 2 kb of151

an exon (using RefSeq annotations31), and “inter-genic,” SNPs further than 125 kb from an exon; these definitions ensure that these two152

SNP classes are also predicted to contribute 18% of h2SNP under the LDAK Model. We estimate that genic SNPs contribute 29% (SD153

2), while inter-genic SNPs contribute 10% (SD 2), representing 1.6-fold and 0.6-fold enrichment, respectively. When we extend this154

analysis to all 42 traits, DHS on average contribute 24% (SD 2) of h2SNP, and in contrast to Gusev et al., enrichment remains constant155

when we reduce SNP density (Supplementary Fig. 14 & 15 and Supplementary Table 8).156

Finucane et al.32 performed a similar analysis, but considered 52 SNP classes and estimated enrichment using LDSC; across nine157

traits, they identified five classes with >4-fold enrichment, the highest of which, “conserved SNPs,” had 13-fold enrichment. When we158

use LDAK to estimate enrichment for our 19 GWAS traits, the results are more modest; the highest enrichment is 2.5-fold, with only159

1.3-fold enrichment for conserved SNPs (Supplementary Fig. 16).160

Relaxing quality control: For the UCLEB data, we consider nine alternative SNP filterings. Supplementary Figure 17 reports estimates161

of h2SNP for each trait / filtering, while Figure 6a provides a summary. First we vary the information score threshold: rj > 0.99, > 0.95,162

> 0.9, > 0.6, > 0.3 and > 0 (each time continuing to require MAF> 0.01). Simulations suggest that by including all 8.8 M common163

SNPs (rj > 0), instead of using just the 353 K high-quality ones (rj > 0.99), we can expect estimates of h2SNP to increase by 50-60%164

(Supplementary Fig. 18). This is similar to what we observe in practice, as across the 23 traits, estimates of h2SNP (using α = −0.25)165

are on average 45% (SD 8) higher. The simulations further predict that, even though the Metabochip provides relatively low coverage166

of the genome (after quality control, it contains only 60 K SNPs, predominately within genes), we can expect estimates of h2SNP to be167

approximately 80% as high as those obtained starting from genome-wide genotyping arrays. While we are unable to test this claim168

directly, it is consistent with our results for height, body mass index and QT Interval, the three traits for which reasonably precise169
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Figure 6: Varying quality control for the UCLEB traits. We consider three SNP filterings: 353 K high-quality common SNPs
(information score > 0.99, MAF> 0.01), 8.8 M common SNPs (MAF> 0.01) and all 17.3 M SNPs (MAF> 0.0005). (a) Blocks
indicate SNP filtering; bars report (inverse variance weighted) average estimates of h2SNP using LDAK (vertical lines provide 95%
confidence intervals). Bar color indicates the value of α used. For Blocks 1, 2 & 3, h2SNP is estimated using the non-partitioned model.
For Block 4, SNPs are partitioned by MAF; we find this is necessary when rare SNPs are included, and also allows estimation of the
contribution of MAF< 0.01 SNPs (hatched areas). (b) bars report our final estimates of h2SNP for height, body mass index and QT
interval, the three traits for which common SNP heritability has been previously estimated with reasonable precision6 (orange lines mark
the 95% confidence intervals from these previous studies). Bar colors now indicate SNP filtering; all estimates are based on α = −0.25,
using either a non-partitioned model (red and blue bars) or with SNPs partitioned by MAF (purple bars).

estimates of common SNP h2SNP are available6 (Figure 6b). For the final three SNP filterings, we vary the MAF threshold: MAF170

> 0.0025, MAF > 0.001 and MAF > 0.0005 (all with rj > 0). Across the 23 traits, we find that rare SNPs contribute substantially to171

h2SNP: for example, when we use the 17.3 M SNPs with MAF >0.0005, estimates of h2SNP (using α = −0.25 and MAF partitioning) are172

on average 29% (SD 12) higher than those based on the 8.8 M common SNPs (median increase 22%), with rare SNPs contributing on173

average 33% (SD 5) of h2SNP (Figure 6a).174

Discussion175

With estimates of h2SNP so widely reported, it is easy to forget that calculating the variance explained by large numbers of SNPs is176

a challenging problem. To avoid over-fitting, it is necessary to make strong prior assumptions about SNP effect sizes, but different177

assumptions can lead to substantially different estimates of h2SNP. Previous attempts to assess the validity of assumptions have used178

simulation studies,14, 15 but this approach will tend to favor assumptions similar to those used to generate the phenotypes. Instead, we179

have compared different heritability models empirically, by examining how well they fit real datasets.180

