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Abstract 

Metagenomics experiments often characterize microbial communities by sequencing the 

ribosomal 16S and ITS regions. Taxonomy prediction is a fundamental step in such studies. 

The SINTAX algorithm predicts taxonomy by using k-mer similarity to identify the top hit in 

a reference database and provides bootstrap confidence for all ranks in the prediction. 

SINTAX achieves comparable or better accuracy to the RDP Naive Bayesian Classifier with a 

simpler algorithm that does not require training. Most tested methods are shown to have 

high rates of over-classification errors where novel taxa are incorrectly predicted to have 

known names. 
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Introduction 

Sequencing of tags such as the ribosomal 16S gene and fungal internal transcribed space 

(ITS) region is a popular method for surveying microbial communities. Recent examples 

include the Human Microbiome Project (HMP Consortium, 2012) and a survey of the 

Arabidopsis root microbiome (Lundberg et al., 2012). A fundamental step in such studies is 

to predict the taxonomy of sequences found in the reads. The most popular method is 

currently the RDP Naive Bayesian Classifier (Wang et al., 2007) (hereafter RDP). Additional 

taxonomy prediction methods are supported by QIIME (Caporaso et al., 2010) and mothur 

(Schloss et al., 2009). 

Reference databases 

Taxonomy prediction requires a reference database containing  sequences with taxonomy 

annotations. Authoritative prokaryotic sequence classifications exist for at most the 

~12,000 named species belonging to ~2,300 genera which represent only a tiny fraction of 

extant species (Yarza et al., 2014). Available databases include the RDP training sets, the 

full RDP database (RDPDB) (Maidak et al., 2001), SILVA  (Pruesse et al., 2007), Greengenes 

(DeSantis et al., 2006) and UNITE (Kõljalg et al., 2013). The RDP 16S training set v16 (RTS) 

has 13,212 sequences belonging to 2,126 genera while the RDP Warcup ITS training set 

(Deshpande et al., 2015) v2 has 18,878 sequences belonging to 8,551 species. The RDP 

training sets contain only sequences with authoritative names and are therefore much 

smaller than SILVA, Greengenes and UNITE which include environmental sequences. SILVA 

v123 has 1.8M small subunit ribosomal RNA sequences; v114 was estimated to contain 

~94,000 genera (Yarza et al., 2014). Greengenes v13.5 has 1.8M 16S sequences. UNITE 

release 01.08.2015 has 476k ITS sequences representing ~71,000 species. Most taxonomy 

annotations in SILVA and Greengenes are predictions obtained by computational and 

manual analyses which are primarily based on trees predicted from multiple alignments 

(McDonald et al., 2012; Yilmaz et al., 2014); in RDPDB most annotations are predicted by 

RDP. In the 16S databases (RDPDB, SILVA and Greengenes), no attempt is made to classify 

unnamed groups, while UNITE assigns numerical “species hypothesis” identifiers to 

unnamed clusters. 
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By default, QIIME uses a subset of Greengenes clustered at 97% identity (GGQ, containing 

99k sequences in v13.8), and mothur recommends a subset of SILVA (SILVAM, containing 

172k sequences in v123). The RDP web site and stand-alone software use the RDP training 

sets. 

Database coverage and novel taxa 

If a query sequence is found in the database, its taxonomy is naively given by the reference 

annotation. This prediction may wrong if the database has annotation errors or multiple 

species are identical over the sequenced region, which often happens with short tags such 

as the popular V4 hypervariable region of 16S. The latter scenario cannot be reliably 

identified by checking the database for other identical sequences because the reference 

data may be incomplete. If the query sequence is not found in the database then prediction 

is more difficult. For example, using a 95% identity threshold for clustering full-length 16S 

sequences was found to give groups that best approximate genera (Yarza et al., 2014). 

Thus, if a 16S sequence has 95% identity with a database hit, it might be in the same genus 

but since identity correlates only approximately with taxonomic rank it could belong only 

to the same family or same class. Or, it could belong to the same species if there is 

atypically large variations between paralogs or strains. From this perspective, the task of 

taxonomy prediction is to estimate the lowest common rank (LCR) between the query and 

the database. A query rank r is known if r ≥ LCR, i.e. at least one member of its clade is 

present in the reference database (regardless of whether it is named) and novel if r < LCR. 

