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Abstract

Cognitive tasks recruit multiple brain regions. Understanding how
these regions influence each other (the network structure) is an important
step to characterize the neural basis of cognitive processes. Often, lim-
ited evidence is available to restrict the range of hypotheses a priori, and
techniques that sift efficiently through a large number of possible network
structures are needed (network discovery). This article introduces a novel
modeling technique for network discovery (Dynamic Network Modeling or
DNM) that builds on ideas from Granger Causality and Dynamic Causal
Modeling introducing three key changes: 1) regularization is exploited for
efficient network discovery, 2) the magnitude and sign of each influence
are tested with a random effects model across participants, and 3) vari-
ance explained in independent data is used as an absolute (rather than
relative) measure of the quality of the network model. In this article, we
outline the functioning of DNM and we report an example of its appli-
cation to the investigation of influences between regions during emotion
recognition. Across two experiments, DNM individuates a stable set of
influences between face-selective regions during emotion recognition.

New and Noteworthy

In this article we introduce a new analysis method (Dynamic Network Mod-
elling or DNM) which exploits ¢; regularization to perform efficient for network
discovery. DNM provides information about the direction and sign (inhibitory
vs excitatory) of influences between brain regions, and generates measures of
variance explained in independent data to evaluate quality of fit. The method is
applied to brain regions engaged in emotion recognition, individuating a similar
network structure across two separate experiments.

1 Introduction

When we perform a task, such as recognizing a face, attributing mental states to
others, or understanding a sentence, multiple brain regions are engaged (Ishai
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[2008], |Gallagher and Frith| [2003], [Fedorenko and Thompson-Schilll [2014]).
Studying how these brain regions influence each other is an important step
to understand the neural mechanisms underlying task performance. Influences
between brain regions can be specific to the particular task a participant is per-
forming. For example, face-selective brain regions might influence each other
more when we recognize a face than when we recognize a scene. For this reason,
we need a method that goes beyond measuring the presence of anatomical con-
nections between regions, and to investigate the relations between the regions’
responses in the context of a specific experimental paradigm.

The direction of an influence can convey information about its function. For
example, an influence from the ventral visual stream to prefrontal cortex is
likely to convey bottom-up perceptual information to categorization and deci-
sion processes, while an influence from prefrontal cortex to the ventral visual
stream is more likely to affect visual processing via top-down attentional selec-
tion(Buschman and Miller| [2007]). Directed influences between brain regions
can also contribute to characterize the functional role of a brain region by in-
vestigating how it receives inputs and conveys outputs to other regions with
functional roles that are better understood.

Directed influences can be studied using temporal precedence: observing if ear-
lier responses in a region contribute to predicting later responses in another
region. Studying temporal precedence with functional magnetic resonance imag-
ing (fMRI) presents unique advantages but also unique challenges. Data can
be acquired noninvasively, with good resolution, and covering the entire brain,
making fMRI well-suited to study long-range influences and investigate uniquely
human aspects of cognition. At the same time, fMRI measures Blood-Oxygen
Level Dependent (BOLD) signal, whose timing is affected by the local proper-
ties of vasculature. Adequate steps must be taken to control for the variability
in BOLD timing between regions.

Depending on the evidence already available, different approaches to studying
influences can be more or less suitable. In some cases, the previous evidence
can be used to restrict a-priori the hypotheses about the influences between a
set of brain regions, paving the way for confirmatory analyses. Often, however,
limited evidence is available, and a very broad range of different influences are
possible. Currently, the main techniques used to study influences between brain
regions with fMRI are Granger Causality (GC, Roebroeck et al.|[2005]) and Dy-
namic Causal Modelling (DCM, [Friston et al.|[2003]). Each of these techniques
has important strengths, but also properties that may not be desirable in some
data analysis contexts.

1.1 Granger Causality

In GC (Roebroeck et al.| [2005]), the influence of one brain region on another
is measured as a function of the variance in the responses in the latter region
that is explained by earlier responses in the former, in addition to the vari-
ance explained by the latter region itself (see Appendix II for a more formal
description). GC thus offers an intuitive measure of influences between regions
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which is not computationally costly to obtain. Nevertheless, GC has some dis-
advantages when applied to haemodynamic responses measured by fMRI. First,
in its current form Granger causality is difficult to apply to the modelling of
influences in different conditions within fast event-related designs. Separate
models are used for the different conditions that need to be compared, and
in fast event-related designs this would require breaking up the timeseries in
short chunks that would impair autoregressive modeling. Second, since GC is
based on variance explained, it cannot measure whether stronger responses in
one region lead to stronger or weaker responses in another (i.e. the ‘sign’ of
the influence), or even whether this feature of the influence is consistent across
participants. In the end, GC may be prone to overfitting, especially when many
brain regions are considered, because of the large number of parameters and the
lack of techniques to penalize model complexity (regularization).