We begun by investigating the relationship between heritability and MAF. Across 42 traits, we found that best fit was achieved181

by setting α = −0.25 in (1), which implies that average heritability varies with [MAF(1−MAF)]0.75. As explained in Online Methods,182

the value of α corresponds to the scaling of genotypes. Therefore, our result indicates that the performance (i.e., detection power and/or183

prediction accuracy) of many penalized and Bayesian regression methods, for example, the Lasso, ridge regression and Bayes A,33–35
184

could be improved simply by changing how genotypes are scaled. Although we recommend α = −0.25 as the default value, with185

sufficient data available, it should be possible to estimate α on a trait-by-trait basis, or to investigate more complex relationships between186

heritability and MAF. In particular, with a better understanding of the relationship between heritability and MAF for low frequencies, it187

may no longer be necessary to partition by MAF when rare SNPs are included.188

We also examined the relationship between heritability and LD. To date, most estimates of h2SNP have been based on the GCTA189
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Model; this model can be motivated by a belief that each SNP is expected to have the same effect on the phenotype, from which it190

follows that the expected heritability of a region should depend on the number of SNPs it contains. By contrast, the LDAK Model views191

highly-correlated SNPs as tagging the same underlying variant, and therefore believes that the expected heritability of a region should192

vary according to the total amount of distinct genetic variation it contains. Across our traits, we found that the relationship between193

heritability and LD specified by the LDAK Model consistently provides a better description of reality.194

This finding has important consequences for complex trait genetics. Firstly, it implies that for many traits, common SNPs195

explain considerably more phenotypic variance than previously reported, which represents a significant advance in the search for missing196

heritability.2 It also impacts on a large number of closely-related methods. For example, LDSC,10 like GCTA, assumes that heritability197

contributions are independent of LD and therefore it also tends to under-estimate h2SNP. Similarly, we have shown that estimates of198

the relative importance of SNP classes via SNP partitioning can be misleading when the GCTA Model is assumed.7, 32 Further afield,199

most software for mixed model association analyses (e.g., FAST-LMM, GEMMA and MLM-LOCO) use an extension of the GCTA200

Model,36–38 and likewise most bivariate analyses, including those performed by LDSC.8, 39, 40 It remains to be seen how much these201

methods would be affected if they employed more realistic heritability models.202

Attempts have been made to improve the accuracy of heritability models via SNP partitioning.14, 15, 41 We find that partitioning by203

MAF can be advantageous, as it guards against misspecification of the relationship between heritability and MAF when rare variants are204

included. Figure 3a and Supplementary Figure 7 indicate that the realism of the GCTA Model can be improved by partitioning based on205

LD; for example, across the GWAS traits, estimates from GCTA-LDMS are on average 16% (SD 2) higher than those from GCTA, and206

now only 23% (SD 2) lower than those from LDAK. The improvement arises because model misspecification is reduced by allowing207

SNPs in lower-LD tranches to have higher average heritability. However, Supplementary Table 9 illustrates why we consider such an208

approach sub-optimal; in particular, SNP partitioning can be computationally expensive, and even with LD-partitioning, model fit tends209

to be worse than that from LDAK.210

While we have investigated the role of MAF, LD and genotype certainty, there remain other factors on which heritability could211

depend, in particular the available functional annotations of genomes.42 For example, our comparison of genic and inter-genic SNPs212

indicates that the effect-size prior distribution could be improved by taking into account proximity to coding regions. By way of demon-213

stration, Supplementary Table 10 shows that model fit is improved by assuming E[h2j ] ∝ [fj(1− fj)]1+α × wj × rj × exp(
−(Dj+50)