The coverage  of a reference database at a given rank with respect to a set of query 

sequences is the fraction of queries that are known and novelty = (1 – coverage) is the 

fraction of queries that are novel. The mean top-hit identity (MTI) between query 

sequences and their top hits can be used as an approximate indication of coverage. To 

obtain typical query sets, I constructed OTUs at 97% identity using UPARSE (Edgar, 2013) 

from V4 reads of human gut, mouse gut and soil communities respectively (Kozich et al., 

2013) and ITS reads of a soil fungal community (Schmidt et al., 2013). MTIs of these 

samples vs. commonly-used reference databases are shown in Table 1. All V4 samples have 

MTI<95% with RTS, suggesting that many, perhaps most, OTUs belong to novel genera, 

especially in soil (MTI=88%). 
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RDP leave-one-out validation 

RDP was tested on 16S and ITS sequences using leave-one-out validation (Wang et al., 

2007; Deshpande et al., 2015) where one query sequence is extracted from the training set 

(RTS and Warcup, respectively) and classified using the remaining sequences as a 

reference. Accuracy (AccRDP) is calculated as the fraction of sequences that are correctly 

classified. Roughly half  (1,119 / 2,472) of the genera in RTS are singletons, i.e. have exactly 

one training sequence, while about a quarter (2,258 / 8,548) of the species in Warcup are 

singletons, comprising 8% (16S) and 13% (ITS) of the training sequences. A singleton 

cannot be classified correctly in a leave-one-out test because no training sequences are left 

for its clade so that the maximum achievable AccRDP by an ideal algorithm is the fraction of 

non-singleton taxa, i.e. 92% for 16S genus and 87% for ITS species, rather than 100% as 

would usually be expected for an accuracy measure. The average number of non-singleton 

training sequences is 9 per genus in RTS and 14 per species in Warcup which suggests that 

correct classification should be relatively easy for most queries, while in practice many 

genera will be novel, and taxa that are rare in the database may be common in the query set 

and vice versa. Also, all predictions are included in AccRDP regardless of their bootstrap 

confidence values rather than using the authors' recommended parameters (here, 80% 

cutoff) as would usually be expected for a benchmark test. In summary, the RDP leave-one-

out test does not model typical query datasets and AccRDP does not give a realistic estimate 

of accuracy by any conventional definition. 

 

Methods 

Performance metrics 

Sensitivity should be measured as the fraction of known queries that are correctly 

identified so that the highest achievable sensitivity by an ideal algorithm is 100%. If novel 

queries were also counted then sensitivity <100% would reflect an opaque combination of 

low database coverage and failures to correctly predict known taxa, as with AccRDP. It is 

useful to distinguish two types of false positive error: misclassifications, where an incorrect 

name is predicted for a known rank, and over-classifications, where a name is predicted for 
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a novel rank. For a given query set, reference database and taxonomic rank let Nknown and 

Nnovel be the number of queries with known and novel taxa respectively. Let TP be the 

number of correct predictions, FPmis be the number of misclassification errors and FPover be 

the number of over-classification errors. The total number of queries is N = Nknown + Nnovel. 

The following accuracy metrics can now be defined: 

 

 Sensitivity = TP / Nknown, 

 Misclassification rate = MC = FPmis / Nknown, 

 Over-classification rate = OC = FPover / Nnovel, 

 Errors per query = EPQ = (FPmis + FPover) / N. 

 

To a first approximation, we might expect misclassification and over-classification rates to 

be similar on different datasets because these measures reflect intrinsic characteristics of 

an algorithm independent of the data while EPQ, the measure that is typically of most 

interest in practice, will strongly depend on database coverage (equivalently, on query 

novelty). For example, if a query set contains mostly known sequences, we would expect 

errors to be rare and dominated by misclassifications, while if a query set is highly novel 

then there may be many overclassifications. If these expectations are correct, then values of 

MC and OC measured on a benchmark test will be similar to those obtained on biological 

data in practice while EPQ will be similar only if the benchmark has similar rates of novel 

taxa. 

Clade partition cross-validation (CPX) 

If high ranks are usually known but low ranks are often novel, then a benchmark test 

should contain a mix of known and novel taxa at low ranks so that both MC and OC can be 

measured. This can be achieved by clade partition cross-validation (CPX), as follows. Clades 

at a given rank rpart from a reference database are partitioned so that a randomly-chosen 

half of the daughter groups in a given clade are assigned to the query set and the other half 

to the reference set so that ranks below rpart are always novel. For example, if rpart = family 

then half of the genera for a given family are assigned to the query and half to the reference 

set. Singletons are always assigned to the query set, so are always novel while non-
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singletons are always known. For this work, I used rpart = family and rpart = genus and 

calculated performance metrics from the combined predictions on both query-reference 

pairs. 