1.2 Dynamic Causal Modelling

In DCM (Friston et al.| [2003]), the change in neural response in each brain
region is modeled as a function of the stimulus and the input from other re-
gions using ordinary differential equations (see Appendix III for a more formal
description). Given a set of brain regions and a set of conditions, there is a
fixed number of possible parameters. A candidate model is specified by pro-
viding, for each possible parameter, a 1 if that parameter will be included in
the candidate model (whether a connection‘exists’ in that candidate model),
and a 0 otherwise. The parameters that are included are then estimated with
the expectation-maximization (EM) algorithm, and the best candidate model is
chosen using Bayesian model comparison. The presence of condition-dependent
influences makes DCM suitable for the analysis of fast event-related designs,
and the use of priors mitigates overfitting acting as a form of regularization.
The proposed DNM approach adapts many of the strengths of DCM, but takes
a different approach to two key challenges. The first challenge is network discov-
ery. DCM is designed as a confirmatory technique, and therefore it is particu-
larly suitable for choosing between models that have been identified on the basis
of prior evidence. Searching through larger hypothesis spaces in DCM is com-
putationally costly (but see Friston and Penny [2011] for an ingenious technique
to increase speed); but more importantly, DCM computes the posterior proba-
bility of the best model, relative to the set of considered models. This estimate
is most useful when researchers can be confident that their a priori hypothesis
space includes most or all plausible models of the network. By contrast, DNM
is designed as an exploratory or network-discovery approach. We propose that
DNM can be used by researchers who cannot restrict their hypothesis space to
a small set of models based on existing evidence, or who are unsure whether
the limited temporal resolution of fMRI data is sufficient to reveal any robust
inter-regional influences.

Whereas DCM compares full network models (each model is a description of the
overall structure of the network), DNM assesses the variance in independent data
explained by each individual parameter (or connection), using regularization to
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efficiently search all possible connections. A consequence of this difference is
that whereas the best model chosen by DCM includes both the existing and the
absent connections, DNM (like traditional null-hypothesis tests) makes claims
about the existing connections, but not about the absent connections. On the
other hand, DNM provides an absolute, not relative, estimate of the variance
explained by each connection in independent data. This intuitive measure of
the quality of the model is especially useful for exploratory or network-discovery
analyses.

Existing packages in DCM employ free energy to assess quality of the model
fitting to the data. Although this function is based in the same data used for
model selection, it is not biased in favour of complex models. DCM also offers
the option to calculate variance explained by each model, but using the same
data used for model selection. As a consequence, the variance explained by the
selected model is overestimated. By contrast, DNM uses variance explained in
independent data. Similarly to free energy, this is not biased by model com-
plexity. However, variance explained in independent data has an important
additional asset: it is an accurate estimate of the absolute measure of goodness
of fit.Variance explained in independent data can be used to how well the model
fits the current data (for example, making clear when even the best model pro-
vides a relatively poor fit), but also to compare model fits across experiments
and populations.Therefore we chose variance explained in independent data as
a key measure to evaluate quality of fit in DNM.

The second challenge is how to combine evidence across participants who may
have individual differences in the strength of each connection. In DCM, each
candidate model specifies the existence and direction of connections, but not
their value (Stephan et al. [2010]). That is, in DCM, a connection is deemed
present if it explains variance, regardless of whether the parameters are simi-
lar (or even the same sign, that is ‘excitatory’ vs ‘inhibitory’) across partici-
pants. This approach grants DCM the flexibility to identify connections with
highly variable strengths across participants, buthas consequences for the intu-
itive interpretation of the resulting model graphs. A high degree of variability
in the parameter values across participants does not affect the probability of
the model given the data. By contrast, DNM follows traditional null-hypothesis
testing, in assessing the reliability of the magnitude (and sign) of each parameter
across participants. This difference can be illustrated using methods for testing
whether an experimental condition leads to a significantly greater response than
baseline. In standard fMRI analyses, using a general linear model, a voxel is
deemed to show a significant response if the magnitude (i.e. beta parameter) of
response is reliable (similar in both magnitude and sign) across participants. A
valid but different analysis would ask whether including the predictor for the ex-
perimental condition improves the fit of the model across participants (enough
to compensate for the increased complexity of the model). In this case, the
beta values might be highly variable, or even positive for some participants and
negative for other participants, as long as they contribute enough to improving
the model fit in each participant. Both of these analyses are valid, but address
different questions. DCM takes an approach similar to the second analysis:
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when a model including is selected, we can infer that each included connection
improved the quality of fit enough to compensate for the additional complexity,
but the parameter value for that connection might be quite different across par-
ticipants. This observation has been recently raised in the MEG literature using
DCM (Pinotsis et al.|[2016], [Friston et al[[2016]), where it has been addressed
using an approach based on hierarchical Bayesian models. In DNM, we adopt
an alternative solution: using random effect statistical tests on the parameter
values. This solution is intuitive and it interfaces well with the regularization
approach to network discovery.

1.3 Dynamic Network Modelling

Given the considerations outlined in the previous sections, we set out to de-
velop a new conservative method for exploratory analysis to model influences
between brain regions in fMRI, that would meet a set of criteria: 1) control
for the differences in the shape of haemodynamic responses in different regions,
2) provide a computationally efficient method for network discovery, 3) provide
rigorous estimates of the magnitude and the sign of influences (whether they
are inhibitory or excitatory), and 4) offer absolute measures of goodness of fit
(rather than relative to other models) in independent data. To satisfy these
desiderata, here we propose a novel approach to modeling dynamic influences
between brain regions that builds on insights from GC and DCM and intro-
duces some new ideas. We begin with deconvolution as in DCM, and proceed
with a regularized vector-autoregressive modelling, obtaining a procedure that
we refer to as Dynamic Network Modelling (DNM). This two-step procedure
in which DCM-like deconvolution is followed by subsequent network modelling
has been shown to successfully control for HRF shape (David et al| [2008]).
Like GC, DNM models the effect on a region of the stimuli and of other re-
gions with a system of linear equations. Like DCM, DNM includes parameters
for fixed and condition-dependent connections as well as driving effects of the
experimental conditions, and it can model independent connections in opposite
directions between the same brain regions. Unlike both, DNM fits parameters
with ¢; (Lasso) regularization, simultaneously addressing the overfitting prob-
lem and performing network discovery thanks to the sparsity encouraged by
this regularization approach. Autoregressive parameters, condition-dependent
effects and inter-regional influences are fit sequentially in a hierarchical model,
yielding conservative estimates of the impact of the influences between regions.
We assess the model using variance explained in left-out data to measure the
quality of the model fit without a bias for complex models, and we use t-tests
on the model parameters to identify influences that are consistent in sign and
magnitude across participants.