500 ),214

where Dj is the distance (in kb) between SNP j and the nearest exon (under this model, genic SNPs are expected to have about twice215

the heritability of inter-genic SNPs). In general, we believe that modifications of this type will have a relatively small impact; we note216

that across the 19 GWAS traits, scaling by exp(
−(Dj+50)

500 ) increases model log likelihood by on average only 1.5, much less than the217

average increase obtained by using α = −0.25 instead of α = −1 (8.9), or by choosing the LD-model specified by LDAK instead of218

GCTA (17.7), and does not significantly change estimates of h2SNP. However, with sufficient data, it may be possible to obtain more219

substantial improvement by tailoring model assumptions to individual traits.220

When estimating h2SNP, care should be taken to avoid possible sources of confounding. Previously, we advocated a test for221

inflation of h2SNP due to population structure and familial relatedness.3 The conclusions of a recent paper claiming that h2SNP estimates222

are unreliable,43 would have changed substantially had this test been applied (Supplementary Fig. 19). We also recommend testing for223

inflation due to genotyping errors, particularly before including lower-quality and/or rare SNPs. For the 23 UCLEB traits, we showed224

that including poorly-imputed SNPs resulted in significantly higher estimates of h2SNP, and made it possible to capture the majority225

of genome-wide heritability despite the very sparse genotyping provided by the Metabochip. We found that including rare SNPs also226

led to significantly higher h2SNP. Although sample size prevented us from obtaining precise estimates of h2SNP for individual traits, our227

analyses indicated that for larger datasets, including rare SNPs will be both practical and fruitful in the search for the remaining missing228

heritability.2229
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Online Methods245

Supplementary Note 1 summarizes the different analyses we performed, and the conclusions we drew from each, while Supplementary246

Protocol 1 provides step-by-step instructions for estimating h2SNP starting from raw genotype data. In general, we assume there are n247

individuals, recorded for p covariates and genotyped (either directly or via imputation) for m SNPs: the length-n vector Y contains248

phenotypic values, the n× p matrix Z contains covariates, while the n×m matrix S contains (expected) allele counts.249

Information score rj: Let the vector Sj = (S1,j , . . . , Sn,j)
T ∈ [0, 2]n, denote the allele counts for SNP j (i.e., Sj is Column j of S).

Our information score rj estimates the squared correlation between Sj and Gj = (G1,j , . . . , Gn,j)
T ∈ {0, 1, 2}n, the true genotypes

for SNP j. When using imputed data, Gj is typically not known; instead for each individual we have a triplet of state probabilities
(pi,j,0, pi,j,1, pi,j,2), where pi,j,g = P(Gi,j = g) and pi,j,0 + pi,j,1 + pi,j,2 = 1. Therefore, we define rj by taking expectations over the
3n possible realizations of Gj .

rj =
E
[∑n

i=1(Si,j − S̄j)(Gi,j − Ḡj)
]2(∑n

i=1(Si,j − S̄j)2
)
E
[∑n

i=1(Gi,j − Ḡj)2
] , where S̄j =

1

n

n∑
i=1

Si,j and Ḡj =
1

n

n∑
i=1

Gi,j .

Sj is known, so computing
∑n
i=1(S − S̄j)2 is straightforward. The two expectations can also be calculated explicitly:250

E
[∑n

i=1(Si,j − S̄j)(Gi,j − Ḡj)
]

=
∑
i(Sj − S̄j)E[Gj − µ] =

∑
i(Sj − S̄j)(pi,1 + 2pi,2 − µ)251

E
[∑

i(Gj − Ḡj)2
]

=
∑
i E
[
(Gj − µ)2

]
=
∑
i

[
pi,j,0(−µ)2 + pi,j,1(1− µ)2 + pi,j,2(2− µ)2

]
,252

where µ = E[Ḡj ] = 1
n

∑
i(pi,j,1 + 2pi,j,2). For our analyses, we use expected allele counts (dosages), so Si,j = pi,j,1 + 2pi,j,2. In this253

case, E
[∑n

i=1(Si,j − S̄j)(Gi,j − Ḡj)
]