SINTAX algorithm 

For a query sequence Q and reference database R the SImple Non-Bayesian TAXonomy 

(SINTAX)  algorithm proceeds as follows. Let W(Q) be the set of k-mers in Q where k = 8 by 

default. In one iteration, a random sub-sample ws(Q) of size s is extracted from W(Q) where 

s = 32 by default. Sub-sampling is performed with replacement. For each reference 

sequence r ∈ R, the number of words in common is Usubset(r) = |ws(Q) ⋂ W(r)|. The top hit T 

by k-mer similarity is identified as T = argmax(r) Usubset(r) and the taxonomy is taken from 

the annotation of T. By default, 100 iterations are performed. For each rank, the name that 

occurs most often is identified and its frequency is reported as its bootstrap confidence.  

SINTAX is similar to the RDP algorithm except (a) the taxonomy in each iteration is 

identified from the top k-mer hit for the sub-sample rather than the most probable 

taxonomy according to the naive Bayesian calculation and (b) a fixed-size subset of 32 k-

mers is used for bootstrapping. RDP uses a subset of size |Q|/k, the number of non-

overlapping k-mers, because overlapping k-mers are not independent. SINTAX uses a fixed-

size subset to compensate for a problem that arises with longer sequences. For a given 

query sequence, consider reference sequences ranked using all k-mers, i.e. in order of 

decreasing Uall(r) = |W(Q) ⋂ W(r)|. This gives a list of taxonomies sorted by decreasing Uall. 

Let Call1 be the top taxonomy and Call2 the second-ranked taxonomy with similarities Uall1 

and Uall2 respectively using all k-mers, and similarities Usubset1 and Usubset2 using the subset in 

a given iteration. If Uall1 ≫ Uall2 then Usubset1 will be greater than Usubset2 in most or all 

iterations and C1 will therefore have high bootstrap confidence. Conversely, if Uall1 is only 

slightly greater than Uall2, then it is more likely that the order of the top two taxonomies 

will be reversed in Usubset order and the bootstrap confidence of C1 will then be lower. The 

bootstrap confidence thus correlates with the difference Uall1 – Uall2, giving an indication of 

how much closer the top taxonomy is to the query than the second-ranked taxonomy. As 

the sequence length |Q| increases, the number of non-overlapping k-mers |Q|/k increases. 

Using a larger subset reduces fluctuations under sub-sampling so that the taxonomy order 
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defined by Usubset converges on the order defined by Uall, and in particular C1 is the top-

ranked taxonomy more often. The bootstrap confidence of C1 therefore tends to increase 

for longer sequences, regardless of whether it is correct. In other words, as the sequence 

length increases, using a subset of size |Q|/k tends to give high bootstrap confidence to the 

top k-mer hit for any query sequence. When the query is novel, C1 is always wrong and the 

over-classification rate therefore increases with longer sequences. This problem is 

mitigated by using a fixed subset size of 32. See Supp. Table 1 for a comparison of SINTAX 

with s=32 and s=1/k vs. RDP. 

 

Results 

I tested SINTAX v1.0, standalone RDP v2.12, QIIME v1.9.1 and mothur v1.36.1. The QIIME 

assign_taxonomy.py script was run with options -m uclust (Quc, the default), -m sortme 

(Qsm),-m blast (Qblast) and -m rdp (Qrdp, a wrapper for standalone RDP that sets a 

bootstrap cutoff of 50% by default). The mothur classify.seqs command was run with 

method=wang (Mrdp, the default, a re-implementation of the RDP algorithm) and 

method=knn (Mknn). 

Leave-one-out validation 

Results for leave-one-out testing of SINTAX and RDP are shown in Table 2 and Supp. Table 

1. The AccRDP metric is shown together with Sensitivity, OC and MC for genus (16S) or 

species (ITS). At phylum rank, EPQ is given as the measure of error rate since almost all 

phyla are known so OC cannot be measured reliably and MC ≈ EPQ. 

Clade partition cross-validation 

Results for CPX testing are shown in Table 3 and Supp. Table 2. SINTAX is compared to 

other algorithms at genus and phylum ranks using the default database for each method. 