1.4 Empirical Application

We adopted DNM to investigate the influences between brain regions involved in
the recognition of emotional valence: an ideal case study because recent studies
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(Peelen et al. [2010|, [Skerry and Saxe| [2014]) identified multiple brain regions
encoding information about valence, and because recognition of emotional va-
lence is likely to engage species-specific processes whose investigation necessi-
tates noninvasive measurement. A brief glance at a person’s face provides rich
information: about the person’s identity, age and gender, and also about their
current emotional experience. Many brain regions are involved in extracting this
information (Anzellotti and Caramazzal[2015]). For example, the occipital and
fusiform face areas (OFA and FFA) respond selectively to faces
[1992], Kanwisher et al. [1997], Gauthier et al. [2000]) and encode information
about many facial features, including the valence of the emotions communicated
by facial expressions (Peelen et al| [2010], [Furl et al|[2012], Skerry and Saxe|
[2014]). The posterior superior temporal sulcus (pSTS) and medial prefrontal
cortex (MPFC) are sensitive to cues about another person’s emotional experi-
ence, whether conveyed in facial expressions or in body movements, vocal tones,
or even abstract desriptions of events (Narumoto et al.| [2001], [Winston et al.
[2005], Fusar-Poli et al.|[2009], Peelen et al.|[2010], [Furl et al. [2012], Skerry and
Saxd [2011)).

A key open question concerns the interaction between these two kinds of in-
formation (see[Ishail [2008], Bressler and Menon|[2010]): how does the facial form
processing in OFA and FFA interact with the more invariant representations
of emotional valence in pSTS and MPFC? One possibility is that recognition
of emotion in facial expressions is accomplished mainly by successive bottom-
up feature extraction, building increasingly invariant representations at each
stage. If so, one would expect influences mainly from OFA and FFA to pSTS
and MPFC. Another possibility, however, is that higher-level representations of
emotions influence the processing of the facial form. If so, one might expect that
inter-regional influences include, or are even dominated by, top-down influences
from pSTS and MPFC on the processing in OFA and FFA.

Structural connectivity analyses suggest that although OFA and FFA are
connected, there are no direct (i.e. monosynaptic) tracts connecting pSTS to
the OFA or FFA (Davies-Thompson and Andrews| [2011], [Ethofer et al| [2011]
2013], Gschwind et al|[2011], Pyles et al. [2013]). Direct anatomical connections
between MPFC and OFA/FFA are also unlikely. Nevertheless, the magnitude
of spontaneous activity during rest (i.e. in the absence of any emotional stimuli)
is correlated between FFA and pSTS (Turk-Browne et al|[2010]) suggesting at
least indirect connectivity between these regions.

We applied DNM to data from two independent experiments in which par-
ticipants viewed brief (4 sec) movies depicting a stranger’s positive or negative
emotional experiences. Multi-voxel pattern analyses of the first dataset sug-
gested that information about the valence of these expressions is present in
OFA, FFA, pSTS and MPFC (Skerry and Saxe|[2014]). We therefore used these
data, without a-priori restrictions on the connectivity profiles, to ask (1) how
these regions interact during the recognition of emotions, and (2) whether DNM
explains additional variance in independent data (as compared to a standard
GLM) and produces reliable results (replicating connectivity profiles across dif-
ferent datasets).
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2 DMaterials and Methods

2.1 Preprocessing and Deconvolution

Given a set of n ROIs, the mean BOLD signal is extracted from each of the
ROIs, and detrended with the SPM function ‘spm_detrend’ (http://www.fil.
ion.ucl.ac.uk/spm/)). Model-based deconvolution was performed as in David
et al. (2008), using DCM software based on a modification of the balloon
model to obtain estimates of the shape of the haemodynamic response function
(HRF; [Friston et al. [2003]). This deconvolution method was shown to control
successfully for variability in the HRF shape between different brain regions in
fMRI data, leading to fMRI-derived estimates of connectivity that correspond to
those obtained with intracortical EEG (David et al.| [2008]). For this reason, we
do not provide additional validation tests here for this deconvolution approach.

2.2 Interaction Model

Deconvolution yields a deconvolved timeseries z;(t) for each ROl i = 1,... n.
The vector of deconvolved timeseries z(t) = [z1(t);...; 2, (t)] is modelled with
a bilinear vector autoregressive model. A bilinear model can model condition-
dependent effects even in the context of fast event-related designs, and it does
not require integration to estimate parameters thus reducing the computational
costs. We have therefore

l m
z2(t) = Y A(k)z(t—k)+ > > u;(t—k)B;(k)z(t — k) + Cu(t) (1)

k=1 k=1 j=1

where kK =1,...,[ are the time lags between predicted and predictor responses,
the matrices A(k) contain parameters for fixed influences at lag k, u;(t) is 1 if
condition j is presented at time ¢ and 0 otherwise, the matrices B;(k) contain
parameters for condition-dependent influences in condition j at lag k, and C
contains parameters for the effect of the conditions u(t).