=
∑n
i=1(Si, j − S̄j)2 and so the score reduces to rj =

∑n
i=1(Si,j − S̄j)2/

∑n
i=1(Gi,j − Ḡj)2.254

For a directly genotyped SNP, each triplet of state probabilities will be (1,0,0), (0,1,0) or (0,0,1), which will result in Si,j = Gi,j for all255

i and rj = 1; so for these, in place of rj , we use the metric r2 type0 reported by IMPUTE2.26 Additional details on our information256

score are provided in Supplementary Figure 20.257

Estimating h2
SNP: We first construct the n×m genotype matrixX , by centering and scaling the allele counts for each SNP according258

to Xi,j = (Si,j−2fj)× [2fj(1−fj)]α/2, where fj =
∑
i Si,j/2n. If wj and rj denote the LD weight9 and information score for SNP j,259
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then the LDAK Model for estimating SNP heritability h2SNP = σ2
g/(σ

2
g+σ2

e) is:260

Yi =

p∑
k=1

θkZi,k +
m∑
j=1

βjXi,j + ei, with βj ∼ N(0, rjwjσ
2
g/W ), ei ∼ N(0, σ2

e) and W =
m∑
j=1

rjwj [2fj(1−fj)]1−α. (2)

θk denotes the fixed-effect coefficient for the kth covariate, βj and ei are random-effects indicating the effect size of SNP j and the261

noise component for Individual i, while σ2
g and σ2

e are interpreted as genetic and environmental variances, respectively. Note that the262

introduction of rj is an addition to the model we proposed in 2012.9 Model (2) is equivalent to assuming:45, 46
263

Y ∼ N(Zθ,Kσ2
g + Iσ2

e), with K =
XΩXT

W
, (3)

where I is an n × n identity matrix and Ω denotes a diagonal matrix with diagonal entries (r1w1, . . . , rmwm). The kinship matrix K,264

also referred to as a genetic relationship matrix (GRM)1 or genomic similarity matrix (GSM),47 consists of average allelic correlations265

across the SNPs (adjusted for LD and genotype certainty). Model (3) is typically solved using REstricted Maximum Likelihood (REML),266

which returns estimates of θ1, . . . , θp, σ2
g and σ2

e .12
267

The heritability of SNP j can be estimated by h2j = β2
j Var(Xj)/Var(Y ), which under Model (2), and assuming Hardy-Weinberg268

Equilibrium,48, 49 has expectation269

E[h2j ] =
E[β2

j ]× Var(Xj)

Var(Y )
=
rjwjσ

2
g/W × [2fj(1−fj)]1+α

Var(Y )
. (4)

If P1 and P2 index two sets of SNPs of size |P1| and |P2|, then under the LDAK Model, they are expected to contribute heritability in270

the ratio W1 : W2, where Wl =
∑
j∈Pl

rjwj [2fj(1−fj)]1−α. The GCTA Model corresponds to setting wj = rj = 1, in which case271

Wl =
∑
j∈Pl

[2fj(1−fj)]1−α. Most applications of GCTA have further assumed α = −1, so that Wl = |Pl|, which corresponds to the272

assumption that SNP sets are expected to contribute heritability proportional to the number of SNPs they contain.273

Model (2) assumes that all effect-sizes can be described by a single prior distribution. This assumption is relaxed by SNP274

partitioning. Suppose that the SNPs are divided into tranches P1, . . . , PL of sizes |P1|, . . . , |PL|; typically these will partition the275

genome, so that each SNP appears in exactly one tranche and
∑
l |Pl| = m, but this is not required. This correspond to generalizing276

Model (2), so that SNPs in Tranche l have effect-size prior distribution βj ∼ N(0, rjwjσ
2
l /Wl). Letting Σ = σ2