Against RDP, a bootstrap cutoff of 80% is used as this is the value  recommended by the 

RDP authors. SINTAX and RDP are observed to have similar performance on V4 while 

SINTAX has substantially lower error rates on full-length 16S and ITS due to its lower over-

classification rates. The ITS phylum sensitivity of SINTAX (98.3%) is notably better than 

RDP (81.8%). 
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High over-classification rates 

A high rate of over-classifications at low rank was found for all methods on all tests ranging 

from a minimum genus OC of 12.2% (SINTAX on RTS V4 with 80% bootstrap cutoff) to a 

maximum of 87% (Qblast on GGQ V4). The QIIME OC rates were especially high. The lowest 

OC of any QIIME method (tested on V4 with its default GGQ reference database) was 48.4% 

(Qsm). A high OC rate is of practical importance if a significant number of novel genera are 

present in the query set. Table 1 shows that the OTUs for the V4 soil data have mean 

identity 95% or less with all of the default reference databases, implying that half or more 

probably have novel genera. On a query set with 50% novel genera, an algorithm will have 

an overall false-positive (FP) rate of 0.5×OC + 0.5×MC. At genus rank, using OC and MC 

values measured on the CPX test, this gives a FP rate of 13% for RDP and SINTAX at 80% 

bootstrap using RTS, 29% for the default QIIME method Quc and 52% for Qblast. 

Discussion 

SINTAX achieves comparable (V4) or better (full-length 16S and ITS) accuracy to RDP. 

SINTAX is conceptually simple: it finds the top k-mer hit, and the evidence supporting a 

prediction can be presented as a list of reference taxonomies with their k-mer similarities 

to the query sequence. The RDP algorithm is more opaque, making it difficult to review the 

evidence supporting a prediction. The posterior probabilities calculated according to the 

naive Bayesian theory are astronomically small for correct predictions, typically in the 

range 10–18 to 10–24. Ideally, a posterior would be an estimate of the probability that a 

taxonomy is correct and would be ~1 for a correct prediction, but here the probabilities are 

wrong by twenty or so orders of magnitude, necessitating post-hoc bootstrapping to obtain 

a useable confidence measure. SINTAX and RDP have similar accuracy when both use sub-

sample size |Q|/k for  bootstrapping (Supp. Table 2) in which case the algorithms are 

essentially the same except for the score for sorting taxonomies. This suggests that the 

naive Bayesian approach could be interpreted as an approximation to finding the top k-mer 

hit. 

 The high measured over-classification rates indicate an unsolved problem with novel 

taxa, which is readily explained by sparse reference data (Fig. 1). At high ranks, this may 

not be important because novel phyla are rare, but at low ranks novel taxa are common, 
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especially in communities that are less studied or difficult to culture (e.g. extremophiles) or 

highly diverse (e.g. soil). 

 On full-length 16S sequences, RDP has a measured overclassification rate of 40% (CPX) 

and 48% (leave-one-out) at the recommended 80% bootstrap cutoff. This result suggests 

that many of the genus annotations in RDPDB, most of which were predicted by RDP at 

80% bootstrap, may be false positives as 47% of the 3.2M RDPDB sequences have top-hit 

identity <95% with RDPTS, implying that roughly half belong to novel genera. Assuming 

47% novel genera and the lower OC value gives an estimate of 0.47×0.40×3.2M = 600k 

over-classified genera. 
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Table 1. Mean top-hit identities 

Sample RTS SILVAM GGQ Warcup 

Human (V4) 94% 97% 98% - 

Mouse (V4) 92% 97% 98% - 

Soil (V4) 88% 93% 95% - 

Soil (ITS) - - - 67% 

 

Test RTS-V4 RTS-fl SILVAM GGQ Warcup 

L1O 98% 97% - - 98% 

CPX 95% 94% 96% 96% 76% 

 

Mean top-hit identities (MTIs) between a query set and a reference database for samples obtained in 

vivo (top) and for benchmark tests (bottom). Reference databases are RTS (the RDP 16S training 

set), SILVAM (mothur subset of SILVA), GGQ (QIIME subset of Greengenes) and Warcup (the 

RDP ITS training set). Tests methods are L1O (leave-one-out) and CPX (clade partition cross-

validation, described in Methods) applied to the following databases: RTS-V4 (V4 region of the 

RDP 16S training set), RTS-fl (full-length sequences in the RDP 16S training set), Warcup (full-

length sequences in the RDP ITS training set), SILVAM (V4 sequences from SILVAM) and GGQ 

(V4 sequences from GGQ). 
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Table 2. Leave-one-out test results 