2.3 Model Fitting

Two fundamental considerations were made in the context of model fitting.
First, fitting all model parameters in a single stage would lead any shared vari-
ance between parameters for the influence of the regions on themselves (autore-
gressive parameters) and parameters for the influences between different regions
to be split equally among them. Timecourses of fMRI data show a high degree
of temporal autocorrelation (Woolrich et al.| [2001]), and fitting all parameters
in a single stage could attribute part of the variance explained by autocorrela-
tion to influences between regions, leading to exceedingly liberal estimates of
the influences between regions. For this reason, in a first stage the autoregres-
sive parameters are fit, subsequently the effect of conditions, and in the end
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the parameters for the influences between different regions are estimated. Note
that this approach is conceptually analogous to the practice in GC of assessing
the reduction in residual variance introduced adding a region A as predictor to
an autoregressive model modelling the response in a region B as a function of
itself at an earlier time. This procedure is made explicit in the following set of
equations:

l
z(t) =Y Tr(A(k))z(t — k) + €' (t)
k=1

el (t) = Cu(t) + € (1)

l
1) = 37 (A(k) — Te(A(R)) (¢ — B) @

k=1

I m
+ZZuj(t— k)Bj(k)EH(t— k) +61H(t)

k=1j=1

where €/ (t) = [el(t),...,€L(t)], €l1(t) = [ell(t),..., el ()], and eTL(t) =
[el1(t),... elTT(t)] are the residuals for the three modelling stages and the n
ROIs. The first equation implements an autoregressive model, the second equa-
tion a linear model with conditions as predictors, and the final equation models
the remaining variance as a function of the influences between different brain
regions. The time lag k can be determined using the Akaike Information Cri-
terion (AIC), but in practice given the high number of parameters the selected
k is equal to 1. The advantage of fitting parameters hierarchically is that the
estimates of the influences between regions are conservative. In this approach,
autocorrelation within a timecourse is seen as a potential confound. If the main
interest of a study instead is to estimate the extent of autocorrelation, fitting
autoregressive parameters in a first separate stage could be too liberal. One po-
tential cost of this hierarchical fitting procedure is that estimates of the shape of
the HRF are generated before fitting the infulence parameters rather than simul-
taneously. However, previous studies found that the HRF could be estimated
accurately even with such a sequential procedure (David et al. [2008]).

Second, the large number of parameters (especially when studying a large
set of ROIs) calls for adequate techniques to reduce the problem of overfitting.
For this purpose, a wide variety of regularization techniques are available in
the literature (Hanke and Hansen| [1993]). In keeping with the aim to provide
conservative estimates of the influences between regions, the first stage of pa-
rameter fitting (concerning the autoregressive parameters) is not regularized,
and parameters are estimated with OLS (Ordinary Least Squares). This en-
ables the autoregressive component of the model to remove all the variance it
can explain. Regularization is only employed for the last stage of parameter fit-
ting, to reduce overfitting of the parameters describing the influences between
brain regions. Among the many methods available for regularization, ¢; regu-
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larization has the amenable property of allowing for sparsity, and is achieved by
minimizing the error function

T
BT, 4,B;) = 3 (17 (1) — &1 (1))
- (3)

m n

A S 1w @+ 30 ST 1Bk ()]

k=1 \z,y=1 j=1z,y=1

where T is the total length of the timeseries and

I m

l
() = (Alk) = Te(A(R)) € (t=k)+> > uj(t—k)B;(k)e' (t—k). (4)

k=1 k=1 j=1

Note that the left part of equation [3] is the sum of square errors used in OLS,
while the right part penalizes the use of parameters proportionally to A times
the sum of their absolute values. It is important to note that the error function
in ¢; regularization is a sum of convex functions, and it is therefore convex
(see Appendix IV). This implies that the error function has a single minimum,
greatly facilitating parameter estimation. The value of A is itself determined
with a leave-one-out cross-validation procedure. Unlike ¢ regularization, ¢,
regularization does not favor widely distributed and small parameter values,
therefore it is also suitable to identify sparse networks in which only a subset
of the influences are non-zero. Since ¢; regularization yields a convex error
function and is suitable to identify sparse networks, it is an efficient tool for
network discovery.

2.4 Experimental Materials and Procedures

Two different experiments testing emotion recognition from visual stimuli were
completed with two different groups of participants. In each experiment, videos
prompting the attribution of an emotion to a target were shown to participants
while fMRI data were collected. The blood-oxygen level dependent (BOLD)
timeseries measured were used to model connectivity between face selective
regions and regions encoding information about emotional valence (OFA, FFA,
pSTS and MPFC, see [Skerry and Saxe| [2014],Kliemann et al. submitted).

2.4.1 Experiment 1: Stimuli and Task

A total of 26 volunteers took part in experiment 1 (all right handed, n = 10
female, age range: 19-44, mean = 26.25, SD = 6.12). All participants had
normal or corrected to normal vision and no history of neurological or psychiatric
disorders. Participants gave informed consent in written form in line with the
requirements of MIT’s institutional review board.
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The experiment consisted of 8 runs, a face localizer, and a theory of mind
localizer (Dodell-Feder et al.| [2011]; stimuli are available at http://saxelab.
mit.edu/superloc.php)). The theory of mind localizer was not analyzed for this
article. In the 8 runs, participant viewed videos of faces expressing an emotion
(‘expressions condition’) and of simple geometric characters experiencing an
event eliciting emotions (‘situations condition’). Participants were asked to rate
on a 1-4 scale after each video the intensity of the emotion experienced by
the characters. Face stimuli involved a close-perspective view on single entity,
therefore they were presented at 7.8 x 7.4° of visual angle, while the context
animations were presented at 16.7 x 12.5°. Videos of facial expressions were
obtained from from movies, producing a set of relatively naturalistic stimuli,
achieving a balance between external validity (see [Zaki and Ochsner| [2009],
Spunt and Lieberman| [2012]) and experimental control. Each trial consisted of
the presentation of a 4s video followed by a 1.75s response screen and a 250ms
blank. A fixation cross of variable duration (0-14s) was presented between trials.