1 + . . . + σ2
L, then277

h2SNP = Σ/(Σ + σ2
e), while σ2

l /Σ represents the contribution to h2SNP of SNPs in Tranche l. This model can equivalently be expressed278

as Y ∼ N(Zθ,K1σ
2
1 + . . .+KLσ

2
L + Iσ2

e), whereKl represents allele correlations across the SNPs in Tranche l.279

For analyses under the LDAK Model, we used LDAK v.5; for analyses under the GCTA Model, we used GCTA v.1.26. For about280

a third of GCTA-LDMS analyses, the GCTA REML solver failed with the error “information matrix is not invertible,” in which case281

we rerun using LDAK (while the GCTA and LDAK solvers are both based on Average Information REML,30, 50 subtle differences mean282

that when using a large number of tranches, one might complete while the other fails). For the few occasions when both solvers failed,283

we instead used “GCTA-LD” (i.e., SNPs divided only by LD, rather than by LD and MAF), which we found gave very similar results284

to GCTA-LDMS for traits where both completed (Supplementary Fig. 7). For diseases, we converted estimates of h2SNP to the liability285

scale based on the observed case-control ratio and assumed prevalence.28, 29 In general, we copied the prevalences used by previous286

studies; however for tuberculosis, where no previous estimate of h2SNP is available, we derived an estimate of prevalence from World287

Health Organization data51 (Supplementary Note 2).288

LDSC: Originally designed as a way to quantify confounding in a GWAS, LDSC10 also provides a method for estimating h2SNP, which289

requires only summary statistics from single-SNP analysis (rather than raw genotype and phenotype data). LDSC is based on the290

principal that in a single-SNP analysis, the χ2(1) test statistic for SNP j has expected value E[χ2
j ] = 1 + nh2j + n

∑
k 6=j r

2
j,kh

2
k +291

naj , where r2j,k denotes the squared correlation between SNPs j and k, while aj represents bias due to confounding factors (e.g.,292

population structure and familial relatedness).10 Under a polygenic model where every SNP is expected to contribute equally (i.e.,293

E[h2j ] = h2SNP/m), and the (widely-used) assumption that the bias is constant across SNPs (aj = a), we have E[χ2
j ] = 1+nljh

2
SNP/m+294
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na, where lj = 1 +
∑
k 6=j r

2
j,k is referred to as the LD Score of SNP j (as it is not feasible to compute pairwise correlations across295

all SNPs, in practice these are approximated using a sliding window of, say, 1 centiMorgan). Therefore, LDSC estimates h2SNP and a296

by regressing test statistics on LD Scores. In the absence of confounding (a = 0), LDSC can be viewed as estimating h2SNP under297

the GCTA Model with α = −1 (as this satisfies the assumption that every SNP is expected to contribute equal heritability). As the298

authors of LDSC point out,10 it is straightforward to accommodate alternative relationships between E[h2j ] and MAF (i.e., α 6= −1) by299

changing how genotypes are scaled when computing LD Scores, and potentially genotype certainty could be accommodated. However,300

the similarity with the GCTA Model appears intrinsic to LDSC; while the assumption that heritability is independent of LD can be301

relaxed via SNP partitioning,41 we can not envisage how the method could be modified to accommodate the LDAK SNP weights. For302

LDSC analyses, we used LDSC v.1.0.0 both for calculating LD Scores and estimating h2SNP.303

Accommodating very large effect loci: Equation (2) assumes that all SNP effect sizes can be modeled by a single Gaussian distribution.304

Estimates are generally robust to violations of this assumption,9 but problems can occur when individual SNPs have very large effect305

sizes, because a single Gaussian distribution cannot accommodate both these SNPs and the very many with small effect sizes. This is a306

common concern when analyzing autoimmune traits for which the major histocompatibility complex (MHC) can contribute substantial307

heritability. In response to this problem, some authors exclude MHC SNPs from analyses.7, 30, 52, 53 Another approach is to model effect308

sizes as a mixture of Gaussians,35, 54 but this is not computationally feasible for millions of SNPs and many thousands of individuals.309

Therefore, our proposed strategy is to first identify SNPs with P < 10−20 from single-SNP analysis, to prune these using a correlation310

squared threshold of 0.5, then to include those which remain as fixed-effect covariates. Thus in place of Equation (3), we assume311

Y ∼ N(Zθ + Tφ,Kσ2
g + Iσ2

e), where columns of the matrix T contain allele counts of the highly-associated SNPs (i.e., T is a312

submatrix of S), and the vector φ represents their effect sizes. In contrast to standard (non-SNP) covariates, the variance explained by313