  RTS (V4) RTS (fl) Warcup 

r(b) metric RDP SINTAX RDP SINTAX RDP SINTAX 

p(0) AccRDP 99.7 99.7 99.5 99.8 99.9 100.0 

t(0) AccRDP 80.4 80.5 85.6 85.6 73.9 75.6 

p(80) Sens. 99.3 99.5 99.7 99.7 99.9 100.0 

p(80) EPQ 0.3 0.0 0.5 0.0 0.0 0.0 

t(80) Sens. 78.9 77.1 92.1 81.1 79.8 75.2 

t(80) OC 28.5 28.3 48.0 16.8 42.2 25.6 

t(80) MC 3.5 3.6 2.8 1.2 7.9 3.2 

t(80) EPQ 5.9 5.9 7.1 2.7 12.7 6.4 

 

Comparison of RDP and SINTAX using leave-one-out validation on three reference sets: the V4 region 

of RTS, full-length (fl) RTS and Warcup. Metrics are given as percentages. r(b) is rank and bootstrap 

cutoff, p is phylum and t is the lowest rank, i.e. genus for V4 and full-length 16S and species for Warcup. 
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Table 3. CPX test results 

RTS (V4) 

Algo Cutoff OCg MCg Sensg EPQg Sens p EPQp 

SINTAX 80 23.1 2.7 82.2 14.4 96.9 0.1 

RDP 80 21.3 3.0 82.1 13.5 90.0 0.2 

 

RTS  (full-length) 

Algo Cutoff OCg MCg Sensg EPQg Sens p EPQp 

SINTAX 80 12.2 0.4 84.7 6.8 98.0 0.0 

RDP 80 40.3 1.6 94.0 22.5 92.7 0.9 

 

Warcup (ITS) 

Algo Cutoff OCg MCg Sensg EPQg Sens p EPQp 

SINTAX 80 14.4 0.8 95.6 6.4 98.3 0.3 

RDP 80 67.8 1.0 91.2 41.3 81.8 10.8 

 

GGQ (V4) 

Algo Cutoff OCg MCg Sensg EPQg Sens p EPQp 

SINTAX 80 28.0 5.9 75.7 23.0 91.4 0.4 

SINTAX 50 56.2 10.2 83.7 45.7 95.7 2.0 

Quc - 48.4 9.7 77.3 39.6 72.8 0.4 

Qsm - 45.7 7.7 76.1 37.1 73.3 0.3 

Qblast - 87.4 17.1 82.7 71.4 90.2 8.4 

Qrdp 50 49.4 9.6 81.7 40.3 95.0 1.1 

 
 

SILVAM (V4) 

Algo Cutoff OCg MCg Sensg EPQg Sens p EPQp 

SINTAX 80 35.7 5.3 80.9 21.8 98.3 0.4 

Mrdp 80 30.8 2.4 75.8 17.8 97.1 0.1 

Mknn - 22.3 0.8 61.5 12.5 98.0 0.4 

Performance metrics measured on CPX tests. Metrics are explained in 

Methods. Subscript g is genus, p phylum. SINTAX is compared with RDP on 

the RDP training sets and against QIIME and mothur on their default databases 

GGQ and SILVAM, respectively. Error rates >10% and sensitivities <80% are 

shaded. 
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Figure 1. A sparse reference database induces over-classification errors. Q is the query and T 

is the top hit. Black circles denote known species, white circles novel species. If Q belongs to 

a novel genus (white square), the top few hits will tend to belong to the most similar known 

genus (black square). Here, SINTAX will tend to give a high bootstrap confidence to the 

known genus. Other algorithms which explicitly (or effectively) take a consensus of 

taxonomies of the most similar reference sequences, such as RDP, will similarly tend to make 

over-classification errors. 
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Supplementary Table 1. Leave-one-out test results. 
 
 
V4 SINTAX cutoff=50 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.7%   50.0%    0.1%   99.7%    0.1% 
   g   80.3%   56.4%    8.2%   86.6%   12.7% 
 
V4 RDP cutoff=50 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.7%   50.0%    0.1%   99.7%    0.1% 
   g   80.4%   59.0%    8.2%   86.6%   12.9% 
 
V4 SINTAX cutoff=80 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.7%    0.0%    0.0%   99.5%    0.0% 
   g   80.3%   28.3%    3.6%   77.1%    5.9% 
 
V4 RDP cutoff=80 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.7%    0.0%    0.0%   99.3%    0.0% 
   g   80.4%   28.5%    3.5%   78.9%    5.9% 
 
V4 SINTAX cutoff=90 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.7%    0.0%    0.0%   99.3%    0.0% 
   g   80.3%   19.0%    2.8%   71.0%    4.3% 
 
V4 RDP cutoff=90 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.7%    0.0%    0.0%   99.0%    0.0% 
   g   80.4%   19.3%    2.4%   73.3%    4.0% 
 