In the face localizer, participants viewed videos of children’s faces and of
moving objects (from [Pitcher et al.| [2011]). 30 videos were shown for each
condition, grouped in blocks of 6. Participants had to perform a 1-back task de-
tecting repetitions of identical videos. Each video lasted 3s, and was followed by
a blank screen presented for 333ms, for a total block duration of 20s. A 2s blank
was shown between every two blocks, and 12s blocks of fixation were included
at the beginning, middle and end of the run. Participants were shown 2 local-
izer runs, each lasting 5 minutes. The order of conditions was counterbalanced
within runs, across runs, and across participants.

2.4.2 Experiment 2: Stimuli and Task

A total of 28 volunteers took part to experiment 2 (all right handed, 11 female,
age range: 21-33, mean = 26.6, SD = 4.2). All participants had normal or cor-
rected to normal vision and no history of neurological or psychiatric disorders.
Participants gave informed consent in written form in line with the require-
ments of MIT’s institutional review board. The experiment was composed of
8 functional runs (lasting 372s each) and a face localizer (184s) (Hariri et al.
[2000]).

In the experimental runs, the facial expression videos from Experiment 1
were presented. Unlike in Experiment 1, however, participants were asked to
perform two different judgements on the facial expression videos. In half of the
trials, they were asked to assess the valence of the emotion (positive or negative),
in the remaining trials they were asked to assess the age of the person in the
video (younger than 40, older than 40). Each trial consisted of the presentation
of a screen indicating the task to be performed (1s), a blank (4-12s, mean = 8s), a
video (4s), an additional blank (250ms) and a screen showing a plus and a minus
arranged horizontally as a response cue (1.75s). Participants pressed the left or
right button to select the plus (for positive emotions or for faces of people over
40) or the minus (for negative emotions or for faces of people under 40). At the
end of each run, a 12s blank screen was presented. Participants were excluded if

10


http://saxelab.mit.edu/superloc.php
http://saxelab.mit.edu/superloc.php
https://doi.org/10.1101/074286
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/074286; this version posted September 12, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

they performed below 83% accuracy in two or more runs, a criterion established
before starting fMRI analysis. Data from three participants (1 female) were
excluded due to this exclusion criterion.

The face localizer consisted in the presentation of 30s blocks of geometric
shapes and blocks of faces. Each block consisted of 15 2s trials in which par-
ticipant had to match the expression of a face (or the shape) in the upper part
of the screen with one of two expressions (or shapes) in the lower part of the
screen.

2.4.3 Data acquisition

Data acquisition parameters were identical in the two experiments. Data were
acquired with a 3T Siemens Tim Trio scanner in the Athinoula A. Martinos
Imaging Center at the McGovern Institute for Brain Research at MIT, using a
Siemens 32-channel phased array head coil. A high-resolution (1mm isotropic
voxels) T-1 weighted MPRAGE anatomical scan was followed by functional
scans using a gradient-echo EPI sequence sensitive to blood-oxygen-dependent
(BOLD) contrast (repetition time [TR] = 2s, echo time [TE] = 30ms, flip angle
= 90°, voxel size 3 X 3 x 3mm). 32 axial slices of 64x64 voxels aligned with
the anterior/posterior commissure were acquired in each volume, covering the
whole-brain except the cerebellum.

2.4.4 ROI definition and Interaction Modelling

Data from the face localizers were preprocessed using SPM8 running on MAT-
LAB R2010b and custom in-house software, and were modeled in both experi-
ments with a standard GLM with regressors for each stimulus category. Regions
of interest for the occipital face area (OFA), fusiform face area (FFA) and pos-
terior superior temporal sulcus (pSTS) were defined in individual participants
using group-defined search spaces (Figure . 1 of the 26 participants in Exper-
iment 1 did not complete the face localizer, in one OFA and FFA could not be
localized, and in 1 pSTS could not be localized. In these cases ROIs were de-
rived from group-level activation maps obtained from the localizers of the other
participants. In addition to these face-selective ROIs, a region of interest was
defined for MPFC at the group level, using a 12mm radius sphere centered in
the peak of accuracy for classification of the valence of emotions in the study
by Skerry and Saxe [Skerry and Saxe| [2014], at MNI coordinates [-2, 50, 34].

Interactions between the ROIs’ mean timecourses were modelled using the
method described in sections ‘Interaction Model’ and ‘Model Fitting’ above. In
Experiment 1, faces and situations were used as conditions, in Experiment 2,
age task and valence task were used as conditions.
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Figure 1: Group-level search spaces for the regions of interest.

3 Results

3.1 Experiment 1

The inter-regional influence parameters substantially improved the fit of the
model, when added to the hierarchical model in the final stage. In the de-
convolved timeseries, the influence parameters explained an additional 32.88%
(SEM 2.02%) of the variance in left-out runs. A similar but weaker result was
obtained without deconvolution, just predicting the original BOLD signal (ad-
ditional variance 12.27%, SEM 0.9%, see Appendix I - Figure [3).

Network structure (FigureA7 B) was calculated modeling the deconvolved
timeseries in the ROIs with a bilinear model and running a t-test on model
parameters (see Materials and Methods for more details). Among face-selective
regions, significant connections were found from the OFA to the FFA (¢(25) =
2.76, p < 0.05), trends for influences were found from the FFA to the pSTS
(t(25) = 2.00, p = 0.056) and from the pSTS to the OFA (¢(25) = 2.05, p =
0.051). In addition, a significant influence from the OFA to the MPFC was
observed (¢(25) = 2.15, p < 0.05).