T counts towards SNP heritability: h2SNP = (σ2
g + σ2

T )/(σ2
g + σ2

T + σ2
e), where σ2

T = (Tφ)T (Tφ). Supplementary Figures 21 & 22314

provides further details. In particular, we appreciate that our definition of highly-associated is somewhat arbitrary, so we confirm that315

estimates of h2SNP are almost unchanged if instead we use P < 5× 10−8.316

Datasets and phenotypes: When searching for GWAS datasets, we preferred those with sample size at least 4 000 to ensure reasonable317

precision of h2SNP.55 In total, our datasets were constructed from 40 independent cohorts, all of which have been previously described318

(see Supplementary Tables 11 & 12 for references and details of how cohorts were merged to form datasets). For the UCLEB data, there319

were in total 28 quantitative traits with measurements recorded for at 7 000 individuals. For each of these, we quantile normalized, then320

applied a test for inflation due to genotyping errors (Supplementary Fig. 13). Specifically, our test, inspired by Bhatia et al.56 and valid321

for quantitative phenotypes where individuals are recruited from multiple cohorts, first estimates h2SNP using only pairs of individuals322

in different cohorts, then using only pairs of individuals in the same cohort; a significant difference between the two estimates indicates323

possible inflation due to genotyping errors. We excluded five traits that showed evidence of inflation (P < 0.05/28), leaving us with 23:324

height, weight, body mass index, waist circumference, forced vital capacity, one second forced vital capacity, systolic blood pressure325

(adjusted), diastolic blood pressure (adjusted), PR Interval, QT Interval, Corrected QT Interval, QRS Voltage Product, Sokolow Lyon,326

glucose, insulin, total cholesterol (adjusted), LDL cholesterol (adjusted), triglyceride (adjusted), viscosity, fibrinogen, Interleukin 6,327

C-reactive Protein and haemoglobin. Approximately 40% of individuals were receiving medication to reduce blood pressure, 25% to328

reduce lipid levels, so where indicated, phenotypes had been adjusted for this: for individuals on medication, their raw measurements329

had been increased either by adding on (blood pressure) or scaling by (lipid levels) a constant.57, 58 We note that some pairs of traits are330

highly correlated. However, as the overall correlation is not that extreme (we estimate the effective number of independent traits to be331

about 15), and most of our UCLEB analyses serve to support conclusions drawn from the GWAS traits, we decide to retain all 23 traits332

(rather than, say, consider only a subset). See Supplementary Note 3 for further details on phenotyping.333

Quality control: We processed each of the 40 cohorts in identical fashion; see Supplementary Note 4 for full details. In summary,334

after excluding apparent population outliers, samples with extreme missingness or heterozygosity, and SNPs with MAF< 0.01, call-335

rate< 0.95 or P < 10−6 from a test for Hardy-Weinberg Equilibrium, we imputed using IMPUTE226 and the 1000 Genome Phase 3336

(2014) Reference Panel.27 When merging cohorts to construct the GWAS datasets, we retained only autosomal SNPs which in all cohorts337

have MAF>0.01 and rj>0.99 (using IMPUTE2 r2 type2 in place of rj for directly genotyped SNPs). For the 8 UCLEB cohorts, we338
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applied these filters only after merging. We only relax quality control for the analyses of the UCLEB data where we explicitly examine339

the consequences of including lower-quality and rare SNPs. When possible, the matrix S contains expected allele counts (dosages); i.e.,340

Si,j = pi,j,1 + 2 × pi,j,2, where pi,j,1 and pi,j,2 denote the probabilities of allele counts 1 and 2, respectively. If hard genotypes are341

required, for example when using LDSC to compute LD Scores,10 we round Si,j to the nearest integer. As this was only necessary when342

considering high-quality SNPs (rj > 0.99), we expect this rounding to have negligible impact on results. For each trait, Table 1 reports343

m, the total number of SNPs after imputation, and
∑m
j=1 wj , the sum of SNP weights; the aim of these weights is to remove duplication344

of signal due to LD and their sum can loosely be interpreted as an effective number of independent SNPs. For the GWAS datasets,
∑
wj345

ranges from 79 K to 125 K. By contrast, when restricted to only high-quality SNPs, the UCLEB data has
∑
wj = 39 K, reflecting that346

the Metabochip directly captures a much smaller amount of genetic variation than standard genome-wide SNP arrays.347