V4 SINTAX cutoff=100 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.7%    0.0%    0.0%   97.5%    0.0% 
   g   80.3%    6.9%    1.1%   44.4%    1.6% 
 
V4 RDP cutoff=100 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.7%    0.0%    0.0%   95.9%    0.0% 
   g   80.4%    7.9%    0.9%   49.1%    1.5% 
 
 
 
V3-V5 SINTAX cutoff=50 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.8%  100.0%    0.1%   99.8%    0.1% 
   g   83.2%   51.5%    5.2%   89.6%    9.6% 
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V3-V5 RDP cutoff=50 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.8%  100.0%    0.1%   99.8%    0.1% 
   g   83.3%   66.7%    6.3%   91.1%   12.0% 
 
V3-V5 SINTAX cutoff=80 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.8%    0.0%    0.0%   99.6%    0.0% 
   g   83.2%   21.7%    1.8%   79.7%    3.7% 
 
V3-V5 RDP cutoff=80 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.8%    0.0%    0.1%   99.7%    0.1% 
   g   83.3%   37.8%    3.4%   86.0%    6.6% 
 
V3-V5 SINTAX cutoff=90 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.8%    0.0%    0.0%   99.4%    0.0% 
   g   83.2%   14.7%    1.3%   72.5%    2.6% 
 
V3-V5 RDP cutoff=90 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.8%    0.0%    0.1%   99.6%    0.1% 
   g   83.3%   28.3%    2.5%   82.7%    5.0% 
 
V3-V5 SINTAX cutoff=100 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.8%    0.0%    0.0%   98.0%    0.0% 
   g   83.2%    5.5%    0.5%   41.6%    1.0% 
 
V3-V5 RDP cutoff=100 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.8%    0.0%    0.0%   98.9%    0.0% 
   g   83.3%   13.1%    1.2%   67.9%    2.3% 
 
 
 
16S_fl SINTAX cutoff=50 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.8%   75.0%    0.1%   99.8%    0.1% 
   g   85.6%   41.6%    3.2%   91.7%    6.8% 
 
16S_fl RDP cutoff=50 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.5%   60.0%    0.2%   99.6%    0.2% 
   g   85.6%   78.4%    4.6%   94.2%   11.5% 
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16S_fl SINTAX cutoff=80 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.8%    0.0%    0.0%   99.7%    0.0% 
   g   85.6%   16.8%    1.2%   81.1%    2.7% 
 
16S_fl RDP cutoff=80 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.5%   40.0%    0.1%   99.5%    0.2% 
   g   85.6%   48.0%    2.8%   92.1%    7.1% 
 
16S_fl SINTAX cutoff=90 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.8%    0.0%    0.0%   99.4%    0.0% 
   g   85.6%   11.2%    0.9%   72.7%    1.8% 
 
16S_fl RDP cutoff=90 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.5%   26.7%    0.1%   99.5%    0.1% 
   g   85.6%   38.6%    2.3%   90.8%    5.7% 
 
16S_fl SINTAX cutoff=100 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.8%    0.0%    0.0%   97.4%    0.0% 
   g   85.6%    3.7%    0.2%   39.5%    0.5% 
 
16S_fl RDP cutoff=100 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.5%   26.7%    0.1%   98.9%    0.1% 
   g   85.6%   21.3%    1.5%   84.6%    3.4% 
 
 
 
ITS_fl SINTAX cutoff=50 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p  100.0%    0.0%    0.0%  100.0%    0.0% 
   s   75.6%   54.7%    8.6%   85.8%   15.1% 
 
ITS_fl RDP cutoff=50 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.9%  100.0%    0.0%  100.0%    0.1% 
   s   73.9%   71.6%   12.5%   85.0%   20.8% 
 
ITS_fl SINTAX cutoff=80 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p  100.0%    0.0%    0.0%   99.9%    0.0% 
   s   75.6%   25.6%    3.2%   75.2%    6.4% 
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ITS_fl RDP cutoff=80 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.9%    0.0%    0.0%   99.9%    0.0% 
   s   73.9%   42.2%    7.9%   79.8%   12.7% 
 
ITS_fl SINTAX cutoff=90 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p  100.0%    0.0%    0.0%   99.8%    0.0% 
   s   75.6%   18.6%    2.0%   69.2%    4.3% 
 
ITS_fl RDP cutoff=90 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.9%    0.0%    0.0%   99.9%    0.0% 
   s   73.9%   31.7%    6.3%   76.5%    9.9% 
 
ITS_fl SINTAX cutoff=100 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p  100.0%    0.0%    0.0%   99.2%    0.0% 
   s   75.6%    7.3%    0.6%   47.6%    1.6% 
 
ITS_fl RDP cutoff=100 
Rank  AccRDP      OC      MC    Sens     EPQ 
----  ------  ------  ------  ------  ------ 
   p   99.9%    0.0%    0.0%   99.6%    0.0% 
   s   73.9%   17.5%    3.2%   65.3%    5.2% 
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Supplementary Table 1. CPX results. 
SINTAX-s is SINTAX with |Q|/k sub-sample size. 
 