All condition-dependent influences were non-significant (all p > 0.1). Fur-
thermore, a model without condition-dependent influences between regions was
fit to the same data and produced the same results (Appendix I - Figure [4)). A
model without regularization also generated similar results (Appendix I - Figure

A).

12


https://doi.org/10.1101/074286
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/074286; this version posted September 12, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

On the other hand, deconvolution does appear to be critical. We compared
DNM in deconvolved data to DNM in the original BOLD timeseries (Appendix
I - Figure @ In the original BOLD timeseries, multiple connections appear to
be bidirectional (e.g. between OFA and FFA, pSTS and OFA, and PFC and
pSTS), but after deconvolution (likely clarifying the relative timing of neural
response in these regions), all of these connections appeared unidirectional.

3.2 Experiment 2

As in experiment 1, the inter-regional influence parameters (Figure [2] C, D)
explained substantial additional variance in the deconvolved timeseries (33.97%,
SEM 1.35%) and even in the original BOLD signal (17.4%, SEM 1.28%, see
Appendix I - Figure [3). These values are remarkably similar to the results of
experiment 1, suggesting that the importance of influence parameters is highly
replicable, in this model, across participants and groups.

Network structure was calculated modeling the deconvolved timeseries in
the ROIs with a bilinear model and running a t-test on model parameters (see
Materials and Methods for more details). Among face-selective regions, in line
with experiment 1, significant connections were found from the OFA to the FFA
(t(24) = 4.50, p < 0.001), from the FFA to the pSTS (¢(24) = 2.17, p < 0.05),
and a trend was observed for the influence from pSTS to OFA (¢(24) = 1.72,
p = 0.098).

In addition, we observed influences from the FFA to the OFA (¢(24) = 4.28,
p < 0.001) and from the pSTS to the FFA (#(24) = 2.37, p < 0.05), as well as
from the MPFC to the pSTS (¢(24) = 2.69, p < 0.05). There also appeared
to be a weak decrease in the influence from OFA to FFA, in both conditions
(age condition: ¢(24) = —2.4, p < 0.05, emotion condition: #(24) = —1.9,
p = 0.07), possibly related to shared variance between the condition-specific
influence parameters and direct effects of the experimental stimulus modelled in
an earlier stage of the hierarchical model. No other condition specific influences
were observed.

A direct comparison of the results in the two experiments using unpaired
samples t-tests did not yield any significant differences; a trend was observed
for the influence from OFA to MPFC to be somewhat stronger in Experiment
1 (t(49) = 1.91, p = 0.0625).

4 Discussion

When participants watched naturalistic dynamic videos of emotional expres-
sions, we observed reliable influences in cortical regional responses from OFA to
FFA, FFA to pSTS, and pSTS to OFA. All three influences were positive (i.e.
‘excitatory’) and replicated across two experiments, in different groups of sub-
jects. In addition, the first study observed influences from OFA to MPFC, while
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Figure 2: A) Connectivity diagram for experiment 1; B) color-coded matrix of
parameter values for the influences between regions in experiment 1; C) Con-
nectivity diagram for experiment 2; D) color-coded matrix of parameter values
for the influences between regions in experiment 2.
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the second study observed a reciprocal influence from FFA to OFA. Differences
between studies are harder to interpret and discussed further below. More gen-
erally, we introduce a novel method for assessing dynamic influences between
cortical regions that provides many key advantages over existing techniques in
the context of network discovery.

We sought to measure directional, time-lagged influences between cortical re-
gions, using functional MRI. An important challenge to using fMRI to study
interations is the temporal resolution: the blood oxygenated dependent (BOLD)
signal is inherently slow, and is typically measured at 0.5Hz. Other neuroimag-
ing techniques, including MEG and EEG offer much higher temporal resolution
than fMRI, and therefore the potential to study interregional influences at the
true frequency of neural computation (e.g. >100 Hz). On the other hand,
fMRI has substantially better spatial resolution. Poor source reconstruction is
a serious challenge for studying interregional influences, because misattributing
distinct signals to a common source could create a false appearance of an influ-
ence where none exists. Also, over the past decade, the cognitive functions of
many cortical regions, localized with fMRI, have been intensively investigated,
in terms of the magnitude and pattern of responses to stimulus categories. Fur-
ther theory building will require understanding how influences between these
particular cortical regions support transformation of information (i.e. process-
ing).

Prior research investigating directional influences between brain regions in fMRI
data has used two techniques: Granger Causality (GC, Roebroeck et al.| [2005])
and Dynamic Causal Modelling (DCM, [Friston et al.| [2003]). While both tech-
niques are powerful, and have been validated in some contexts (David et al.
[2008]), both also have key limitations, especially in the context of network dis-
covery, as identified in the introduction. Here we developed a new approach,
building on the strengths of both GC and DCM, but also designed to satisfy
novel criteria. Like DCM, we used deconvolution to address potential differ-
ences in the haemodynamic responses across regions, and simultaneously esti-
mated parameters for interregional influences, and condition-dependent influ-
ences. These approaches address some limitations of the most common imple-
mentation of GC. On the other hand, compared to DCM, GC is conceptually
intuitive and computationally efficient. In our case, we used ¢; regularized re-
gression, which mitigates the overfitting problem and simultaneously offers an
efficient approach to network discovery. Also, like GC, we aimed to provide a
direct measure of variance explained, rather than the relative likelihood of a
model (compared only to other models tested) provided by DCM.