When analyzing quantitative traits, genotyping errors will tend only to be a concern when there are systematic differences between348

phenotypes across cohorts, and this is something we are able to explicitly test (Supplementary Fig. 13). However, for disease traits, when349

cases and controls have been genotyped separately (as is the design of most of our GWAS datasets), any errors will almost certainly350

correlate with phenotype and therefore cause inflation of h2SNP.9, 29 To test the effectiveness of our quality control for the GWAS traits,351

we construct a pseudo case-control study using two control cohorts; we confirm that the resulting estimate of h2SNP is not significantly352

greater than zero, suggesting that the quality control steps we use for the GWAS datasets are sufficiently strict (Supplementary Note 5).353

Accurate estimation of h2SNP requires samples of unrelated individuals with similar ancestry. Prior to imputation, we removed354

ethnic outliers identified through principal component analyses (Supplementary Fig. 23). Post imputation, we computed (unweighted)355

allelic correlations using a pruned set of SNPs, then filtered individuals so that no pair remained with correlation greater than c, where356

−c is the smallest observed pairwise correlation (c ranges from 0.029 to 0.038, depending on dataset). For our datasets, this filtering357

excluded relatively few individuals (on average 3.8%, with maximum 11.6%). For all analyses, we include a minimum of 30 covariates:358

the top 20 eigenvectors from the allelic correlation matrix just described, and projections onto the top 10 principal components computed359

from 1000 Genomes samples.27 For the 19 GWAS traits, we also include sex as a covariate, while for intraocular pressure and wide range360

achievement test scores, we additionally include age. Supplementary Figure 24 reports the proportion of phenotypic variance explained361

by each covariate. To check our filtering and covariate choices, we estimate the inflation of h2SNP due to population structure and residual362

relatedness3 (Supplementary Fig. 19). For the GWAS traits, we estimate that on average h2SNP estimates are inflated by at most 3.1%,363

with the highest observed for ischaemic stroke (7.1%). For the 23 UCLEB traits, the average inflation is 0.3% (highest 2.3%).364

Single-SNP analysis: Supplementary Figure 25 provides Manhattan Plots from logistic (case-control traits) and linear regression (quan-365

titative traits), performed using PLINK v.1.9. These analyses provide the summary statistics required by LDSC. For the GWAS traits,366

we identified highly-associated SNPs (P < 10−20) within the MHC for 6 of the GWAS traits (rheumatoid arthritis, type 1 diabetes,367

psoriasis, ulcerative colitis, celiac disease and multiple sclerosis), while rs2476601, a SNP within PTPN22, is highly associated with368

both rheumatoid arthritis and type 1 diabetes.59, 60 For the UCLEB traits, we find highly associated SNPs within SCN10A (PR Interval),369

APOE (total cholesterol, LDL cholesterol and C-reactive protein) and ZPR1 (triglyceride levels). For heritability analysis, these SNPs370

were pruned, then included as additional fixed-effect covariates as described above.371

Computational requirements: The most time-consuming aspect of analysis was genotype imputation; for a typically-sized cohort372

(∼3 000 individuals) this took approximately one CPU-year (i.e., a few days on a 100-node cluster). Next is computation of SNP373

weights, which for the GWAS traits (∼4 M SNPs) took approximately one CPU-month (again, this can be near-perfectly parallelized).374

Finally, solving the mixed-model via REML would take between a few minutes for the smaller traits (∼5 000 individuals) and a few hours375

for the largest (∼14 000 individuals). Memory-wise, the most onerous task is solving the mixed-model, for which memory demands376

scale with n2; however, even for the largest dataset, this was less than 5 Gb (when using multiple kinship matrices, LDAK allows for377

these to be read on-the-fly, so that the memory demands are no higher than when using only one).378
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