 
V4 
                    |  _______________g______________  |  _______p______ 
      Algo  Cutoff  |  FPover  FPmiss    Sens     EPQ  |    Sens     EPQ 
    SINTAX    1.00  |     4.1     0.6    60.0     2.6  |    89.3     0.0 
  SINTAX-s    1.00  |     3.8     0.6    58.7     2.4  |    87.9     0.0 
       RDP     100  |     4.8     0.4    58.4     2.9  |    76.2     0.0 
    SINTAX    0.90  |    14.5     1.6    77.5     9.0  |    96.1     0.0 
  SINTAX-s    0.90  |    14.0     1.7    77.3     8.8  |    96.0     0.0 
       RDP      90  |    14.0     1.9    77.4     8.9  |    87.3     0.0 
    SINTAX    0.80  |    22.3     2.6    81.8    13.9  |    96.9     0.1 
  SINTAX-s    0.80  |    23.7     2.5    81.6    14.6  |    96.8     0.1 
       RDP      80  |    21.1     3.0    82.1    13.4  |    90.0     0.2 
    SINTAX       0  |   100.0     9.9    90.1    61.6  |    98.4     2.2 
  SINTAX-s       0  |   100.0    10.1    89.9    61.7  |    98.4     2.2 
       RDP       0  |   100.0     9.5    90.5    61.4  |    93.5     7.0 
 
 
V3-V5 
                    |  _______________g______________  |  _______p______ 
      Algo  Cutoff  |  FPover  FPmiss    Sens     EPQ  |    Sens     EPQ 
    SINTAX    1.00  |     3.2     0.1    59.1     1.8  |    91.7     0.0 
  SINTAX-s    1.00  |     7.9     0.2    74.4     4.3  |    95.6     0.0 
       RDP     100  |     8.4     0.4    74.3     4.7  |    84.8     0.0 
    SINTAX    0.90  |    10.4     0.5    80.3     5.8  |    97.0     0.1 
  SINTAX-s    0.90  |    20.5     1.0    86.0    11.5  |    98.0     0.1 
       RDP      90  |    20.1     1.9    85.9    11.7  |    91.0     0.1 
    SINTAX    0.80  |    20.2     1.0    84.8    11.3  |    97.9     0.1 
  SINTAX-s    0.80  |    33.3     1.4    89.1    18.5  |    98.3     0.3 
       RDP      80  |    28.5     2.7    88.3    16.5  |    93.6     0.3 
    SINTAX       0  |   100.0     5.7    94.3    56.3  |    98.6     1.9 
  SINTAX-s       0  |   100.0     5.6    94.4    56.2  |    98.8     1.7 
       RDP       0  |   100.0     6.7    93.3    56.7  |    96.3     4.3 
 