Our approach (DNM) also goes beyond existing tools in multiple ways. First,
we measure the variance explained by inter-regional influences, in independent
left-out data. As an additional innovation, we used a step-wise regression, first
greedily accounting for the stimulus-evoked responses and autocorrelations in
the timeseries within region, before testing variance explained by inter-regional
influences. In two experiments, we found that adding parameters for inter-
regional influences to the model explained more than 30% of the remaining
variance in the deconvolved timeseries of left-out runs. Evaluating variance
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explained in independent data is critical because it ensures that models are
not overfitting the training data (variance explained in independent data is not
biased in favor of more complex models), and also provides an absolute (not
relative) measure of the goodness of fit of these models.

Second, we conduct statistical tests directly on the model parameters, across
subjects, to preserve information about the sign of interregional influences (whether
they are excitatory or inhibitory). In our data, all of the reliable interregional
influences were positive (greater response in the source region predicted greater
response, after a time lag, in the target region), but this method could also
be used to detect and distinguish ’inhibitory’ influences (greater response in
the source region predicts subsequently reduced responses in the target region).
Furthermore, the method can be integrated with recent techniques for multi-
variate connectivity(Anzellotti et al.|[2016])

The strongest inter-regional influence we observed was from OFA to FFA, in
both experiments. Also, in both experiments, the evidence for this connection
was stronger in deconvolved data, confirming that without deconvolution, hemo-
dynamic differences may obscure the true direction of inter-regional influences.
A connection from OFA to FFA is strongly predicted by the standard view of
a a hierarchy of face processing from posterior to anterior regions in ventral
temporal cortex (Lerner et al.| [2001], Freiwald and Tsao| [2010], |Anzellotti et al.
[2013]). In both experiments, influences from FFA to pSTS were found; stud-
ies measuring structural connectivity typically find no direct connection from
FFA to pSTS, so the influence we observe here might be mediated by a third
region not measured in this experiment (Davies-Thompson and Andrews| [2011],
Ethofer et al.| [2011] |2013], |Gschwind et al.|[2011], [Pyles et al. [2013]).

Both experiments also revealed an influence from pSTS to OFA (and to FFA
in the second experiment). Prior evidence suggests that the pSTS contains a
representation of facial expressions, including both dynamic facial movements
generally, and emotional expressions in particular. The pSTS also contains a
multimodal representation of emotions and facial movements. We hypothesize
that the higher-level representations in pSTS, which are behaviourally relevant,
modulate the processing of facial form in the OFA. An alternative account, in
terms of predictive coding, would be that the representation of emotion in pSTS
is used to predict of the perceived facial form in the ventral stream (see [de Wit
et al.| |2010], [Koster-Hale and Saxe| [2013] for reviews). In a previous study,
Furl et al. (Furl et al|[2014]) reported OFA-driven modulation of connectivity
from V5 to STS. Our study extends these results by showing the presence of
influences between motion processing and form processing involving both the
OFA and FFA.

The measured influences with MPFC were relatively weak, and inconsistent
across experiments. One caveat is that unlike the other three regions we tested,
the MPFC was identified by a group ROI, rather than an individually-tailored
ROI, so our measures of that regions’ timecourse may be less sensitive. On
the other hand, it is possible that the inter-regional influences were actually
different across the two experiments. In the first experiment, participants per-
formed the same task on two different stimuli (faces, and abstract animations),
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and we observed an influence of OFA (possibly involved in face detection) on
MPFC (involved in abstract emotion representation). By contrast, in the second
experiment, participants performed two different tasks (emotion or age discrim-
ination) on the same stimuli (faces), and we observed an influence of MPFC
on pSTS, potentially modulating the relevance of emotional features. This pos-
sibility could be tested including both paradigms within an experiment with
sufficient statistical power.

In general, modulatory connections might be particularly amenable to detec-
tion by fMRI, since they could have relative slow temporal frequency, compared
with bottom-up information processing. The temporal resolution of fMRI is
low, therefore the physiological bases of the signal modelled in this study are
probably not monosynaptic connections between neurons. Temporal variation
in the BOLD signal is correlated with local field potentials, and more specifically
with the power of the gamma band frequency oscillations and with slow cortical
potentials (<4Hz) (He et al.| [2008]). The power of gamma band frequency os-
cillations and slow cortical potentials account for different parts of the BOLD’s
variance (Scheeringa et al.| [2011]). Slow cortical potentials are mostly driven
by synaptic activity at apical dentrites in superficial layers of cortex (Goldring
[1974], Mitzdorf| [1985], Birbaumer et al. [1990], He and Raichle| [2009]), and
activity in superficial layers depends on long-range connections (He and Raichle
[2009]). High power in the gamma band usually co-occurs with gamma synchro-
nization within a region (Fries| [2009)). It reflects engagement of the region in a
task (Pulvermiiller et al|[1995]) and may need to be triggered by ‘modulatory
network activation’, for instance top-down control (Fries et al.| [2001} 2008], Bi-
chot et al.|[2005], |Taylor et al.| [2005], Womelsdorf et al|[2006]). Our results
might depend on a combination of slow cortical potentials and gamma band
power that reflect respectively low-frequency fluctuations in the activation state
of a network and relatively faster sequences of responses due to engagement in
a task.