 
16S_fl 
                    |  _______________g______________  |  _______p______ 
      Algo  Cutoff  |  FPover  FPmiss    Sens     EPQ  |    Sens     EPQ 
    SINTAX    1.00  |     2.2     0.1    50.5     1.2  |    89.9     0.0 
  SINTAX-s    1.00  |    13.9     0.4    84.9     7.7  |    98.5     0.0 
       RDP     100  |    17.2     0.5    86.7     9.5  |    88.6     0.1 
    SINTAX    0.90  |     8.2     0.2    78.3     4.5  |    97.0     0.0 
  SINTAX-s    0.90  |    27.6     0.8    91.6    15.2  |    99.1     0.1 
       RDP      90  |    31.2     1.2    92.7    17.4  |    91.0     0.4 
    SINTAX    0.80  |    12.2     0.4    84.7     6.8  |    98.0     0.0 
  SINTAX-s    0.80  |    36.4     1.1    93.6    20.2  |    99.3     0.2 
       RDP      80  |    40.3     1.6    94.0    22.5  |    92.7     0.9 
    SINTAX       0  |   100.0     4.1    95.9    55.8  |    99.4     1.2 
  SINTAX-s       0  |   100.0     3.5    96.5    55.6  |    99.7     0.9 
       RDP       0  |   100.0     3.9    96.1    55.7  |    96.5     4.1 
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ITS_fl 
                    |  _______________g______________  |  _______p______ 
      Algo  Cutoff  |  FPover  FPmiss    Sens     EPQ  |    Sens     EPQ 
    SINTAX    1.00  |     1.1     0.2    88.3     0.6  |    76.6     0.0 
  SINTAX-s    1.00  |     1.6     0.3    92.9     1.1  |    81.8     0.0 
       RDP     100  |    13.8     0.3    83.5     8.5  |    65.9     3.3 
    SINTAX    0.90  |     3.7     0.5    94.4     1.8  |    94.0     0.0 
  SINTAX-s    0.90  |    16.9     0.6    96.3    10.5  |    93.8     0.1 
       RDP      90  |    51.4     0.7    89.6    31.3  |    71.7    11.8 
    SINTAX    0.80  |    14.4     0.8    95.6     6.4  |    95.7     0.1 
  SINTAX-s    0.80  |    29.4     0.7    97.3    18.0  |    94.8     0.3 
       RDP      80  |    67.8     1.0    91.2    41.3  |    72.8    16.2 
    SINTAX       0  |   100.0     2.3    97.7    42.3  |    98.2     1.8 
  SINTAX-s       0  |   100.0     1.5    98.5    61.0  |    98.1     1.9 
       RDP       0  |   100.0     5.7    94.3    62.6  |    76.4    23.6 
 
SILVAM (mothur subset of SILVA, V4) 
                    |  _______________g______________  |  _______p______ 
      Algo  Cutoff  |  FPover  FPmiss    Sens     EPQ  |    Sens     EPQ 
    SINTAX    1.00  |     8.6     0.9    56.4     5.1  |    92.1     0.1 
  SINTAX-s    1.00  |     8.3     0.9    55.3     4.9  |    91.6     0.1 
      Mrdp     100  |     6.5     0.5    47.6     3.8  |    87.0     0.0 
    SINTAX    0.90  |    24.1     2.4    75.3    14.2  |    97.4     0.3 
  SINTAX-s    0.90  |    22.8     2.4    74.7    13.5  |    97.3     0.3 
      Mrdp      90  |    21.6     1.5    69.3    12.4  |    95.4     0.1 
    SINTAX    0.80  |    32.0     3.5    79.7    19.0  |    98.2     0.4 
  SINTAX-s    0.80  |    30.7     3.5    79.2    18.3  |    98.1     0.4 
      Mrdp      80  |    30.8     2.4    75.8    17.8  |    97.1     0.1 
    SINTAX       0  |    99.3    11.0    89.0    59.0  |    99.1     1.4 
  SINTAX-s       0  |    99.4    11.1    88.9    59.0  |    99.1     1.4 
      Mrdp       -  |    90.9    12.4    86.7    55.0  |    98.5     1.9 
      Mknn       -  |    22.3     0.8    61.4    12.5  |    97.9     0.4 
 
GGQ (QIIME subset of Greengenes, V4) 
                    |  _______________g______________  |  _______p______ 
      Algo  Cutoff  |  FPover  FPmiss    Sens     EPQ  |    Sens     EPQ 
    SINTAX    1.00  |     5.6     1.1    51.8     4.5  |    72.7     0.1 
  SINTAX-s    1.00  |     5.0     1.2    50.3     4.1  |    71.5     0.1 
    SINTAX    0.90  |    17.5     3.9    69.5    14.4  |    87.6     0.2 
  SINTAX-s    0.90  |    16.7     3.9    68.8    13.8  |    87.0     0.2 
    SINTAX    0.80  |    25.9     5.4    74.8    21.3  |    90.8     0.3 
  SINTAX-s    0.80  |    25.2     5.2    74.4    20.6  |    90.5     0.3 
    SINTAX    0.50  |    54.6     9.7    83.4    44.4  |    95.6     1.7 
  SINTAX-s    0.50  |    53.7     9.7    83.3    43.7  |    95.5     1.6 
    SINTAX       0  |    98.6    13.7    86.3    79.3  |    96.8     3.7 
  SINTAX-s       0  |    98.7    13.7    86.3    79.4  |    96.8     3.6 
      qrdp       -  |    49.4     9.6    81.7    40.3  |    95.0     1.1 
       Quc       -  |    48.4     9.7    77.3    39.6  |    72.8     0.4 
       Qsm       -  |    45.7     7.7    76.1    37.1  |    73.3     0.3 
     blast       -  |    87.4    17.1    82.7    71.4  |    90.2     8.4 
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