In conclusion, we introduced an exploratory method (DNM) to model the dy-
namic, directed and signed influences between brain regions while controlling for
inter-regional differences in the hemodynamic responses; parameter estimation
with ¢; regularization addressed simultaneously the overfitting problem and the
need for efficient network discovery. We applied DNM to the study of the in-
fluences between brain regions encoding information about emotional valence
during emotion recognition, showing how DNM has key assets as compared to
other available methods and gaining new insights on the influences between
brain regions processing emotional valence.
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Appendix I - Additional Figures

Additional Variance Explained
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Figure 3: Additional variance explained in independent data by the influences
between regions. The model using both deconvolution and regularization is
compared to a model using deconvolution but not regularization and to a model
using neither deconvolution nor regularization.
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Figure 4: Comparison between parameter values for a model with and with-
out condition-dependent influences between regions. Condition-dependent in-
fluences do not have a noticeable impact on the results with these data.
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EXPERIMENT 1

WITH REGULARIZATION WITHOUT REGULARIZATION
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Figure 5: Comparison between parameter values for a model with and without
regularization. Regularization does not have a noticeable impact on the results
with these data.

20


https://doi.org/10.1101/074286
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/074286; this version posted September 12, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

EXPERIMENT 1

WITH DECONVOLUTION WITHOUT DECONVOLUTION
OFA STS FFA PFC

OFA STS FFA PFC

0.5 >
OFA 3
4 3
2
STS o
- -
s
FFA ol
(1]
"
PFC
EXPERIMENT 2
WITH DECONVOLUTION WITHOUT DECONVOLUTION
OFA STS FFA PFC OFA STS FFA PFC 05
S
0.4 py
3
03 @
o
S
‘5
=
10
n

+p<0.1

Figure 6: Comparison between parameter values for a model with and without
deconvolution. Controlling for differences in haemodynamic responses between
regions with deconvolution changes the resulting parameters.

Appendix II - Granger Causality

Let a(t), b(t) with ¢t € 1,...,T be two timeseries, for example the timecourses
of Blood-Oxygen Level Dependent (BOLD) signal in two brain regions A, B.
We can consider the autoregressive model

b(t) = Bb(t — 1) + &, (5)
and the model
b(t) = Bra(t — 1) + Bob(t — 1) + €ap (6)

where €, and €., are the residuals of the models. Here we focus for simplicity
on a model between two regions that goes only 1 timestep in the past, but
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multiple regions and multiple timesteps in the past can also be considered. In
Granger Causality, the influence from a brain region A to a brain region B is

given by:
var(ep)
var(eq) )

(7)

If earlier responses in region A explain additional variance in the responses of
region B, the ratio var(ep)/var(eqp) is greater than one; the logarithm remaps
the range of possible values from [1,+00) to [0,400). The suggested approach
to control for differences in haemodynamic responses between regions consists
in calculating the subtraction:

F}liB = Fj&ﬁB - FEX%B (8)

where F}_, 5 is the influence from A to B during condition C1, and F3_,  is
the influence from A to B during condition C2.

Fpp =log (

Appendix III - Dynamic Causal Modelling

Let z = [21(t), ..., zn(t)] be a vector of neural responses at time ¢, where z;(t)
is the response at time ¢ in region i for each of n regions. In DCM, the change
in neural responses z(t) is modeled as

#(t) = Az(t) + Z u;(t)B;z(t) + Cu(t) ()

where A is a matrix of fixed connectivity parameters, B; is a matrix of
connectivity parameters during condition j for each of the m conditions, and
u;(t) is 1 if condition j is presented at time ¢ and 0 otherwise. The matrix C
contains parameters for the effect of the conditions u(t) = [ui(t),...,um(t)]. A
candidate model M is specified providing matrices of binary values A, Bj, C
of the same size as A, B;, and C, so that in M, parameter A(h, k) is allowed
to vary if and only if A(h,k) = 1. The parameters of candidate models are
estimated with the expectation-maximization (EM) algorithm, and the best
model is chosen using Bayesian model comparison (Friston et al.[[2003]).

Appendix IV - Convexity of the error function in
/1 regularization

Let us consider y(t) € R and x(¢t) € R", with ¢t = 1,...,T. Let g(t) be a

prediction of y(t) generated with a linear model §(¢) = aTx(¢) using parameters
a; = a(i), with ¢ = 1,...,n. The error function given by ¢; regularization is
T n
2
E(y,a) =Y (y(t) = §(t)* + X <Z ail) : (10)
t=1 i=1
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We can rewrite the error function as

Blya) =) <y<t> - Zaixi@)) FAYJail (1)

t=1
The function )
S5B(y,a) = <y<t> -3 amt)) (12)
t=1 i=1

is convex in a. We also know that if two functions f : R™ — R and g : RF — R
are convex, their sum (f 4+ g) : R™ x ®* — R is convex. In fact, considering
z = (x,y) € R™** we have that

a(f+9)(z1) + (1 —a)(f + g)(2z2)
=a(f +g)(x1,y1) + (L —a)(f + g)(x2,¥2)

=af(x1) + (1 —a)f(x2) + ag(y1) + (1 — a)g(y2)
(13)

and since f and g are convex

af(x1) + (1 —a)f(x2) + ag(y1) + (1 — a)g(y2)
>flaxi + (1 - a)x2) + glayr + (1 — a)y2)
=(f +g)(ax1 + (1 — a)x2, ay1 + (1 — a)y2)

=(f +9)(az1 + (1 — @)zy).
(14)

It follows that since |a;| is convex Vi and A > 0, also A (3.1 |ai|) is convex.
It can be shown with an analogous proof that given two convex functions f :
R™ — R and g : R™ — R on the same domain, the function (f +g) : R™ — R
is also convex. Since the error function [I0] is the sum of two convex functions
on the same domain, it follows that it is itself convex.

Furthermore, the error function is strictly convex, because it is a sum of a
strictly convex function (the paraboloid given by the sum of square errors) and
of a convex function (the penalization term). As a consequence, it has a unique
minimum.
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